JP4804097B2 - Continuous operation method of water purification system - Google Patents

Continuous operation method of water purification system Download PDF

Info

Publication number
JP4804097B2
JP4804097B2 JP2005296473A JP2005296473A JP4804097B2 JP 4804097 B2 JP4804097 B2 JP 4804097B2 JP 2005296473 A JP2005296473 A JP 2005296473A JP 2005296473 A JP2005296473 A JP 2005296473A JP 4804097 B2 JP4804097 B2 JP 4804097B2
Authority
JP
Japan
Prior art keywords
immersion
backwashing
water
filtration
purification system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005296473A
Other languages
Japanese (ja)
Other versions
JP2007105570A (en
Inventor
智一 綿部
修志 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2005296473A priority Critical patent/JP4804097B2/en
Publication of JP2007105570A publication Critical patent/JP2007105570A/en
Application granted granted Critical
Publication of JP4804097B2 publication Critical patent/JP4804097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、水浄化システムの連続運転方法に関する。   The present invention relates to a continuous operation method of a water purification system.

膜分離技術を適用する水浄化システムは、従来の凝集−沈澱−砂濾過−塩素滅菌工程を経る方法に代わる新たな技術として注目されており、例えば、分離膜を用いた水浄化システムとしてクロスフロー濾過が広く試行されている。クロスフロー濾過とは、分離膜の一方の膜面(原水供給側分離膜面)に原水を供給し、分離膜を透過した透過水を分離膜の他方の膜面(透過水側分離膜面)から回収する際、原水供給側分離膜面に平行に原水を流して濾過を行うことにより、分離膜表面に付着した原水に含まれていた濁質物質をその膜表面からはぎ取る効果を有する濾過方法をいう。しかし、クロスフロー濾過によっても、濾過時間の経過によって原水に含まれる濁質物質が分離膜表面に積層して、分離膜の目詰まりを生ずる。   Water purification systems applying membrane separation technology are attracting attention as a new technology that replaces the conventional method of coagulation-precipitation-sand filtration-chlorine sterilization process. For example, cross-flow as a water purification system using separation membranes Filtration has been widely attempted. Cross-flow filtration means that the raw water is supplied to one membrane surface of the separation membrane (raw water supply side separation membrane surface) and the permeated water that has permeated through the separation membrane is used as the other membrane surface of the separation membrane (permeated water side separation membrane surface). The filtration method has the effect of stripping off turbid substances contained in the raw water adhering to the separation membrane surface by flowing raw water parallel to the separation membrane surface of the raw water supply side when collecting from the membrane. Say. However, even with cross-flow filtration, turbid substances contained in the raw water are laminated on the surface of the separation membrane as the filtration time elapses, resulting in clogging of the separation membrane.

この目詰まりは水浄化システムの運転中断の原因となるため、この目詰まりを解消あるいは予防するために、一般に逆圧洗浄(以下、「逆洗」と称す。)が行われており、分離膜の長期使用を可能とするため、原水濁度、透過水量、透過水圧等の各種変化量等に基づいて逆洗頻度、逆洗時間等を変化させる方法等が提案されている。   Since this clogging causes interruption of the operation of the water purification system, in order to eliminate or prevent this clogging, back pressure washing (hereinafter referred to as “back washing”) is generally performed, and the separation membrane is used. In order to enable long-term use, methods for changing the backwash frequency, backwash time, and the like based on various changes such as raw water turbidity, permeate water amount, permeate water pressure, and the like have been proposed.

例えばクロスフロー濾過における逆洗としては、原水濁度に依存した定期的な逆洗が水道協会雑誌(Vol.61,No.11,19−26,1992)に記載され、特開平4−247226号公報には、水質と濾過量の変動により濾過量低下傾向時に膜の逆洗条件を変更させる方法が開示され、特開平5−317660号公報には、原水濁度の変動に応じて逆洗の頻度を調節し、分離膜を閉鎖させる危険を排除し、かつ用水の回収率を高めることができる方法が開示されている。   For example, as backwashing in crossflow filtration, periodic backwashing depending on the raw water turbidity is described in the Journal of Water Supply Association (Vol. 61, No. 11, 19-26, 1992), and Japanese Patent Application Laid-Open No. 4-247226. The gazette discloses a method of changing the backwashing conditions of the membrane when the filtration rate tends to decrease due to fluctuations in water quality and filtration rate. JP-A-5-317660 discloses backwashing according to fluctuations in raw water turbidity. A method is disclosed that can adjust the frequency, eliminate the risk of closing the separation membrane, and increase the water recovery rate.

これらの方法は、原水側分離膜面に濁質物質が付着した場合には、その目詰まりによって原水供給側の原水圧が上昇するため、その上昇した圧力の数倍の圧力を逆洗圧として用い、濁質物質の剥離を実施しようとするものである。従って、分離膜には常に高圧が負荷されることとなり、分離膜の耐用年数が短縮される恐れがある。しかも、高圧負荷は分離膜のみならず、使用されるポンプにも及ぶ。   In these methods, when turbid substances adhere to the raw water side separation membrane surface, the raw water pressure on the raw water supply side rises due to clogging. Used to remove turbid substances. Accordingly, a high pressure is always applied to the separation membrane, which may shorten the useful life of the separation membrane. Moreover, the high pressure load extends not only to the separation membrane but also to the pump used.

このため、逆洗効率の向上、ならびに高価な分離膜モジュールの使用条件を緩和し、かつ、各種水浄化システムに容易に対応できる逆洗方法の開発が求められている。特許文献1には、逆洗の直前又は直後に濾過過程の休止過程を設けること、殺菌剤を含む逆洗水を用いることが開示され、特許文献2には、逆洗処理工程、次亜塩素酸塩注入浸漬工程、硫酸注入浸漬工程を有し、浸漬洗浄時間が10〜60分である濾過膜の洗浄方法が開示されている。
特開平8−197053号公報 特開2005−87887号公報
For this reason, there is a demand for the development of a backwashing method that can improve backwashing efficiency, ease the conditions for using expensive separation membrane modules, and can easily cope with various water purification systems. Patent Document 1 discloses that a filtration process is paused immediately before or immediately after backwashing, and that backwashing water containing a bactericide is used, and Patent Document 2 discloses a backwashing process, hypochlorous acid. A method of cleaning a filtration membrane having an acid salt injection immersion step and a sulfuric acid injection immersion step and having an immersion cleaning time of 10 to 60 minutes is disclosed.
JP-A-8-197053 Japanese Patent Laid-Open No. 2005-87887

特許文献1の発明は、逆洗直後の休止工程が1〜10時間であることが記載されているが、休止工程の回数については、実施例2において30時間に1回であることが記載されているのみである。   The invention of Patent Document 1 describes that the pause process immediately after backwashing is 1 to 10 hours, but the number of pause processes is described to be once every 30 hours in Example 2. Only.

特許文献2の発明は、次亜塩素酸塩濃度が100〜500mg/Lと高く、pH2〜4となるように硫酸を使用する方法であるため、高濃度の次亜塩素酸塩及び硫酸を含む廃水処理の問題がある。   Since the invention of Patent Document 2 is a method of using sulfuric acid so that the hypochlorite concentration is as high as 100 to 500 mg / L and the pH is 2 to 4, it contains a high concentration of hypochlorite and sulfuric acid. There is a problem of wastewater treatment.

本発明は、逆洗過程において、薬液に濾過膜を浸漬する浸漬洗浄を導入するとき、浸漬洗浄における処理条件を狭い範囲で特定することにより、濾過膜の損傷を抑制でき、濾過能力を飛躍的に回復できる水浄化システムの連続運転方法を提供することを課題とする。   In the backwash process, when introducing immersion cleaning in which a filtration membrane is immersed in a chemical solution, the treatment conditions in the immersion cleaning can be specified in a narrow range, so that the filtration membrane can be prevented from being damaged, and the filtration capability can be dramatically improved. It is an object of the present invention to provide a continuous operation method of a water purification system that can be recovered to a high level.

本発明は、課題の解決手段として、
中空糸型の濾過膜モジュールを用いて原水を濾過する濾過過程と、濾過膜モジュールを逆圧洗浄する逆洗過程を有し、前記逆洗過程において、濾過膜を薬液に浸漬する浸漬洗浄を行う水浄化システムの連続運転方法であって、
式(1)及び式(2)から求められる浸漬サイクル係数k1及びk2が、0.7<k1<4.0及び1.5<k2<5.0になるように運転する水浄化システムの運転方法を提供する。
As a means for solving the problems, the present invention
It has a filtration process of filtering raw water using a hollow fiber type filtration membrane module and a backwashing process of backwashing the filtration membrane module, and in the backwashing process, immersion washing is performed by immersing the filtration membrane in a chemical solution. A continuous operation method of a water purification system,
Provided is an operation method of a water purification system that operates so that immersion cycle coefficients k 1 and k 2 obtained from Equation (1) and Equation (2) are 0.7 <k 1 <4.0 and 1.5 <k 2 <5.0. .

N=k1t(k1=N/t) (1)
N=k2/t(k2=Nt) (2)
〔式中、Nは浸漬サイクル(回/日)、tは浸漬時間(hr)、k1、k2は浸漬サイクル係数を示す。〕
N = k 1 t (k 1 = N / t) (1)
N = k 2 / t (k 2 = Nt) (2)
[Wherein, N is an immersion cycle (times / day), t is an immersion time (hr), and k 1 and k 2 are immersion cycle coefficients. ]

本発明の運転方法によれば、逆洗による洗浄効果が高いため、濾過膜モジュールの高い透水性能を長期にわたり維持することができる。   According to the operation method of the present invention, since the cleaning effect by backwashing is high, the high water permeability of the filtration membrane module can be maintained over a long period of time.

図1及び図2により、本発明の水浄化システムの運転方法を説明する。図1は、水浄化システムのフロー図、図2は、浸漬サイクル係数k1及びk2の説明図である。 1 and 2, the operation method of the water purification system of the present invention will be described. FIG. 1 is a flow diagram of the water purification system, and FIG. 2 is an explanatory diagram of immersion cycle coefficients k 1 and k 2 .

濾過運転時には、弁10を開放し、透過水自動弁13を開、洗浄水排出自動弁14、逆洗自動弁19は閉の状態で、原水を原水供給ポンプ11により中空糸型の濾過膜モジュール12に供給して濾過を行い、生成した透過水を透過水タンク17に貯留する。なお、濾過膜モジュール12を透過しない原水は、循環経路16、原水供給ポンプ11を経て、再び濾過膜モジュール12に送られる。   During the filtration operation, the valve 10 is opened, the permeated water automatic valve 13 is opened, the washing water discharge automatic valve 14 and the backwashing automatic valve 19 are closed, and the raw water is fed by the raw water supply pump 11 into a hollow fiber membrane membrane module. 12 is filtered and the generated permeate is stored in the permeate tank 17. The raw water that does not pass through the filtration membrane module 12 is sent to the filtration membrane module 12 again via the circulation path 16 and the raw water supply pump 11.

原水は、例えば、地下水、雨水、河川水および湖沼水等の天然水を用いることができる。中空糸型の濾過膜モジュール12の濾過膜の膜材質としては、親水性高分子材料である酢酸セルロース、ポリアクリロニトリル重合体、ポリビニルアルコール等を用いることができ、特に本発明の逆洗効果が顕著に現れるため酢酸セルロースが好ましい。   As the raw water, for example, natural water such as ground water, rain water, river water and lake water can be used. As a membrane material of the filtration membrane of the hollow fiber membrane membrane module 12, hydrophilic polymer materials such as cellulose acetate, polyacrylonitrile polymer, polyvinyl alcohol and the like can be used, and the backwash effect of the present invention is particularly remarkable. Cellulose acetate is preferred.

濾過処理を継続して行くと、濾過膜が目詰まりして濾過能力が低下して行くため、逆洗過程を設けるが、本発明では、逆洗過程において濾過膜を薬液に浸漬する薬液浸漬洗浄を行う。このような逆洗過程は、濾過膜の逆洗(前段逆洗)、薬液浸漬洗浄及び逆洗(後段逆洗)を1サイクルとして、1サイクル又は2サイクル以上の処理をすることが好ましい。   If the filtration process is continued, the filtration membrane is clogged and the filtration capacity decreases, so a backwash process is provided.In the present invention, the chemical solution immersion cleaning is performed in which the filtration membrane is immersed in the chemical solution in the backwash process. I do. In such a backwashing process, it is preferable to carry out treatment for one cycle or two cycles or more, with backwashing of the filter membrane (previous backwashing), chemical solution immersion cleaning and backwashing (backstage backwashing) as one cycle.

前段逆洗では、原水供給ポンプ11を停止し、逆洗自動弁19、薬剤自動弁25を開とし、逆洗水供給ポンプ18及び薬剤供給ポンプ22を作動させ、薬剤タンク21内の殺菌剤(次亜塩素酸ナトリウム等)を透過水タンク17の透過水に添加した逆洗水(必要に応じて水道水を併用してもよい)により、好ましくは流束3〜16m/日、より好ましくは流束6〜12m/日で、好ましくは60〜180秒間、より好ましくは60〜120秒間逆洗する。   In the pre-stage backwash, the raw water supply pump 11 is stopped, the backwash automatic valve 19 and the medicine automatic valve 25 are opened, the backwash water supply pump 18 and the medicine supply pump 22 are operated, and the disinfectant ( Backwash water (sodium hypochlorite or the like) added to the permeate of the permeate tank 17 is preferably 3-16 m / day, more preferably 3 to 16 m / day, more preferably tap water. Backwashing is performed at a flux of 6 to 12 m / day, preferably for 60 to 180 seconds, more preferably for 60 to 120 seconds.

その後の薬液浸漬洗浄では、原水供給ポンプ11は停止したまま、逆洗水供給ポンプ18及び薬剤供給ポンプ22を停止し、逆洗自動弁19、薬剤自動弁25を閉とし、透過水生成及び逆洗を共に停止する。   In the subsequent chemical liquid immersion cleaning, the backwash water supply pump 18 and the medicine supply pump 22 are stopped while the raw water supply pump 11 is stopped, the backwash automatic valve 19 and the medicine automatic valve 25 are closed, and permeated water is generated and reversed. Stop washing together.

次に、後段逆洗では、逆洗自動弁19を開とし、逆洗水供給ポンプ18により逆洗操作を行う。逆洗条件は、好ましくは流束3〜16m/日、より好ましくは流束6〜12m/日で、好ましくは60〜180秒間、より好ましくは60〜120秒間である。なお、後段逆洗においても、薬剤自動弁25を開とし薬剤供給ポンプ22により殺菌剤を逆洗水に含めてもよい。   Next, in the subsequent backwashing, the backwashing automatic valve 19 is opened and the backwashing operation is performed by the backwashing water supply pump 18. The backwash condition is preferably a flux of 3 to 16 m / day, more preferably a flux of 6 to 12 m / day, preferably 60 to 180 seconds, more preferably 60 to 120 seconds. Even in the latter backwashing, the medicine automatic valve 25 may be opened and the sterilizing agent may be included in the backwashing water by the medicine supply pump 22.

薬液浸漬洗浄は、式(1)及び式(2)から求められる浸漬サイクル係数k1が0.7<k1<4.0、浸漬サイクル係数k2が1.5<k2<5.0の範囲内になるように行う。 The chemical liquid immersion cleaning is performed so that the immersion cycle coefficient k 1 obtained from the formulas (1) and (2) is in the range of 0.7 <k 1 <4.0 and the immersion cycle coefficient k 2 is in the range of 1.5 <k 2 <5.0. .

N=k1t(k1=N/t) (1)
N=k2/t(k2=Nt) (2)
〔式中、Nは浸漬サイクル(回/日)、tは浸漬時間(hr)、k1、k2は浸漬サイクル係数を示す〕。
N = k 1 t (k 1 = N / t) (1)
N = k 2 / t (k 2 = Nt) (2)
[Wherein, N is an immersion cycle (times / day), t is an immersion time (hr), and k 1 and k 2 are immersion cycle coefficients].

式(1)から求められる浸漬サイクル係数k1は、図2中の2本の直線により示され、式(2)から求められる浸漬サイクル係数kは、図2中の2本の曲線により示されるものである。よって、2本の直線と2本の曲線で囲まれた範囲が浸漬サイクル係数k1及びk2で示される範囲となる。 The immersion cycle coefficient k 1 obtained from the equation (1) is indicated by two straight lines in FIG. 2, and the immersion cycle coefficient k 2 obtained from the equation (2) is indicated by two curves in FIG. It is what Therefore, the range surrounded by the two straight lines and the two curves is the range indicated by the immersion cycle coefficients k 1 and k 2 .

浸漬サイクル係数k1は、好ましくは0.8<k1<3.5、より好ましくは1<k1<2.5であり、浸漬サイクル係数k2は、好ましくは1.5<k<4.5、より好ましくは1.5<k<4である。 The immersion cycle coefficient k 1 is preferably 0.8 <k 1 <3.5, more preferably 1 <k 1 <2.5, and the immersion cycle coefficient k 2 is preferably 1.5 <k 2 < 4.5, more preferably 1.5 <k 2 <4.

このように、浸漬サイクル係数k1及びk2が所定範囲になるように薬液浸漬洗浄をすることにより、逆洗時の圧力を緩和し、逆洗時間を短縮できるので、濾過膜に対する負荷が軽減され、膜寿命を延長することができる。 Thus, by dipping cycle coefficients k 1 and k 2 is a chemical immersion cleaning to a predetermined range, and relieve pressure during backwashing, it is possible to shorten the backwashing time, load on the filtration membrane reduces The film life can be extended.

浸漬過程における薬液の注入量は、濾過膜モジュール12の透過液出口における透過水中の薬剤濃度が3〜100mg/L、好ましくは5〜60mg/Lになるように制御することが好ましい。浸漬サイクル係数k1及びk2が所定範囲になるように薬液浸漬洗浄することにより、特許文献2の発明と比べると薬剤濃度を低くすることができるほか、硫酸等の強酸を使用する必要もない。 The injection amount of the chemical solution in the immersion process is preferably controlled so that the drug concentration in the permeated water at the permeate outlet of the filtration membrane module 12 is 3 to 100 mg / L, preferably 5 to 60 mg / L. By chemical immersion immersion cleaning so that the immersion cycle coefficients k 1 and k 2 are within a predetermined range, the chemical concentration can be lowered as compared with the invention of Patent Document 2, and there is no need to use a strong acid such as sulfuric acid. .

実施例1
図1に示す中空糸膜モジュールを含む水浄化システムを用いて、河川水のクロスフロー濾過による濾過運転を実施した。中空糸膜モジュールとして酢酸セルロース膜(有効膜面積100m、膜内径0.8mm、外径1.3mm、分画分子量15万)を用い、図1に示す膜濾過装置により揖保川河川水の内圧式濾過運転を行った。
Example 1
Using a water purification system including the hollow fiber membrane module shown in FIG. 1, a filtration operation by cross-flow filtration of river water was performed. A cellulose acetate membrane (effective membrane area: 100 m 2 , membrane inner diameter: 0.8 mm, outer diameter: 1.3 mm, fractional molecular weight: 150,000) is used as the hollow fiber membrane module. A filtration operation was performed.

まず、原水を原水供給ポンプ11で濾過膜モジュール12にモジュールの上下両端から送液し、全量濾過を行った。濾過運転は定流量濾過であり、流量は15m/hr、濾過時間は58分であった。濾過過程の終了後、逆洗過程に移行した。 First, the raw water was fed to the filtration membrane module 12 from the upper and lower ends of the module by the raw water supply pump 11, and the whole amount was filtered. The filtration operation was constant flow filtration, the flow rate was 15 m 3 / hr, and the filtration time was 58 minutes. After completion of the filtration process, the process shifted to a backwash process.

逆洗過程は、前段逆洗、薬液浸漬洗浄、後段逆洗を1サイクルとして、1日に2サイクル設けた(t=1、N=2)。なお、前段逆洗時には有効塩素濃度10mg/Lの次亜塩素酸ナトリウムを含む逆洗水を用いた。   In the backwashing process, two cycles were provided per day (t = 1, N = 2), with the first backwashing, the chemical solution immersion washing, and the second backwashing as one cycle. Note that backwash water containing sodium hypochlorite having an effective chlorine concentration of 10 mg / L was used at the time of backwashing in the previous stage.

前段逆洗では、洗浄水排出自動弁14、逆洗自動弁19を開として逆洗水供給ポンプ18を作動させ、透過水タンク17から透過水を逆洗水として濾過膜モジュール12に1分間、45m/hrの流量で供給した。この際、逆洗水には次亜塩素酸ナトリウムを有効塩素濃度が5mg/Lになるように注入したものを用いた。その後、薬液浸漬洗浄は表1に示す条件にて行い、後段逆洗は前段逆洗と同条件で行った。 In the pre-back washing, the washing water discharge automatic valve 14 and the back washing automatic valve 19 are opened to operate the back washing water supply pump 18, and the permeated water from the permeate tank 17 is used as the back washing water to the filtration membrane module 12 for 1 minute. It was supplied at a flow rate of 45 m 3 / hr. At this time, the backwash water used was sodium hypochlorite injected so that the effective chlorine concentration was 5 mg / L. Then, chemical | medical solution immersion washing was performed on the conditions shown in Table 1, and back | latter stage backwashing was performed on the same conditions as front | latter stage backwashing.

上記の一連の操作は、自動弁を用いて周期的に行い、膜間差圧の経日変化を測定した結果、100日間、膜間差圧は上昇することなく安定な運転が継続した。   The series of operations described above were performed periodically using an automatic valve, and as a result of measuring the change over time in the transmembrane pressure difference, stable operation continued for 100 days without increasing the transmembrane pressure difference.

実施例2
実施例1と同じ中空糸膜モジュールを用い、表1に示す条件にて薬液浸漬洗浄を行った以外は、実施例1と同様の操作条件で洗浄を行った。この運転条件においても、100日間、安定運転を継続することができた。
Example 2
Cleaning was performed under the same operating conditions as in Example 1 except that the same hollow fiber membrane module as in Example 1 was used and chemical solution immersion cleaning was performed under the conditions shown in Table 1. Even under these operating conditions, stable operation could be continued for 100 days.

実施例3
実施例1と同じ中空糸膜モジュールを用い、表1に示す条件にて薬液浸漬洗浄を行った以外は、実施例1と同様の操作条件で洗浄を行った。この運転条件においても、100日間、安定運転を継続することができた。
Example 3
Cleaning was performed under the same operating conditions as in Example 1 except that the same hollow fiber membrane module as in Example 1 was used and chemical solution immersion cleaning was performed under the conditions shown in Table 1. Even under these operating conditions, stable operation could be continued for 100 days.

比較例1
実施例1と同じ中空糸膜モジュールを用い、表1に示す条件にて薬液浸漬洗浄を行った以外は、実施例1と同様の操作条件で洗浄を行った。この運転条件においては、40日経過後、膜間差圧が上昇した。
Comparative Example 1
Cleaning was performed under the same operating conditions as in Example 1 except that the same hollow fiber membrane module as in Example 1 was used and chemical solution immersion cleaning was performed under the conditions shown in Table 1. Under these operating conditions, the transmembrane pressure increased after 40 days.

比較例2
実施例1と同じ中空糸膜モジュールを用い、表1に示す条件にて薬液浸漬洗浄を行った以外は、実施例1と同様の操作条件で洗浄を行った。この運転条件においては、48日経過後、膜間差圧が上昇した。
Comparative Example 2
Cleaning was performed under the same operating conditions as in Example 1 except that the same hollow fiber membrane module as in Example 1 was used and chemical solution immersion cleaning was performed under the conditions shown in Table 1. Under these operating conditions, the transmembrane pressure difference increased after 48 days.

比較例3
実施例1と同じ中空糸膜モジュールを用い、表1に示す条件にて薬液浸漬洗浄を行った以外は、実施例1と同様の操作条件で洗浄を行った。この運転条件においては、40日経過後、膜間差圧が上昇した。
Comparative Example 3
Cleaning was performed under the same operating conditions as in Example 1 except that the same hollow fiber membrane module as in Example 1 was used and chemical solution immersion cleaning was performed under the conditions shown in Table 1. Under these operating conditions, the transmembrane pressure increased after 40 days.

比較例4
実施例1と同じ中空糸膜モジュールを用い、表1に示す条件にて薬液浸漬洗浄を行った以外は、実施例1と同様の操作条件で洗浄を行った。この運転条件においては、40日経過後、膜間差圧が上昇した。
Comparative Example 4
Cleaning was performed under the same operating conditions as in Example 1 except that the same hollow fiber membrane module as in Example 1 was used and chemical solution immersion cleaning was performed under the conditions shown in Table 1. Under these operating conditions, the transmembrane pressure increased after 40 days.

Figure 0004804097
表1及び図3における実施例1〜3と比較例1〜4の膜間差圧が上昇するまでの日数の対比から明らかなとおり、本発明の運転方法を適用することにより、濾過運転の継続による濾過膜の目詰まりが解消された結果、ファウリングが防止され、長期間、膜間差圧の上昇がなかった(即ち、高い透水性能を長期にわたり維持することができた)。このような結果は、薬液浸漬洗浄の条件を特定することにより、その後の逆洗(後段逆洗)によって効果的に汚染物質が剥離され、洗浄効果が上がったものと考えられる。
Figure 0004804097
As is apparent from the comparison of the number of days until the transmembrane pressure difference of Examples 1 to 3 and Comparative Examples 1 to 4 in Table 1 and FIG. 3 is increased, the filtration operation is continued by applying the operation method of the present invention. As a result of the clogging of the filtration membrane due to the fouling, fouling was prevented, and there was no increase in the transmembrane pressure difference for a long time (that is, high water permeability performance could be maintained for a long time). From such a result, it is considered that by specifying the conditions of the chemical solution immersion cleaning, the contaminants were effectively peeled off by the subsequent backwashing (the subsequent backwashing), and the cleaning effect was improved.

水浄化システムのフロー図。The flow chart of a water purification system. 浸漬サイクル係数k1及びk2の説明図。Illustration of immersion cycles coefficients k 1 and k 2. 実施例及び比較例における洗浄後の濾過運転状態の説明図。Explanatory drawing of the filtration driving | running state after washing | cleaning in an Example and a comparative example.

符号の説明Explanation of symbols

10、23 逆止弁
11、18 ポンプ
12 中空糸膜モジュール
13 透過水自動弁
14 濃縮水排出自動弁
17 透過水タンク
19 逆洗自動弁
21 薬剤タンク
22 薬注ポンプ
24 薬剤注入経路
25 薬注自動弁
DESCRIPTION OF SYMBOLS 10, 23 Check valve 11, 18 Pump 12 Hollow fiber membrane module 13 Permeated water automatic valve 14 Concentrated water discharge automatic valve 17 Permeated water tank 19 Backwash automatic valve 21 Drug tank 22 Drug injection pump 24 Drug injection route 25 Drug injection automatic valve

Claims (4)

中空糸型の濾過膜モジュールを用いて原水を濾過する濾過過程と、濾過膜モジュールを逆圧洗浄する逆洗過程を有し、前記逆洗過程において、濾過膜を薬液としての次亜塩素酸ナトリウム水溶液に浸漬する(但し、浸漬過程における薬液の注入量を、濾過膜モジュールの透過液出口における透過水中の薬剤濃度が3〜60mg/Lになるように制御する)浸漬洗浄を行う天然水の水浄化システムの連続運転方法であって、
濾過膜モジュールの膜材質が酢酸セルロースであり、
式(1)及び式(2)から求められる浸漬サイクル係数k1及びk2が、0.7<k1<4.0及び1.5<k2<5.0になるように運転する水浄化システムの運転方法。
N=k1t(k1=N/t) (1)
N=k2/t(k2=Nt) (2)
〔式中、Nは浸漬サイクル(回/日)、tは1回の浸漬時間(hr)、k1、k2は浸漬サイクル係数を示す。〕
It has a filtration process of filtering raw water using a hollow fiber type filtration membrane module and a backwashing process of backwashing the filtration membrane module. In the backwashing process, the filtration membrane is sodium hypochlorite as a chemical solution. Water of natural water that is immersed in an aqueous solution (however, the injection amount of the chemical solution in the immersion process is controlled so that the concentration of the drug in the permeated water at the permeate outlet of the filtration membrane module is 3 to 60 mg / L). A continuous operation method of a purification system,
The membrane material of the filtration membrane module is cellulose acetate,
An operation method of the water purification system that operates so that the immersion cycle coefficients k 1 and k 2 obtained from the expressions (1) and (2) are 0.7 <k 1 <4.0 and 1.5 <k 2 <5.0.
N = k 1 t (k 1 = N / t) (1)
N = k 2 / t (k 2 = Nt) (2)
[Wherein, N represents an immersion cycle (times / day), t represents one immersion time (hr), and k 1 and k 2 represent immersion cycle coefficients. ]
浸漬サイクル係数kImmersion cycle coefficient k 11 が0.8<kIs 0.8 <k 11 <3.5であり、浸漬サイクル係数k<3.5, immersion cycle coefficient k 22 が1.5<k1.5 <k 22 <4.5である、請求項1記載の水浄化システムの連続運転方法。The continuous operation method of the water purification system according to claim 1, wherein <4.5. 浸漬サイクル係数kImmersion cycle coefficient k 11 が1<kIs 1 <k 11 <2.5であり、浸漬サイクル係数k<2.5, immersion cycle coefficient k 22 が1.5<k1.5 <k 22 <4である、請求項1記載の水浄化システムの連続運転方法。The continuous operation method of the water purification system according to claim 1, wherein <4. 逆洗過程において、濾過膜の逆圧洗浄、薬液浸漬洗浄及び逆圧洗浄を1サイクルとして、1サイクル以上の処理をする、請求項1〜3のいずれか1項記載の水浄化システムの連続運転方法。 The continuous operation of the water purification system according to any one of claims 1 to 3, wherein in the backwashing process, the backwashing of the filtration membrane, the chemical liquid immersion cleaning and the backwashing are performed as one cycle, and the treatment is performed for one cycle or more. Method.
JP2005296473A 2005-10-11 2005-10-11 Continuous operation method of water purification system Expired - Fee Related JP4804097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005296473A JP4804097B2 (en) 2005-10-11 2005-10-11 Continuous operation method of water purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005296473A JP4804097B2 (en) 2005-10-11 2005-10-11 Continuous operation method of water purification system

Publications (2)

Publication Number Publication Date
JP2007105570A JP2007105570A (en) 2007-04-26
JP4804097B2 true JP4804097B2 (en) 2011-10-26

Family

ID=38031847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005296473A Expired - Fee Related JP4804097B2 (en) 2005-10-11 2005-10-11 Continuous operation method of water purification system

Country Status (1)

Country Link
JP (1) JP4804097B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102371123A (en) * 2010-08-24 2012-03-14 苏州立升净水科技有限公司 On-line cleaning method of immersed hollow fiber membrane module

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04247226A (en) * 1991-02-04 1992-09-03 Asahi Chem Ind Co Ltd Membrane filtration system having automatic self-cleaning function
JP3198612B2 (en) * 1992-05-21 2001-08-13 栗田工業株式会社 Membrane separation device
JP3194684B2 (en) * 1995-01-27 2001-07-30 ダイセル化学工業株式会社 Natural water membrane purification method
JP3735883B2 (en) * 1995-03-08 2006-01-18 栗田工業株式会社 Membrane separation apparatus and membrane module cleaning method
JP2002028456A (en) * 2000-07-18 2002-01-29 Nitto Denko Corp Treatment system using spiral membrane module and operating method therefor
JP3775778B2 (en) * 2000-08-10 2006-05-17 日本碍子株式会社 Membrane filtration device backwashing method
JP2002126470A (en) * 2000-10-27 2002-05-08 Daicen Membrane Systems Ltd Method for cleaning filter membrane with liquid chemical
JP2004130307A (en) * 2002-09-18 2004-04-30 Kuraray Co Ltd Method for filtration of hollow fiber membrane
JP2005087887A (en) * 2003-09-17 2005-04-07 Fuji Electric Systems Co Ltd Membrane washing method
JP2005144315A (en) * 2003-11-14 2005-06-09 Daicen Membrane Systems Ltd Washing method using chemicals

Also Published As

Publication number Publication date
JP2007105570A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
JP5804228B1 (en) Water treatment method
JP3198923B2 (en) Cleaning method of membrane
JP2005087887A (en) Membrane washing method
JP3194684B2 (en) Natural water membrane purification method
JP2008183510A (en) Purified water production method and apparatus
JP5049623B2 (en) Membrane separator for drinking water production and operation method thereof
JP5151009B2 (en) Membrane separation device and membrane separation method
JP4804176B2 (en) Seawater filtration
JP2005185985A (en) Method and apparatus for producing water
JP5024158B2 (en) Membrane filtration method
JP3514825B2 (en) Operation method of water purification system and water purification device
JP3359687B2 (en) Cleaning method for filtration membrane module
JP4804097B2 (en) Continuous operation method of water purification system
WO2012057176A1 (en) Water-treatment method and desalinization method
WO2021200752A1 (en) Method and program for determining cleaning trouble in fresh water generator
JPH09220449A (en) Membrane separation device
JP3986370B2 (en) Cleaning method for membrane filter module
JP3454900B2 (en) Water purification system and its operation method
JPH0631270A (en) Film cleaning process for water and operation of the device
JP2006198531A (en) Operating method of hollow fiber membrane module
JP2006218341A (en) Method and apparatus for treating water
JP3514821B2 (en) Operating method of water purification system
JP3514828B2 (en) Operation method of water purification system and water purification device
JP2001170456A (en) Operating method for membrane filtration device
JP2001300530A (en) Method of purifying natural water with membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees