JP2922059B2 - Operating method of hollow fiber membrane filter - Google Patents

Operating method of hollow fiber membrane filter

Info

Publication number
JP2922059B2
JP2922059B2 JP18384192A JP18384192A JP2922059B2 JP 2922059 B2 JP2922059 B2 JP 2922059B2 JP 18384192 A JP18384192 A JP 18384192A JP 18384192 A JP18384192 A JP 18384192A JP 2922059 B2 JP2922059 B2 JP 2922059B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
water
flow rate
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18384192A
Other languages
Japanese (ja)
Other versions
JPH0623240A (en
Inventor
克巳 奥川
博幸 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORUGANO KK
Original Assignee
ORUGANO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16142779&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2922059(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ORUGANO KK filed Critical ORUGANO KK
Priority to JP18384192A priority Critical patent/JP2922059B2/en
Publication of JPH0623240A publication Critical patent/JPH0623240A/en
Application granted granted Critical
Publication of JP2922059B2 publication Critical patent/JP2922059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、半導体産業用水処理、
発電所用水処理、上水の前処理、廃水処理など懸濁物を
含んだ液を濾過して、除濁により清水を得るための中空
糸膜濾過器の運転方法に関し、詳しくは、内圧式の中空
糸膜濾過器にクロスフロー流で被処理液(通常「水」を
対象とする)を流して処理水を得る場合に、濾材寿命の
延長、所要動力の低減に有効な運転方法を提供するもの
である。
The present invention relates to water treatment for the semiconductor industry,
Regarding the operation method of the hollow fiber membrane filter for filtering the liquid containing suspended matter such as water treatment for power plants, pretreatment of clean water, wastewater treatment, and the like, to obtain clear water by turbidity. Provided is an effective operation method for extending the life of the filter medium and reducing the required power when obtaining the treated water by flowing the liquid to be treated (usually for "water") with a cross flow through the hollow fiber membrane filter. Things.

【0002】[0002]

【従来技術】懸濁物を含む液から濁質を除去して清澄な
液を得る除濁装置は、多くの産業分野で利用されてお
り、その構成も極めて多種に渡っている。
2. Description of the Related Art A clarifier for removing a turbid substance from a liquid containing a suspension to obtain a clear liquid is used in many industrial fields, and the constitution thereof is extremely wide.

【0003】例えば原子力発電所の復水処理では、プリ
コート型濾過器、中空糸膜濾過器等、半導体工場の超純
水の前処理等純水装置の除濁処理では、凝集沈澱濾過装
置等が用いられている。本発明において対象とする中空
糸膜濾過器もその除濁装置の一つとして用いられてお
り、一般的には、膜濾過器の管内に懸濁物を含む被処理
水を流通させて、その圧力により水だけを膜の管外側に
透過させ、懸濁物を膜で阻止する除濁処理装置として使
用されている。
For example, in a condensate treatment at a nuclear power plant, a pre-coat type filter, a hollow fiber membrane filter and the like, and in a turbidity treatment of a pure water device such as a pretreatment of ultrapure water at a semiconductor factory, an agglomerated sedimentation filter and the like are used. Used. The hollow fiber membrane filter targeted in the present invention is also used as one of the clarifiers, and generally, the water to be treated containing the suspension is circulated in the tube of the membrane filter, and the It is used as a turbidity treatment device that allows only water to permeate the outside of the tube of the membrane by pressure and blocks suspended matter with the membrane.

【0004】ところで、この内圧式の膜濾過器では、濾
過に際して阻止された懸濁物が濾材表面(中空糸膜の内
側面)に堆積し、この堆積物の量が増加すれば、堆積層
を通過する水の抵抗が増し、濾過差圧が上昇するので、
濾過差圧が一定程度まで上昇した時点で逆洗等の洗浄に
より堆積物を除去し、差圧の回復を行なうのが通常であ
る。また、堆積物の質,量によっては、通常の逆洗等で
はこの堆積物が容易に除去されないので、薬品による溶
解もしくは膜の交換が必要になる。
[0004] In this internal pressure type membrane filter, the suspended matter that is blocked during filtration accumulates on the surface of the filter medium (the inner side surface of the hollow fiber membrane). As the resistance of passing water increases and the filtration differential pressure increases,
When the filtration pressure difference rises to a certain level, it is usual to remove deposits by washing such as back washing and recover the pressure difference. Further, depending on the quality and quantity of the deposit, the deposit is not easily removed by ordinary backwashing or the like, so that it is necessary to dissolve with a chemical or replace the film.

【0005】しかし工業的には、濾材の寿命延長や逆洗
廃液量の低減が望まれることから、できるだけ濾材表面
に懸濁物を堆積させない目的で工夫された運転法が従来
から行なわれている。具体的には、内圧式の膜濾過器に
おいては、膜の管内に流入させた被処理水の全量を膜の
管外側に透過させる(これを一般に全量濾過方式とい
う)のではなく、流入させた被処理水の一部を管外側に
透過させ、残部を膜を透過させることなく非透過水とし
て取り出す、いわゆるクロスフロー濾過方式を利用する
と共に、前記非透過水を膜の入口側に循環するように
し、この循環水の流量を可能な限り大きくして管内の水
の流速を高くすることにより、管内面の掃流力を利用し
て上記の堆積量を低減する方法が採用されている。
However, industrially, since it is desired to extend the life of the filter medium and to reduce the amount of backwash waste liquid, an operation method devised for the purpose of minimizing the accumulation of suspended matter on the surface of the filter medium has been conventionally performed. . Specifically, in the internal pressure type membrane filter, the entire amount of the water to be treated that has flowed into the membrane tube is allowed to flow in instead of permeating the outside of the membrane tube (this is generally referred to as a total filtration method). A part of the water to be treated is permeated to the outside of the tube, and the remainder is taken out as non-permeated water without permeating the membrane, using a so-called cross-flow filtration method, and circulating the non-permeated water to the inlet side of the membrane. In addition, a method is employed in which the flow rate of the circulating water is increased as much as possible to increase the flow velocity of the water in the pipe, so that the above-mentioned accumulation amount is reduced by using the scavenging force of the pipe inner surface.

【0006】図4は原子力発電所における懸濁物として
酸化鉄を含む機器ドレン廃液を、内圧式の超濾過器で非
透過水を循環しながら膜濾過処理した時の結果を示した
ものであり、内径10〜25mmφのチューブ型濾過膜
では、循環水量1〜5m3 /hr、循環水の管内流速2
〜4m/secで運転すると、図から分かるように循環
水量が少ないほど、すなわち管内流速が遅いほど透過液
流量の時間当たりの低下は大きくなっており、上記の管
内流速を高くする運転方法の効果が確認される。
FIG. 4 shows the results when the equipment drain waste liquid containing iron oxide as a suspension in a nuclear power plant is subjected to membrane filtration while circulating non-permeated water with an internal pressure type ultrafilter. In the case of a tube type filtration membrane having an inner diameter of 10 to 25 mmφ, the amount of circulating water is 1 to 5 m 3 / hr,
When operated at 44 m / sec, as can be seen from the figure, as the amount of circulating water decreases, that is, as the flow velocity in the pipe decreases, the per-hour flow rate of the permeate decreases more. Is confirmed.

【0007】[0007]

【発明が解決しようとする課題】ところが、本発明者等
の研究によると、内圧式の膜濾過器における管内の流速
を高くする方法は、必ずしも全ての膜濾過器において有
効な運転方法でなく、例えば内径が小さく管内流動抵抗
が大きな中空糸膜濾過器では、その効果のないことが分
かった。
However, according to the study by the present inventors, the method of increasing the flow rate in the pipe in the internal pressure type membrane filter is not necessarily an effective operation method in all membrane filters. For example, it has been found that a hollow fiber membrane filter having a small inner diameter and a large flow resistance in a pipe has no effect.

【0008】その理由を以下に説明する。管内流動抵抗
が大きな中空糸膜濾過器、例えば内径0.3〜2mmφ
程度の中空糸膜濾過器を内圧式で運転する場合、この濾
過器では中空糸膜の内径が小さいため単位長さ辺りの管
内流動抵抗が大きくなる。このため、例えば10mmφ
以上の大きな内径をもつ膜濾過器では可能な3m/se
c以上の乱流域での運転ができず、管内流動抵抗が大き
な中空糸膜濾過器では一般に被処理水を1m/sec前
後の流速で流す運転を行なうことになる。しかしこのよ
うな条件で運転を行なうと、局所的に中空糸膜の入口部
分の堆積物量が大きくなるという現象が現われ、これに
原因して膜全体の差圧上昇も早くなるという結果になっ
てしまう。
The reason will be described below. Hollow fiber membrane filter with large flow resistance in the tube, for example, 0.3 to 2 mm in inner diameter
When a hollow fiber membrane filter is operated at an internal pressure type, the inside diameter of the hollow fiber membrane is small in this filter, so that the flow resistance in the pipe per unit length increases. For this reason, for example, 10 mmφ
3 m / sec possible with a membrane filter with a large inner diameter as described above
In a hollow fiber membrane filter that cannot be operated in a turbulent flow region of c or more and has a large flow resistance in a pipe, an operation is generally performed in which the water to be treated flows at a flow rate of about 1 m / sec. However, when the operation is performed under such conditions, a phenomenon that the amount of deposits at the inlet portion of the hollow fiber membrane becomes locally large appears, and as a result, the differential pressure rise of the entire membrane becomes faster. I will.

【0009】図3はこのような現象をモデル的に説明す
るための図であり、図中の21を内径0.3〜2mm
φ、長さ50cm以上の中空糸膜とし、これを内圧式ク
ロスフロー流で被処理水の管内流速を1m/sec程度
に確保して運転を行なったとすると、その管内流動抵抗
は0.5kg/cm2 以上となる。このため、中空糸膜
入口側端部と出口側端部の圧力差は0.5kg/cm2
以上となり、膜内側から膜外側に透過する水の膜透過流
速がその分異なる。例えば図3の中空糸膜21が約0.
5kg/cm2 の圧力差で透過液流量が2倍になる膜で
あるとすると、膜透過水量Qxは、膜入口部と膜出口部
では2:1になる。その結果、入口部の膜面に対する堆
積物量がその分多くなる。膜濾過において濾過流速と差
圧上昇の関係は(差圧上昇)=(流速)2 (“精密ろ
過”「分離技術の基礎と新しい展開−機械的分離技術
−」;化学工学協会関東支部(1988))であるから、中
空糸膜の入口部の差圧上昇は早く、堆積物による膜面の
閉塞が進行する。そして閉塞により差圧が上昇すること
はその部分の透過水流量が低下することを意味し、透過
水流量を一定にした濾過器の運転を行なう場合にはその
低下した分を他の膜面で補うことになるから、他の部分
の膜面の透過水流量すなわち流速を全体比例的に少しづ
つ増加させることになる。
FIG. 3 is a diagram for explaining such a phenomenon in a model manner. In FIG. 3, reference numeral 21 denotes an inner diameter of 0.3 to 2 mm.
Assuming that a hollow fiber membrane having a diameter of 50 cm or more and being operated with an internal pressure cross-flow at a flow rate of about 1 m / sec in the pipe of the water to be treated, the flow resistance in the pipe is 0.5 kg / cm 2 or more. For this reason, the pressure difference between the inlet end of the hollow fiber membrane and the outlet end is 0.5 kg / cm 2.
As described above, the membrane permeation flow rate of water permeating from the inside of the membrane to the outside of the membrane differs accordingly. For example, the hollow fiber membrane 21 of FIG.
Assuming a membrane whose permeate flow rate is doubled with a pressure difference of 5 kg / cm 2 , the membrane permeated water amount Qx is 2: 1 at the membrane inlet and membrane outlet. As a result, the amount of deposit on the film surface at the entrance increases. In membrane filtration, the relationship between filtration flow rate and differential pressure rise is (differential pressure rise) = (flow rate) 2 ("Microfiltration""Basic and New Development of Separation Technology-Mechanical Separation Technology"; Japan Society of Chemical Engineering, Kanto Branch (1988 )), The pressure difference at the entrance of the hollow fiber membrane rises quickly, and the membrane surface is blocked by deposits. When the pressure difference rises due to the blockage, it means that the flow rate of the permeated water decreases in that part. Therefore, the flow rate of the permeated water, that is, the flow velocity of the other surface of the membrane surface is gradually increased as a whole.

【0010】そして膜の透過差圧は流速に比例するか
ら、膜の透過水流速が増加することは膜差圧の上昇とな
って、中空糸膜濾過器の差圧上昇が早くなる結果を招
く。
Since the permeation pressure difference of the membrane is proportional to the flow rate, an increase in the permeation water flow rate of the membrane results in an increase in the membrane pressure difference, resulting in a faster increase in the pressure difference of the hollow fiber membrane filter. .

【0011】本発明者等は以上のような知見に基づいて
更に研究を重ね、内圧式で使用する膜濾過器において従
来一般に有効と考えられていた管内流速を高くする運転
方法に変えて、濾過器の寿命延長、逆洗等の洗浄頻度低
減に有効な新規な運転方法を、本発明によって提供する
ことを目的とする。
The present inventors have conducted further studies based on the above findings, and have changed the operation method for increasing the flow velocity in the pipe, which has been generally considered to be generally effective, in the membrane filter used in the internal pressure type. An object of the present invention is to provide a new operation method effective for extending the life of a vessel and reducing the frequency of cleaning such as backwashing.

【0012】また本発明の別の目的は、弁,配管,ポン
プ等の諸設備の小型化を可能とし、これによって設備費
の大幅な低減を実現すると共に、容量の小さなポンプの
使用を可能として動力費が安価で、処理コストを安価と
することができる濾過器の運転方法を提供するところに
ある。
Another object of the present invention is to make it possible to reduce the size of various equipment such as valves, piping, pumps, etc., thereby realizing a great reduction in equipment costs and making it possible to use a pump having a small capacity. It is an object of the present invention to provide a method of operating a filter that can reduce power cost and processing cost.

【0013】また更に本発明の別の目的は、上記の洗浄
頻度低減等により、使用する薬品量が少ないためにラン
ニングコストが安価であり、また洗浄水の廃液処理のた
めの設備負担や廃水処理量を低減できる濾過器の運転方
法を提供するところにある。
Still another object of the present invention is to reduce the cleaning frequency and the like, so that the amount of chemicals used is small and the running cost is low. It is an object of the present invention to provide a method of operating a filter capable of reducing the amount.

【0014】[0014]

【課題を解決するための手段及び作用】上記目的を実現
するために、本発明者は上記特許請求の範囲の各請求項
に記載した中空糸膜濾過器の運転方法の発明を完成し
た。
In order to achieve the above object, the present inventor has completed the invention of a method for operating a hollow fiber membrane filter as described in each of the claims.

【0015】本発明の特徴の一つは、例えば内径0.3
〜6mm、特には内径0.7〜2.0mmで、長さ50
cm以上、一般的には50〜250cmの中空糸膜を用
いて構成した濾過器の中空糸膜の管内に懸濁物を含んだ
被処理液を流入させ、当該被処理液の一部を中空糸膜の
管外側に透過させて処理液となすと共に、被処理液の残
部を中空糸膜を透過させることなく非透過液として中空
糸膜の管端部より取り出すようにした内圧式の中空糸膜
濾過器において、上記非透過液の流量を、中空糸膜管内
のレイノルズ数が400以下、好ましくは15〜25
0、最適には75〜150となるように設定することを
特徴とする中空糸膜濾過器の運転方法にある。
One of the features of the present invention is that the inner diameter is, for example, 0.3.
~ 6mm, especially 0.7 ~ 2.0mm inner diameter, length 50
cm or more, generally a liquid to be treated containing a suspended substance is introduced into a tube of a hollow fiber membrane of a filter constructed using a hollow fiber membrane of 50 to 250 cm, and a part of the liquid to be treated is hollowed. An internal pressure type hollow fiber in which the treatment liquid is permeated to the outside of the fiber membrane to form a treatment liquid, and the remaining liquid to be treated is taken out of the end of the hollow fiber membrane as a non-permeate liquid without passing through the hollow fiber membrane. In the membrane filter, the flow rate of the non-permeate is adjusted so that the Reynolds number in the hollow fiber membrane tube is 400 or less, preferably 15 to 25.
0, and optimally set to 75 to 150, in the method of operating a hollow fiber membrane filter.

【0016】 本発明において使用する中空糸膜として
は、精密濾過膜、限外濾過膜等を挙げることができる
が、一般的には膜透過流量が圧力1kg/cm2 の条
件下で100リットル/hr・m2 以上の膜、特には2
50リットル/hr・m2 以上の高透性膜を用いる場
合に本発明の特徴が効果的に奏される。
[0016] The hollow fiber membrane used in the present invention, microfiltration membrane, there may be mentioned an ultrafiltration membrane or the like 100 liters generally membrane permeate flow rate under a pressure of 1 kg / cm 2 / Hr · m 2 or more, especially 2
Feature of the present invention is effectively achieved when using a 50 l / hr · m 2 or more of the high liquid film.

【0017】本発明の運転方法においては、上記の中空
糸膜濾過器の管内に懸濁物を含んだ被処理液をクロスフ
ロー流で流し、内圧により中空糸膜の管外側に処理液を
透過させる際に、透過液流量が50リットル/hr・m
2 以上、好ましくは60〜80リットル/hr・m2
なるように運転することがよい。
In the operating method of the present invention, the liquid to be treated containing the suspension is flowed in a cross-flow flow into the tube of the above-mentioned hollow fiber membrane filter, and the treatment liquid permeates outside the tube of the hollow fiber membrane by internal pressure. At the time of permeation, the permeate flow rate is 50 l / hr · m
The operation may be performed at 2 or more, preferably 60 to 80 l / hr · m 2 .

【0018】 本発明の方法を適用し得る濾過器は、中
空糸膜濾過器に対して被処理液をクロスフロー流で流す
ものであればよく、非透過液を一過性の流れで系外に排
出することもできるが、通常は非透過液を中空糸膜濾過
器の入口側原液に循環させる循環型で使用する運転方法
が好ましく採用される。
The filter to which the method of the present invention can be applied may be any as long as it allows the liquid to be treated to flow through the hollow fiber membrane filter in a cross-flow manner. In general, a circulation type operation method in which the non-permeated liquid is circulated to the stock solution on the inlet side of the hollow fiber membrane filter is preferably employed.

【0019】以上のような構成の濾過器において、ある
設定された透過液流量の下で非透過液流量を小さく設定
することで管内流動抵抗を効果的に小さな値とすること
ができる。例えば、循環水(非透過水)流速1m/se
c以下で、管内を流れる循環水のレイノズル数が15〜
250となるようにして、例えば循環水量を透過水流量
と略同程度に維持して循環水を流すことで、0.3〜2
mmφ、50cmの中空糸膜の管内流動抵抗は0.2k
g/cm2 以下とすることができる。
In the filter constructed as described above, the flow resistance in the pipe can be effectively reduced by setting the non-permeate flow rate small under a certain set permeate flow rate. For example, circulating water (non-permeated water) flow rate 1 m / sec
c or less, the number of Reynolds nozzles of circulating water flowing in the pipe is 15 to
250, for example, by flowing the circulating water while maintaining the amount of the circulating water at substantially the same level as the flow rate of the permeated water, 0.3 to 2
The flow resistance in a 50 mm hollow fiber membrane is 0.2k.
g / cm 2 or less.

【0020】これにより、中空糸膜における入口部と出
口部の膜の透過流速の差は小さくでき、中空糸膜は入口
部から出口部まで略一定の濾過流速と濾過差圧で運転す
ることが可能となるから、本発明の運転方法においては
(差圧上昇)=(流速)2 の関係で加速された流量低下
を補う必要がないため、膜差圧の上昇ひいては濾過器の
差圧の上昇を防止できる。
Thus, the difference in the permeation flow rate between the inlet and the outlet of the hollow fiber membrane can be reduced, and the hollow fiber membrane can be operated from the inlet to the outlet at a substantially constant filtration flow rate and filtration differential pressure. Since it becomes possible, in the operating method of the present invention, it is not necessary to compensate for the accelerated decrease in the flow rate due to the relation of (increase in differential pressure) = (flow velocity) 2 , and therefore, the increase in the membrane differential pressure and the increase in the filter differential pressure Can be prevented.

【0021】[0021]

【実施例】以下本発明を図面に示す実施例に基づいて更
に説明する、図1は本発明の方法を適用する濾過装置の
構成概要一例を系統フロー図として示したものであり、
この図において1は原水タンクであり、入口弁2を介し
て懸濁物を含む原水(実施例ではつくば工業団地の工業
用水)を一時貯留する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be further described below with reference to the embodiments shown in the drawings. FIG. 1 is a system flow diagram showing an example of a schematic configuration of a filtration apparatus to which the method of the present invention is applied.
In this figure, reference numeral 1 denotes a raw water tank, which temporarily stores raw water containing suspended matter (in the embodiment, industrial water of Tsukuba Industrial Park) via an inlet valve 2.

【0022】この原水タンク1に貯留された原水は、配
管3を通して送水ポンプ4及び入口弁5,5を介して、
本例では2系列の限外濾過膜(UF)中空糸モジュール
6,6にクロスフロー流で流され、膜透過水は出口弁7
を介して処理水タンク8に送られるようになっている。
なお図1ではUF中空糸モジュールを模式的に図示して
いる。
The raw water stored in the raw water tank 1 is passed through a pipe 3 through a water supply pump 4 and inlet valves 5, 5.
In this example, two series of ultrafiltration membrane (UF) hollow fiber modules 6 and 6 are passed in a cross-flow manner, and the permeated water is passed through an outlet valve 7.
Through the processing water tank 8.
FIG. 1 schematically shows a UF hollow fiber module.

【0023】9,9はUF中空糸モジュール6,6の非
透過水流量を制御する出口流量コントロール弁であり、
非透過水はこの出口流量コントロール弁9,9を介して
循環用配管10を介して原水タンクに戻されるようにな
っている。
Reference numerals 9 and 9 denote outlet flow control valves for controlling the non-permeate flow rate of the UF hollow fiber modules 6 and 6,
The non-permeated water is returned to the raw water tank via the outlet flow control valves 9 and 9 and the circulation pipe 10.

【0024】なお11は循環遮断弁、12はブロー弁で
あり、上記の各弁の開閉切換えの操作と共に開閉が切換
えられて、UF中空糸モジュール6の逆洗洗浄の際に、
逆洗水をブロー弁12を介して系外に排水するように設
けられている。
Reference numeral 11 denotes a circulation shut-off valve, and reference numeral 12 denotes a blow valve. The opening and closing of the UF hollow fiber module 6 are switched when the above-mentioned valves are opened and closed.
The backwash water is provided to drain out of the system via the blow valve 12.

【0025】本発明においては、以上の構成を有する濾
過装置において、出口流量コントロール弁9により非透
過水流量を調整して、中空糸膜管内を流れる非透過水の
レイノルズ数が400以下、好ましくは15〜250と
なるように設定することにその特徴がある。
In the present invention, in the filtering apparatus having the above-mentioned structure, the Reynolds number of the non-permeated water flowing through the hollow fiber membrane tube is adjusted to 400 or less, preferably by adjusting the non-permeated water flow rate by the outlet flow control valve 9. The feature is that the setting is made to be 15 to 250.

【0026】試験例1 本発明の効果を確認するために以下の試験を行なった。Test Example 1 The following tests were performed to confirm the effects of the present invention.

【0027】上記構成の濾過装置において、UF中空糸
モジュール6に、内径0.5mmφ、長さ1mのアクリ
ルニトリル(PAN)製中空糸膜(分画分子量5000
0)を2050本束ねて、3B PVCパイプに収納した
中空糸膜モジュールを使用し、以下の条件で非透過水を
原水タンク1に循環させて、膜差圧上昇の比較を行なっ
た。
In the filtration device having the above structure, the UF hollow fiber module 6 is provided with a hollow fiber membrane made of acrylonitrile (PAN) having an inner diameter of 0.5 mmφ and a length of 1 m (fraction molecular weight 5000).
0) 2050 present by bundling, 3 B using a hollow fiber membrane module housed in PVC pipe, by circulating non permeate into the raw water tank 1 under the following conditions, a comparison was made transmembrane pressure difference rises.

【0028】中空糸膜の膜透過液流量:530リットル
/hr・m2 (圧力1kg/cm2) 原水(被処理水):つくば工業団地の工業用水 透過水流量:0.4m3 /hr(一定) 循環水の管内レイノルズ数 (モジュール出口を基準として):86、 238、
389、 800 (循環水の流量:m3 /hr)(0.4)(1.1)
(1.8)(3.7) 通水時間:5分に1回の逆洗を行なって1500時間 以上の試験を行なった結果を、図2の図表に示した。
Flow rate of the permeated liquid of the hollow fiber membrane: 530 liter / hr · m 2 (pressure 1 kg / cm 2 ) Raw water (water to be treated): Industrial water of Tsukuba Industrial Park Permeated water flow rate: 0.4 m 3 / hr ( Constant) Reynolds number of circulating water in pipe (based on module outlet): 86, 238,
389, 800 (flow rate of circulating water: m 3 / hr) (0.4) (1.1)
(1.8) (3.7) Water flow time: The results of conducting a test for more than 1500 hours after backwashing once every 5 minutes are shown in the chart of FIG.

【0029】この結果から分かるように、レイノルズ数
が大きい程(循環水量が多い程)、膜差圧の上昇が大き
くなり、従来考えられていたレイノルズ数を800以上
で運転する場合に比べて、400以下、好ましくは25
0以下で、長時間運転した場合の膜差圧の上昇が小さく
できることが確認された。
As can be seen from these results, the larger the Reynolds number (the larger the amount of circulating water), the greater the increase in the transmembrane pressure, which is greater than the conventionally considered operation at a Reynolds number of 800 or more. 400 or less, preferably 25
It was confirmed that when the value was 0 or less, the rise in the transmembrane pressure during long-time operation could be reduced.

【0030】[0030]

【発明の効果】以上述べたように、本発明は、内圧式で
使用する膜濾過器において従来一般に有効と考えられて
いた管内流速を高くして循環水量を透過水量の10倍程
度として循環運転を行なう方法とは全く異なり、例えば
循環水量を透過水流量と略同程度に維持した新規な運転
方法を本発明によって提供でき、これにより、中空糸膜
濾過器の寿命延長、逆洗等の洗浄頻度低減を実現できる
という効果がある。
As described above, according to the present invention, in the membrane filter used in the internal pressure type, the circulation flow rate is increased by increasing the flow rate in the pipe, which is generally considered to be generally effective, to about 10 times the flow rate of the permeated water. The present invention can provide a novel operation method in which the amount of circulating water is maintained at substantially the same level as the flow rate of permeated water, thereby extending the life of the hollow fiber membrane filter and cleaning such as back washing. There is an effect that the frequency can be reduced.

【0031】また、本発明によれば、循環水量が従来に
比べて1/5〜1/10となるため、弁,配管,ポンプ
等の諸設備の小型化が可能であり、これによって設備費
の大幅な低減を実現できると共に、容量の小さなポンプ
の使用が可能であるため動力費が安価で、処理コストを
安価とすることができるという効果もある。
Further, according to the present invention, since the amount of circulating water is 1/5 to 1/10 of that of the prior art, it is possible to reduce the size of various equipment such as valves, pipes, pumps and the like. And the use of a small-capacity pump enables low power costs and low processing costs.

【0032】更に本発明によれば、洗浄回数を従来に比
べて少なく出来るため、使用薬品量が少なくなり、また
洗浄廃水の処理設備の負担軽減や廃水処理量を低減でき
るという効果もある。
Further, according to the present invention, the number of times of washing can be reduced as compared with the prior art, so that the amount of chemicals used is reduced, and the burden on the treatment equipment for washing wastewater and the amount of wastewater treatment can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用する濾過装置の構成概要一例を系
統フロー図として示した図、
FIG. 1 is a system flow diagram showing an example of a configuration outline of a filtration device to which the present invention is applied;

【図2】内圧式の中空糸膜濾過器に懸濁物を含む被処理
水をクロスフローで流した時の管内レイノズル数と、単
位時間当たりの差圧上昇程度の関係を示した図表、
FIG. 2 is a table showing the relationship between the number of Ray nozzles in a pipe and the degree of differential pressure rise per unit time when water to be treated containing suspended matter is caused to flow in a cross flow through an internal pressure type hollow fiber membrane filter;

【図3】中空糸膜に従来の被処理水を高流速で流す運転
方法で被処理水を流したときの透過水流量の分布状態を
モデル的に示した図、
FIG. 3 is a diagram schematically showing a distribution state of a permeated water flow rate when the water to be treated is caused to flow by a conventional operation method of flowing the water to be treated through a hollow fiber membrane at a high flow rate;

【図4】チューブラ型膜濾過器に被処理水を流した時の
循環流速の大きさと、差圧上昇の関係を示した図。
FIG. 4 is a diagram showing the relationship between the magnitude of the circulation flow rate when the water to be treated flows through the tubular membrane filter and the rise in the differential pressure.

【符号の説明】[Explanation of symbols]

1・・・原水タンク、3・・・送水配管、4・・・送水
ポンプ、5・・・入口弁、6・・・UF中空糸モジュー
ル、7・・・出口弁、8・・・処理水タンク、9・・・
循環流量コントロール弁。
DESCRIPTION OF SYMBOLS 1 ... Raw water tank, 3 ... Water supply piping, 4 ... Water supply pump, 5 ... Inlet valve, 6 ... UF hollow fiber module, 7 ... Outlet valve, 8 ... Treated water Tank, 9 ...
Circulation flow control valve.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 濾過機能を有する中空糸膜の管内に懸濁
物を含んだ被処理液を流入させ、当該被処理液の一部を
中空糸膜の管外側に透過させて処理液となすと共に、被
処理液の残部を中空糸膜を透過させることなく非透過液
として中空糸膜の管端部より取り出すようにした内圧式
の中空糸膜濾過器において、上記非透過液の流量を、中
空糸膜管内のレイノルズ数が400以下となるように設
定することを特徴とする中空糸膜濾過器の運転方法。
1. A liquid to be treated containing a suspension is introduced into a tube of a hollow fiber membrane having a filtration function, and a part of the liquid to be treated is permeated outside the tube of the hollow fiber membrane to form a treatment liquid. Along with the internal pressure type hollow fiber membrane filter configured to take out the remainder of the liquid to be treated from the tube end of the hollow fiber membrane as a non-permeate liquid without passing through the hollow fiber membrane, the flow rate of the non-permeate liquid is as follows: A method for operating a hollow fiber membrane filter, wherein the Reynolds number in a hollow fiber membrane tube is set to be 400 or less.
【請求項2】 請求項1において、濾過器の中空糸膜
が、膜透過液流量が圧力1kg/cm2 の条件下で、1
00リットル/hr・m2 以上の膜であることを特徴と
する中空糸膜濾過器の運転方法。
2. The method according to claim 1, wherein the hollow fiber membrane of the filter has a membrane permeate flow rate of 1 kg / cm 2 and a pressure of 1 kg / cm 2.
A method for operating a hollow fiber membrane filter, wherein the membrane has a membrane of 00 liter / hr · m 2 or more.
【請求項3】 請求項1又は2において、透過液流量が
50リットル/hr・m2 以上となるように運転するこ
とを特徴とする中空糸膜濾過器の運転方法。
3. The method for operating a hollow fiber membrane filter according to claim 1, wherein the operation is performed such that the flow rate of the permeated liquid is 50 liter / hr · m 2 or more.
【請求項4】 請求項1乃至3のいずれかにおいて、中
空糸膜濾過器の非透過液を、該中空糸膜濾過器の入口側
に循環させることを特徴とする中空糸膜濾過器の運
転方法。
4. In any of claims 1 to 3, hollow, characterized in that the non-permeate of the hollow fiber membrane filter, is recycled to the inlet side <br/> original liquid of the hollow fiber membrane filter Operation method of the thread membrane filter.
JP18384192A 1992-07-10 1992-07-10 Operating method of hollow fiber membrane filter Expired - Lifetime JP2922059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18384192A JP2922059B2 (en) 1992-07-10 1992-07-10 Operating method of hollow fiber membrane filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18384192A JP2922059B2 (en) 1992-07-10 1992-07-10 Operating method of hollow fiber membrane filter

Publications (2)

Publication Number Publication Date
JPH0623240A JPH0623240A (en) 1994-02-01
JP2922059B2 true JP2922059B2 (en) 1999-07-19

Family

ID=16142779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18384192A Expired - Lifetime JP2922059B2 (en) 1992-07-10 1992-07-10 Operating method of hollow fiber membrane filter

Country Status (1)

Country Link
JP (1) JP2922059B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3924919B2 (en) * 1998-05-21 2007-06-06 Jfeエンジニアリング株式会社 Water filtration equipment
JP2004136183A (en) * 2002-10-16 2004-05-13 Fuji Electric Systems Co Ltd Water treatment method and apparatus therefor
JP2011000509A (en) * 2009-06-16 2011-01-06 Asahi Kasei Medical Co Ltd Hollow fiber filtration membrane
JP5477314B2 (en) 2011-03-04 2014-04-23 信越半導体株式会社 Susceptor and epitaxial wafer manufacturing method using the same

Also Published As

Publication number Publication date
JPH0623240A (en) 1994-02-01

Similar Documents

Publication Publication Date Title
JP2860191B2 (en) Method of changing operation mode in automatic water filtration device
JP2002530188A (en) Filtration of water using immersion membrane
JPH03154620A (en) Membrane separating device
US20110263009A1 (en) Method for the filtration of a bioreactor liquid from a bioreactor; cross-flow membrane module, and bioreactor membrane system
JP3338505B2 (en) Method for membrane purification of surface water with improved recovery rate and method of operating the same
JP2922059B2 (en) Operating method of hollow fiber membrane filter
US11879174B2 (en) Method for pickling steel sheets
JP3359687B2 (en) Cleaning method for filtration membrane module
JPH07275671A (en) Operation of external pressure type hollow yarn ultrafiltration membrane module
KR101256704B1 (en) System and Method for Filtering
JP3395846B2 (en) Water membrane purification method and method of operating the same
JPH09220449A (en) Membrane separation device
JP3986370B2 (en) Cleaning method for membrane filter module
JP2005046762A (en) Water treatment method and water treatment apparatus
JPH07204476A (en) Water purifying apparatus and operation thereof
JPH1043553A (en) Filter and filtration method
KR101568041B1 (en) System for Filtering
JP2006198531A (en) Operating method of hollow fiber membrane module
JPH06238135A (en) Permeated flux recovery method for hollow fiber filter membrane module
JP2514930B2 (en) Membrane separation device with backwash ejector
JP4804097B2 (en) Continuous operation method of water purification system
JP3220216B2 (en) Water treatment method
JPH1157415A (en) Operating method of membrane deaerator and apparatus for the same
JPH08502923A (en) Cross-flow microfiltration method
JPH0268121A (en) Membrane separation