JPH1157415A - Operating method of membrane deaerator and apparatus for the same - Google Patents

Operating method of membrane deaerator and apparatus for the same

Info

Publication number
JPH1157415A
JPH1157415A JP23247997A JP23247997A JPH1157415A JP H1157415 A JPH1157415 A JP H1157415A JP 23247997 A JP23247997 A JP 23247997A JP 23247997 A JP23247997 A JP 23247997A JP H1157415 A JPH1157415 A JP H1157415A
Authority
JP
Japan
Prior art keywords
membrane
liquid
gas
phase side
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23247997A
Other languages
Japanese (ja)
Other versions
JP3371767B2 (en
Inventor
Koji Aoki
孝司 青木
Toshio Okazaki
利夫 岡崎
Nobuyuki Kobayashi
信行 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMSON CO Ltd
Kurita Water Industries Ltd
Original Assignee
SAMSON CO Ltd
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMSON CO Ltd, Kurita Water Industries Ltd filed Critical SAMSON CO Ltd
Priority to JP23247997A priority Critical patent/JP3371767B2/en
Publication of JPH1157415A publication Critical patent/JPH1157415A/en
Application granted granted Critical
Publication of JP3371767B2 publication Critical patent/JP3371767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To recover performance of a membrane by effectively cleaning the membrane face of the gas permeation membrane of a membrane deaerator. SOLUTION: In the operating method of the membrane deaerator, one side of a gas permeation membrane 3A in the inside of a membrane module 3 is held as a liquid phase side 3a and liquid to be treated is permeated. The other side thereof is held as a gas phase side 3b and decompression is performed. Thereby, gas dissolved in liquid to be treated is permeated on the gas phase side and removed. In the case of cleaning the membrane face of the gas permeation membrane 3A, supply of liquid to be treated into the membrane module 3 is stopped and liquid in the membrane module 3 is discharged and also gas is introduced into the liquid phase side 3a in the inside of the membrane module 3. Thereafter, liquid to be treated is flowed to the liquid phase side 3a. Further, the membrane deaerator is equipped with the membrane module 3 in which the inside is partitioned into the liquid phase side 3a and the gas phase side 3b by the gas permeation membrane 3A, a decompression means 4 for decompressing the gas phase side in the inside of the membrane module 3 and a means for flowing liquid to be treated to the liquid phase side in the inside of the membrane module. The membrane deaerator is provided with such a means that the liquid phase side 3a in the membrane module 3 is communicated with the outside air and liquid in the membrane module is discharged and gas is introduced into the liquid phase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被処理液中の溶存
気体を除去する膜脱気装置の運転方法及び膜脱気装置に
係り、特に、膜脱気装置の気体透過膜の膜面を効果的に
洗浄して膜性能を回復させることができる膜脱気装置の
運転方法及び膜脱気装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a membrane deaerator for removing dissolved gas in a liquid to be treated and a membrane deaerator, and more particularly to a method for removing a gas permeable membrane of a membrane deaerator. The present invention relates to a method for operating a membrane degassing apparatus and a membrane degassing apparatus that can effectively clean and restore membrane performance.

【0002】[0002]

【従来の技術】液体中に溶存している酸素は、その酸化
力によって種々の障害を惹起する。例えば、液体が飲料
の場合には、風味の劣化や変色等の品質低下の原因とな
る。また、液体がビル配管内の水の場合には、配管材料
である鋼材を腐食させて赤水の原因となる。更に、液体
がボイラ給水の場合には、ボイラ内及び蒸気ラインの腐
食の原因となる。
2. Description of the Related Art Oxygen dissolved in a liquid causes various obstacles due to its oxidizing power. For example, in the case where the liquid is a beverage, the liquid causes a deterioration in flavor such as deterioration of flavor and discoloration. Further, when the liquid is water in the building piping, the steel material as the piping material is corroded and causes red water. Further, when the liquid is supplied to the boiler, it causes corrosion in the boiler and in the steam line.

【0003】このような障害を防止するために、液体中
の酸素を除去することが行われている。
[0003] In order to prevent such an obstacle, oxygen in a liquid is removed.

【0004】従来、液体中の酸素を除去する方法として
は、真空脱気法、曝気法(ガス置換法)、薬品による化
学的方法、加熱脱気法等があるが、近年では膜脱気法が
多く採用されている。
Conventionally, as a method for removing oxygen from a liquid, there are a vacuum degassing method, an aeration method (gas replacement method), a chemical method using chemicals, a heating degassing method, and the like. Are often adopted.

【0005】膜脱気法は真空脱気法の一種であって、液
体を通さず気体のみを透過させる気体透過膜を用い、こ
の膜の一方の側(液相側)に被処理液を供給し、他方の
側(気相側)を減圧することにより、被処理液中の溶存
酸素を気相側に透過させて除去する。この場合、被処理
液中に窒素などの酸素以外の気体を吹き込んで、該液中
の酸素分圧を下げて酸素の除去効果を上げる方法や、気
相側に窒素などの酸素以外の気体を流して気相側の酸素
分圧を下げて酸素除去効果を高める方法も知られてい
る。
[0005] The membrane degassing method is a kind of vacuum degassing method, in which a gas-permeable membrane that allows only gas to pass without passing a liquid is used, and a liquid to be treated is supplied to one side (liquid phase side) of the membrane. Then, by reducing the pressure on the other side (gas phase side), dissolved oxygen in the liquid to be treated is permeated to the gas phase side and removed. In this case, a gas other than oxygen, such as nitrogen, is blown into the liquid to be treated to reduce the oxygen partial pressure in the liquid to increase the effect of removing oxygen, or a gas other than oxygen, such as nitrogen, is supplied to the gas phase. There is also known a method in which the oxygen partial pressure on the gaseous phase side is reduced by flowing to increase the oxygen removing effect.

【0006】従来、膜脱気装置に用いられる気体透過膜
は、単位容積当りの透過面積を大きく確保することがで
きるように管状、中空糸状又はスパイラル状の膜モジュ
ールとされている。そして、このような膜モジュールの
膜面に対して平行に被処理液を流通させるクロスフロー
方式を採用することにより、膜面の目詰りを抑制し、膜
性能を安定に維持すると共に、膜寿命の延長を図ってい
る。
Conventionally, a gas-permeable membrane used in a membrane deaerator is a tubular, hollow fiber or spiral membrane module so that a large permeation area per unit volume can be secured. By adopting a cross-flow method in which the liquid to be treated is circulated in parallel with the membrane surface of such a membrane module, clogging of the membrane surface is suppressed, the membrane performance is maintained stably, and the membrane life is shortened. Is being extended.

【0007】しかし、このようにクロスフロー方式を採
用していても、長期の使用により膜の目詰りが生じ、膜
性能が低下してくる。即ち、被処理液中に含まれている
塵埃、腐食生成物等の微粒子が膜面に汚れとして次第に
堆積してゆき、膜の気体透過性能を阻害する。この膜性
能の低下速度は被処理液の水質や膜脱気装置の特性によ
って一様ではないが、例えば、水道水を膜脱気する場
合、2ケ月の処理で処理水量は20%程度減少する。そ
こで、処理水量が運転開始時の80%以下に低下する前
に、膜脱気装置の運転を停止して膜面に付着した塵埃等
の汚れを除去し、膜性能を回復させる操作を行い、その
後、運転を再開するという方法が採用されている。
However, even when the cross-flow method is employed, clogging of the film occurs due to long-term use, and the film performance is reduced. That is, fine particles such as dust and corrosion products contained in the liquid to be treated gradually accumulate as dirt on the film surface, and this impairs the gas permeability of the film. The rate of decrease in the membrane performance is not uniform due to the quality of the liquid to be treated and the characteristics of the membrane deaerator. For example, when tap water is subjected to membrane deaeration, the treated water volume decreases by about 20% in two months of treatment. . Therefore, before the amount of treated water drops to 80% or less of the operation start time, the operation of the membrane deaerator is stopped to remove dirt and the like adhered to the membrane surface and perform an operation to restore the membrane performance, Thereafter, a method of restarting operation is adopted.

【0008】従来、膜脱気装置の運転を停止して膜性能
を回復させる方法として、後述の比較例2に示す如く、
液相側に洗浄水等の液体を流通させながら、気相側に加
圧空気を導入する方法が提案されている。
Conventionally, as a method of restoring the membrane performance by stopping the operation of the membrane deaerator, as shown in Comparative Example 2 described below,
A method has been proposed in which pressurized air is introduced into the gas phase while flowing a liquid such as washing water through the liquid phase.

【0009】また、後述の比較例1に示す如く、膜モジ
ュール内の被処理液の流通方向を順流から逆流に切り換
えて膜面の汚れを除去する方法も提案されている。
Further, as shown in Comparative Example 1 described later, a method has been proposed in which the flow direction of the liquid to be treated in the membrane module is switched from a forward flow to a backward flow to remove dirt on the membrane surface.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、膜脱気
装置の運転を停止して液相側に洗浄水、気相側に加圧空
気を導入して膜面の汚れを除去する方法では、汚れ除去
効果は大きいものの、別途、加圧空気の導入手段を必要
とするという問題点がある。
However, in the method of removing the dirt on the membrane surface by stopping the operation of the membrane deaerator and introducing washing water into the liquid phase and pressurized air into the gas phase, Although the removal effect is great, there is a problem that a separate means for introducing pressurized air is required.

【0011】また、被処理液の流通方向を切り換える方
法では、汚れ除去効果が小さく、処理水量を十分に回復
させることができない。
In the method of switching the flow direction of the liquid to be treated, the effect of removing dirt is small, and the amount of treated water cannot be recovered sufficiently.

【0012】本発明は上記従来の問題点を解決し、加圧
空気導入手段等の特別な設備を必要とすることなく、効
果的に膜面の汚れを除去することができる膜脱気装置及
びその運転方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems and provides a membrane degassing apparatus and a membrane degassing apparatus capable of effectively removing dirt on the membrane surface without requiring special equipment such as pressurized air introduction means. It is intended to provide a driving method thereof.

【0013】[0013]

【課題を解決するための手段】本発明の膜脱気装置の運
転方法は、膜モジュール内の気体透過膜の一方の側を液
相側として被処理液を流通させ、他方の側を気相側とし
て減圧することにより、該被処理液中の溶存気体を気相
側に透過させて除去する膜脱気装置の運転方法におい
て、該気体透過膜の膜面を洗浄するに際し、膜モジュー
ル内への被処理液の供給を停止し、膜モジュール内の液
を排出すると共に該膜モジュール内の液相側に気体を導
入して該膜面を洗浄することを特徴とする。
According to a method of operating a membrane degassing apparatus of the present invention, one side of a gas permeable membrane in a membrane module is made to flow through a liquid to be treated, and the other side is made into a gas phase. In the operation method of the membrane deaerator for removing the dissolved gas in the liquid to be treated by passing it to the gas phase side by reducing the pressure as the side, in cleaning the membrane surface of the gas permeable membrane, the gas is introduced into the membrane module. Is characterized in that the supply of the liquid to be treated is stopped, the liquid in the membrane module is discharged, and a gas is introduced into the liquid phase side in the membrane module to wash the membrane surface.

【0014】本発明の膜脱気装置は、気体透過膜により
内部が液相側と気相側とに仕切られた膜モジュールと、
該膜モジュール内の気相側を減圧する減圧手段と、該膜
モジュール内の液相側に被処理液を流通させる手段とを
備えてなる膜脱気装置において、該膜モジュール内の液
相側を大気に連通させて該液相側から液を排出すると共
に、該液相側に気体を導入する手段を設けたことを特徴
とするものである。
[0014] The membrane deaerator of the present invention comprises a membrane module having an interior partitioned into a liquid phase side and a gas phase side by a gas permeable membrane;
A membrane degassing apparatus comprising: a decompression means for decompressing a gas phase side in the membrane module; and a means for flowing a liquid to be treated to a liquid phase side in the membrane module. Is connected to the atmosphere to discharge liquid from the liquid phase side, and a means for introducing gas to the liquid phase side is provided.

【0015】かかる本発明の通り、膜モジュール内の液
相側を空気等の気体で置換してから、液を流通させるこ
とにより、気体透過膜の膜面上で液流の乱れが生じ、こ
の乱流で膜面に付着した汚れを効果的に除去することが
できる。
According to the present invention, by displacing the liquid phase side in the membrane module with a gas such as air and then flowing the liquid, the liquid flow is disturbed on the membrane surface of the gas permeable membrane. Dirt adhering to the film surface due to turbulence can be effectively removed.

【0016】本発明による膜面の洗浄は、加圧空気導入
手段等の特別な設備が不要で、バルブ操作で容易に実施
することができる。
The cleaning of the membrane surface according to the present invention does not require any special equipment such as pressurized air introduction means, and can be easily carried out by operating a valve.

【0017】[0017]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0018】図1,2は本発明の膜脱気装置の実施の形
態を示す系統図であり、図1,2において、1は送液ポ
ンプ、2は保安フィルター、3は気体透過膜3Aを備え
る膜モジュール、4は真空ポンプである。
FIGS. 1 and 2 are system diagrams showing an embodiment of the membrane deaerator of the present invention. In FIGS. 1 and 2, 1 is a liquid sending pump, 2 is a security filter, and 3 is a gas permeable membrane 3A. The membrane module 4 provided is a vacuum pump.

【0019】図1,2に示す膜脱気装置は、図1に示す
膜脱気装置が開閉弁(電磁弁又は電動弁)V1 ,V3
2 ,V4 を用いているのに対し、図2に示す膜脱気装
置が三方弁VA ,VB を用いた点が異なるのみで、膜脱
気処理及び膜洗浄の運転操作及び原理は同等である。
In the membrane deaerator shown in FIGS. 1 and 2, the membrane deaerator shown in FIG. 1 uses on-off valves (solenoid valve or electric valve) V 1 , V 3 and V 2 , V 4. contrast, only membrane degasifier three-way valve V a shown in FIG. 2, the point with V B different driving operation and principles of membrane degassing treatment and membrane cleaning are equivalent.

【0020】以下においては、図1の膜脱気装置におけ
る運転方法について説明するが、図2の膜脱気装置にお
いても全く同様に運転が行われる。
In the following, a method of operating the membrane deaerator of FIG. 1 will be described. However, the same operation is performed in the membrane deaerator of FIG.

【0021】なお、図1,2の膜脱気装置において、導
入口が下部に位置し、排出口が上部に位置するように、
膜モジュール3は縦置きとされているが、横置きとされ
ていても良い。ただし、膜の洗浄効果の面からは、縦置
きとするのが好ましい。
In the membrane deaerator shown in FIGS. 1 and 2, the inlet is located at the lower part and the outlet is located at the upper part.
The membrane module 3 is placed vertically, but may be placed horizontally. However, from the viewpoint of the cleaning effect of the film, it is preferable that the film is placed vertically.

【0022】図1の膜脱気装置において、膜脱気処理時
には、弁V1 ,V2 を開,弁V3 ,V4 を閉とし、送液
ポンプ1及び真空ポンプ4を作動させて、被処理液(原
水)を膜モジュール3の液相側3aに流入させて気相側
3bから膜透過気体を除去して脱気処理し、処理水を系
外へ排出する。
In the membrane deaerator of FIG. 1, during the membrane deaeration process, the valves V 1 and V 2 are opened, the valves V 3 and V 4 are closed, and the liquid supply pump 1 and the vacuum pump 4 are operated. The liquid to be treated (raw water) flows into the liquid-phase side 3a of the membrane module 3, removes the membrane-permeable gas from the gas-phase side 3b, performs degassing treatment, and discharges the treated water out of the system.

【0023】膜の洗浄に当っては、送液ポンプ1及び真
空ポンプ4を停止すると共に、弁V1 ,V2 を閉め、弁
3 ,V4 を開く。これにより、弁V4 側より空気が系
内に入り込み、系内の液の大部分は弁V3 側より系外へ
排出される。
In cleaning the membrane, the pump 1 and the vacuum pump 4 are stopped, the valves V 1 and V 2 are closed, and the valves V 3 and V 4 are opened. Thus, it enters the air in the system the valve V 4 side, most of the liquid in the system is discharged to the outside of the system from the valve V 3 side.

【0024】液の排出後、弁V3 を閉め、弁V1 を開
け、送液ポンプ1を作動させて原水を膜モジュール3の
液相側3aを経て弁V4 側より系外へ排出する。
[0024] After draining the liquid, close the valve V 3, open the valve V 1, is discharged out of the system from the valve V 4 side through the liquid-phase side 3a of the membrane module 3 raw water by operating the liquid feed pump 1 .

【0025】これにより、膜モジュール3の液相側3a
の気体透過膜3Aの膜面に、気液混合の乱流が生じ、こ
の液の乱れにより膜面の汚れが除去される。
Thus, the liquid side 3a of the membrane module 3
A turbulent flow of gas-liquid mixture is generated on the film surface of the gas permeable film 3A, and the turbulence of the liquid removes dirt on the film surface.

【0026】この洗浄時の液の送液速度は、膜脱気処理
時と同等で良いが、膜脱気処理時よりも送液速度を高め
て洗浄効果を上げることにより洗浄時間を短縮すること
もできる。
The liquid sending speed at the time of this washing may be equal to that at the time of the membrane degassing treatment. However, the washing time can be shortened by increasing the liquid sending speed at the time of the membrane degassing treatment to enhance the washing effect. Can also.

【0027】この実施の形態における洗浄操作は、基本
的には、被処理液の送液及び減圧を停止した後、 膜モジュール内の液の排出及び液相側への気体の導
入 液相側への被処理液の流通 の2工程を経るものであるが、上記の被処理液の流通
を長時間継続して行うよりも、及びの工程を繰り返
し行う方が高い洗浄効果を得ることができる。
In the cleaning operation in this embodiment, basically, after the liquid to be processed and the depressurization are stopped, the liquid in the membrane module is discharged and the gas is introduced into the liquid phase. Although the two steps of the circulation of the liquid to be treated are performed, a higher cleaning effect can be obtained by repeating the above steps and the step than by continuously circulating the liquid to be treated.

【0028】一般的には、の液排出及び気体導入後、
の被処理液の流通で、膜脱気装置の保有水の2〜5
倍、例えば3倍程度の被処理液を流通させた後、再び液
の排出及び気体導入を行い、次いで被処理液の流通を行
い、及びの工程を2〜10回程度繰り返すのが好ま
しい。このような繰り返し洗浄を行うことにより、膜面
の汚れを効率的に除去して洗浄時間を短縮することがで
きる。
Generally, after the liquid is discharged and the gas is introduced,
Of the liquid to be treated, the water retained in the membrane deaerator is 2 to 5
After the liquid to be treated is circulated about twice, for example, about three times, the liquid is discharged and the gas is introduced again, and then the liquid to be treated is circulated, and the process is preferably repeated about 2 to 10 times. By performing such repetitive cleaning, dirt on the film surface can be efficiently removed, and the cleaning time can be reduced.

【0029】洗浄工程の終了時期は、洗浄時の排出液の
外観から判断することができる。通常は排出液中に着色
物や濁りが認められなくなったら、洗浄を終了する。
The end time of the washing step can be determined from the appearance of the discharged liquid at the time of washing. Normally, when no colored matter or turbidity is observed in the discharged liquid, the washing is terminated.

【0030】洗浄終了後は、弁V1 ,V2 を開、弁
3 ,V4 を閉とし、送液ポンプ1及び真空ポンプ4を
作動させて膜脱気処理を再開する。
After the cleaning, the valves V 1 and V 2 are opened, the valves V 3 and V 4 are closed, and the liquid supply pump 1 and the vacuum pump 4 are operated to restart the membrane deaeration process.

【0031】このような洗浄処理は、膜脱気処理を継続
することにより、処理水量(通液量)の減少又は処理水
中の被処理気体濃度の上昇等により、膜面の汚れの進行
が予測されたときに実施する。この洗浄開始時期の判断
基準には特に制限はないが、通常の場合、処理水量が運
転開始時よりも20%程度低下した時点、或いは、処理
水中の被処理気体濃度が運転開始時よりも20%程度上
昇した時点とされる。
In such a cleaning process, by continuing the membrane degassing process, the progress of contamination on the membrane surface is predicted due to a decrease in the amount of treated water (flow rate) or an increase in the concentration of the gas to be treated in the treated water. When it is done. Although there is no particular limitation on the criteria for determining the cleaning start time, in the normal case, when the amount of treated water is reduced by about 20% from that at the start of operation, or when the concentration of the gas to be treated in the treated water is 20% lower than at the start of operation. %.

【0032】もちろん、洗浄処理は、このように膜面の
汚れによる処理水量の低下や処理水中の被処理気体濃度
の上昇等の現象が顕著に現れる前に行っても良い。例え
ば、膜脱気装置の運転経験に基いて、1日に1回という
ように一定期間毎に洗浄を行って、膜面の汚れ付着を長
期間防止し、膜面の汚れによる処理水量の低下や被処理
気体濃度の上昇を未然に防ぐこともできる。
Of course, the cleaning treatment may be carried out before such phenomena as the decrease in the amount of treated water due to the fouling of the film surface and the increase in the concentration of the gas to be treated in the treated water become noticeable. For example, based on the operating experience of the membrane deaerator, cleaning is performed at regular intervals, such as once a day, to prevent the deposition of dirt on the membrane surface for a long time, and to reduce the amount of treated water due to dirt on the membrane surface. Also, it is possible to prevent an increase in the concentration of the gas to be treated.

【0033】膜脱気処理から洗浄操作への切り換え、及
び、洗浄操作から膜脱気処理への切り換えは、自動制御
により行うことも、手動にて行うこともできる。
The switching from the membrane degassing process to the washing operation and the switching from the washing operation to the membrane degassing process can be performed by automatic control or manually.

【0034】なお、図1,2に示す膜脱気装置は、本発
明の膜脱気装置の実施の形態の一例を示すものであっ
て、本発明はその要旨を超えない限り、何ら図示のもの
に限定されるものではない。例えば、気体の導入経路や
液の排出経路は、膜モジュールに直接接続することもで
きる。また、膜面洗浄時に流通させる液は被処理液以外
の液であっても良い。
The membrane deaerator shown in FIGS. 1 and 2 is an example of an embodiment of the membrane deaerator of the present invention, and the present invention is not limited to the illustrated embodiment unless the gist of the invention is exceeded. It is not limited to one. For example, the gas introduction path and the liquid discharge path can be directly connected to the membrane module. Further, the liquid circulated at the time of cleaning the film surface may be a liquid other than the liquid to be treated.

【0035】[0035]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0036】実施例1 図1に示す膜脱気装置により、膜脱気処理及び洗浄処理
を行った。
Example 1 A film deaeration process and a cleaning process were performed by the film deaerator shown in FIG.

【0037】気体透過膜3Aとしては、ポリプロピレン
製中空糸膜を用い、この気体透過膜3Aを内径4イン
チ,長さ28インチの外部貫流型管に装着したモジュー
ル4本を縦置きにして膜脱気装置を組み立てた。
As the gas permeable membrane 3A, a hollow fiber membrane made of polypropylene was used, and four modules each having the gas permeable membrane 3A mounted on an external flow-through tube having an inner diameter of 4 inches and a length of 28 inches were placed vertically to remove the membrane. The air device was assembled.

【0038】厚木市水を原水として膜脱気処理を行い、
3ケ月の連続運転で処理水量が運転初期の20m3 /h
rから15m3 /hrに低下した時点で、洗浄処理を行
った。
Using Atsugi-shi water as raw water, membrane deaeration is performed,
In three months of continuous operation, treated water volume is 20m 3 / h at the beginning of operation
The cleaning treatment was performed at the time when the temperature decreased from r to 15 m 3 / hr.

【0039】まず、弁V1 ,V2 を閉,弁V3 ,V4
開とし、送液ポンプ1及び真空ポンプ4を停止して、空
気を系内に導入すると共に、系内の液を排出させた。そ
の後、弁V1 を開,弁V3 を閉とし、送液ポンプ1によ
り、原水を15m3 /hrの流速で1分間流通させた
(1回の流量250L)。この空気導入及び液排出
と、原水の流通の操作を10回繰り返した(1回当り
の操作の所要時間は約5分)。
First, the valves V 1 and V 2 are closed, the valves V 3 and V 4 are opened, the liquid supply pump 1 and the vacuum pump 4 are stopped, and air is introduced into the system and the liquid in the system is opened. Was discharged. Thereafter, the valve V 1 open, the valve V 3 is closed and the liquid supply pump 1, the raw water was circulated for 1 minute at a flow rate of 15 m 3 / hr (1 single flow 250L). The operation of introducing air, discharging the liquid, and circulating raw water was repeated 10 times (the time required for each operation was about 5 minutes).

【0040】この洗浄操作で膜面から除去した汚れの量
を、除去された鉄分の量を下記方法により求めることに
より調べた。
The amount of dirt removed from the film surface by this washing operation was examined by determining the amount of iron removed by the following method.

【0041】即ち、各洗浄回で排出される洗浄排水25
0Lを、各々500Lのタンクに受け、これをよく撹拌
して各々200mLを採取し、これらを混合した合計2
Lの試料水について鉄分(Fe)濃度M(mg/L)を
測定した。全洗浄排水量は2500L(250×10)
であるので、洗浄により除去された鉄分量は、下記式に
より算出される。 除去された鉄分量(g)=M(mg/L)×2500×10-3 =M×2.5 この結果、除去された鉄分量は4.1gであった。
That is, the washing wastewater 25 discharged in each washing cycle
0 L was received in each 500 L tank, and this was mixed well to collect 200 mL each, and a total of 2 mL of these was mixed.
The iron (Fe) concentration M (mg / L) was measured for the L sample water. Total washing drainage is 2500L (250 × 10)
Therefore, the amount of iron removed by washing is calculated by the following equation. The amount of iron removed (g) = M (mg / L) × 2500 × 10 −3 = M × 2.5 As a result, the amount of iron removed was 4.1 g.

【0042】また、上記洗浄後、膜脱気処理を再開した
とろ、処理水量は、洗浄前の15m3 /hrから20m
3 /hrに回復した。
When the membrane deaeration treatment was resumed after the above washing, the amount of treated water was changed from 15 m 3 / hr before washing to 20 m
3 / hr.

【0043】比較例1図3に示す膜脱気装置により、膜
脱気処理及び洗浄処理を行った。
Comparative Example 1 A film deaeration process and a cleaning process were performed by the film deaerator shown in FIG.

【0044】図3において、符号1,2,3,3A,3
a,3b,4は、各々図1に示すものと同一である。V
C ,VD は三方弁、V5 は開閉弁である。
In FIG. 3, reference numerals 1, 2, 3, 3A, 3
a, 3b and 4 are the same as those shown in FIG. V
C, the V D three-way valve, V 5 is the on-off valve.

【0045】膜脱気処理時には、原水(厚木市水)をA
の経路で流し、実施例1と同様に処理を行った。
At the time of membrane deaeration, raw water (Atsugi City water) is
And the same process as in Example 1 was performed.

【0046】実施例1と同様に処理水量の低下が認めら
れた時点で三方弁VC ,VD を切り換えると共に開閉弁
5 を開き、原水を膜脱気処理時とは逆方向にBの経路
で1時間流し、開閉弁V3 を経て排出した。このときの
通水流速は15m3 /hrとした。
As in the first embodiment, when a decrease in the amount of treated water is recognized, the three-way valves V C and V D are switched, and the on-off valve V 5 is opened. flow 1 hour path and discharged through the on-off valve V 3. The flow rate at this time was 15 m 3 / hr.

【0047】この洗浄操作で膜面から除去した汚れの量
を、除去された鉄分の量を下記方法により求めることに
より調べた。
The amount of dirt removed from the film surface in this washing operation was examined by determining the amount of iron removed by the following method.

【0048】即ち、洗浄排水を500Lタンクに受け、
オーバーフローさせながら、タンク満水時及びその後約
10分毎に5回、計6回、1回につき200mLを採水
し、これらを混合した合計1.2Lの試料水について鉄
分(Fe)濃度M(mg/L)を測定した。全排水量は
15000L(15m3 /hr×1hr)であるので、
洗浄により除去された鉄分量は、下記式により算出され
る。 除去された鉄分量(g)=M(mg/L)×15000×10-3 =M×15 この結果、除去された鉄分量は0.22gであった。
That is, the washing wastewater is received in a 500 L tank,
While overflowing, 200 mL of water was collected at a time, 6 times each time when the tank was full and about every 10 minutes thereafter, and the iron content (Fe) concentration M (mg / L) was measured. Since the total drainage is 15000 L (15 m 3 / hr × 1 hr),
The amount of iron removed by washing is calculated by the following equation. The amount of iron removed (g) = M (mg / L) × 15000 × 10 −3 = M × 15 As a result, the amount of iron removed was 0.22 g.

【0049】また、上記洗浄後、膜脱気処理を再開した
とろ、処理水量は、洗浄前の15m3 /hrから16m
3 /hrにまでしか回復しなかった。
When the membrane deaeration treatment was resumed after the above washing, the amount of treated water was changed from 15 m 3 / hr before washing to 16 m 3 / hr.
It recovered only to 3 / hr.

【0050】比較例2図4に示す膜脱気装置により、膜
脱気処理及び洗浄処理を行った。
Comparative Example 2 A film deaeration process and a cleaning process were performed by the film deaerator shown in FIG.

【0051】図4において、符号1,2,3,3A,3
a,3b,4は、各々図1に示すものと同一である。5
はコンプレッサー、V6 ,V7 ,V8 は開閉弁である。
In FIG. 4, reference numerals 1, 2, 3, 3A, 3
a, 3b and 4 are the same as those shown in FIG. 5
Is a compressor, and V 6 , V 7 and V 8 are on-off valves.

【0052】膜脱気処理時には、弁V6 ,V7 を閉、弁
8 を開として原水(厚木市水)を流し、実施例1と同
様に処理を行った。
At the time of the membrane deaeration treatment, the valves V 6 and V 7 were closed and the valve V 8 was opened to flow raw water (Atsugi City water).

【0053】実施例1と同様に処理水量の低下が認めら
れた時点で、弁V8 を閉、弁V6 ,V7 を開として、1
時間、原水を15m3 /hrで流通させると共に、気相
側にコンプレッサー5で空気を3kg/cm2 で圧入
(空気量1Nm3 /hr)し、開閉弁V7 を経て洗浄排
水を排出した。
[0053] When the reduction was observed in similarly treated water as in Example 1, the valve V 8 closed, the valve V 6, V 7 is opened and 1
During this time, raw water was circulated at 15 m 3 / hr, air was injected into the gas phase by a compressor 5 at a pressure of 3 kg / cm 2 (air amount 1 Nm 3 / hr), and the washing wastewater was discharged via the on-off valve V 7 .

【0054】この洗浄排水について、比較例1と同様に
して除去された鉄分量を求めたところ、除去された鉄分
量は3.20gであった。
The amount of iron removed from this washing waste water was determined in the same manner as in Comparative Example 1, and the amount of iron removed was 3.20 g.

【0055】また、上記洗浄後、膜脱気処理を再開した
ところ、処理水量は、洗浄前の15m3 /hrから18
3 /hrにまでしか回復しなかった。
After the washing, the membrane deaeration was restarted. The treated water amount was changed from 15 m 3 / hr before washing to 18 m 3 / hr.
It recovered only up to m 3 / hr.

【0056】上記実施例1及び比較例1,2の結果か
ら、本発明によれば、膜面の汚れを容易に除去し、従来
法よりも膜性能を効果的に回復させることができること
がわかる。
From the results of Example 1 and Comparative Examples 1 and 2, it can be seen that according to the present invention, dirt on the film surface can be easily removed and the film performance can be recovered more effectively than the conventional method. .

【0057】[0057]

【発明の効果】以上詳述した通り、本発明の膜脱気装置
の運転方法及び膜脱気装置によれば、特別な設備を必要
とすることなく、気体透過膜を短時間で効率的に洗浄
し、膜面の汚れを除去して膜性能を回復させることがで
きる。従って、本発明によれば、長期に亘り安定に膜脱
気装置の連続運転を行うことができる。
As described above in detail, according to the operation method of the membrane deaerator and the membrane deaerator of the present invention, the gas permeable membrane can be efficiently formed in a short time without requiring any special equipment. It is possible to recover the membrane performance by washing and removing dirt on the membrane surface. Therefore, according to the present invention, the continuous operation of the membrane deaerator can be stably performed over a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の膜脱気装置の実施の形態の一例を示す
系統図である。
FIG. 1 is a system diagram showing an example of an embodiment of a membrane deaerator of the present invention.

【図2】本発明の膜脱気装置の実施の形態の他の例を示
す系統図である。
FIG. 2 is a system diagram showing another example of the embodiment of the membrane deaerator of the present invention.

【図3】比較例1で用いた膜脱気装置を示す系統図であ
る。
FIG. 3 is a system diagram showing a membrane deaerator used in Comparative Example 1.

【図4】比較例2で用いた膜脱気装置を示す系統図であ
る。
FIG. 4 is a system diagram showing a membrane deaerator used in Comparative Example 2.

【符号の説明】[Explanation of symbols]

1 送液ポンプ 2 保安フィルター 3 膜モジュール 3A 気体透過膜 4 真空ポンプ DESCRIPTION OF SYMBOLS 1 Liquid-feeding pump 2 Security filter 3 Membrane module 3A Gas permeable membrane 4 Vacuum pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 信行 香川県観音寺市八幡町三丁目4番15号 株 式会社サムソン内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Nobuyuki Kobayashi Samson Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 膜モジュール内の気体透過膜の一方の側
を液相側として被処理液を流通させ、他方の側を気相側
として減圧することにより、該被処理液中の溶存気体を
気相側に透過させて除去する膜脱気装置の運転方法にお
いて、該気体透過膜の膜面を洗浄するに際し、 膜モジュール内への被処理液の供給を停止し、該液相側
の液を排出すると共に該液相側に気体を導入し、その
後、液を該液相側に流通させて該膜面を洗浄することを
特徴とする膜脱気装置の運転方法。
1. Dissolving gas in a liquid to be treated is reduced by flowing the liquid to be treated with one side of a gas permeable membrane in a membrane module as a liquid phase side and reducing the pressure with the other side as a gas phase side. In the method of operating the membrane degassing apparatus for removing the gas-permeable membrane by permeating the gas-phase side, when cleaning the membrane surface of the gas-permeable membrane, the supply of the liquid to be treated into the membrane module is stopped, Discharging the gas and introducing a gas into the liquid phase side, and then circulating the liquid through the liquid phase side to wash the membrane surface.
【請求項2】 気体透過膜により内部が液相側と気相側
とに仕切られた膜モジュールと、該膜モジュール内の気
相側を減圧する減圧手段と、該膜モジュール内の液相側
に被処理液を流通させる手段とを備えてなる膜脱気装置
において、 該膜モジュール内の液相側を大気に連通させて該液相側
から液を排出すると共に、該液相側に気体を導入する手
段を設けたことを特徴とする膜脱気装置。
2. A membrane module whose interior is partitioned into a liquid phase side and a gas phase side by a gas permeable membrane, pressure reducing means for depressurizing a gas phase side in the membrane module, and a liquid phase side in the membrane module. A membrane degassing apparatus comprising means for flowing a liquid to be treated through the membrane module, wherein the liquid phase side in the membrane module is communicated with the atmosphere to discharge the liquid from the liquid phase side, and gas is supplied to the liquid phase side. A membrane degassing device, characterized in that a means for introducing gas is provided.
JP23247997A 1997-08-28 1997-08-28 Operating method of membrane deaerator and membrane deaerator Expired - Fee Related JP3371767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23247997A JP3371767B2 (en) 1997-08-28 1997-08-28 Operating method of membrane deaerator and membrane deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23247997A JP3371767B2 (en) 1997-08-28 1997-08-28 Operating method of membrane deaerator and membrane deaerator

Publications (2)

Publication Number Publication Date
JPH1157415A true JPH1157415A (en) 1999-03-02
JP3371767B2 JP3371767B2 (en) 2003-01-27

Family

ID=16939959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23247997A Expired - Fee Related JP3371767B2 (en) 1997-08-28 1997-08-28 Operating method of membrane deaerator and membrane deaerator

Country Status (1)

Country Link
JP (1) JP3371767B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094242A1 (en) * 2006-02-16 2007-08-23 Arkray, Inc. Degasifier and liquid chromatograph equipped therewith
WO2013021966A1 (en) * 2011-08-10 2013-02-14 三菱重工業株式会社 Dehydration system and dehydration method
CN109499374A (en) * 2018-12-04 2019-03-22 杭州惟创科技有限公司 Suitable for hollow fiber pervaporation membrane interval restoration methods
WO2020209036A1 (en) * 2019-04-10 2020-10-15 野村マイクロ・サイエンス株式会社 Method for cleaning membrane degassing devices and system for producing ultrapure water

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094242A1 (en) * 2006-02-16 2007-08-23 Arkray, Inc. Degasifier and liquid chromatograph equipped therewith
US8495906B2 (en) 2006-02-16 2013-07-30 Arkray, Inc. Degasifier and liquid chromatograph equipped therewith
JP5324913B2 (en) * 2006-02-16 2013-10-23 アークレイ株式会社 Deaeration device and liquid chromatography device having the same
WO2013021966A1 (en) * 2011-08-10 2013-02-14 三菱重工業株式会社 Dehydration system and dehydration method
CN109499374A (en) * 2018-12-04 2019-03-22 杭州惟创科技有限公司 Suitable for hollow fiber pervaporation membrane interval restoration methods
CN109499374B (en) * 2018-12-04 2021-11-02 南京惟新环保装备技术研究院有限公司 Recovery method suitable for operation interval of hollow fiber pervaporation membrane
WO2020209036A1 (en) * 2019-04-10 2020-10-15 野村マイクロ・サイエンス株式会社 Method for cleaning membrane degassing devices and system for producing ultrapure water
JP2020171883A (en) * 2019-04-10 2020-10-22 野村マイクロ・サイエンス株式会社 Washing method of membrane degasifier and ultrapure water production system

Also Published As

Publication number Publication date
JP3371767B2 (en) 2003-01-27

Similar Documents

Publication Publication Date Title
EP1704911B1 (en) Method for cleaning a separation membrane in a membrane bioreactor system
JPH07112185A (en) Waste water treating device and washing method therefor
KR101589763B1 (en) Method for cleaning Filtering Membrane
JPH06277664A (en) Method and apparatus for clarifying surface flowing water with membrane
JPH11156166A (en) Cleaning method for hollow fiber membrane module
WO2014103854A1 (en) Ballast water treatment device and back-washing method for ballast water treatment device
JPH04256425A (en) Back washing device for filtration
US20080257824A1 (en) Method and Apparatus for Water Purification and Regeneration of Micro-filtration Tubules
JPH09122460A (en) Cleaning method for membrane module
TWI693096B (en) Membrane separation active sludge system and membrane cleaning device
JP3371767B2 (en) Operating method of membrane deaerator and membrane deaerator
JP2002248324A (en) Membrane separation apparatus and its backwashing method
JP2827877B2 (en) Membrane separation device and cleaning method thereof
JPH11179163A (en) Method for back washing of inner pressure type membrane module for removing pollutant by fluctuation of flow rate and pressure
JP3359687B2 (en) Cleaning method for filtration membrane module
JP2000246206A (en) Cleaning system for food conveying container and method for using wastewater from the cleaning system
JP5321450B2 (en) Water treatment equipment water supply pipe cleaning method
JP2006255708A (en) Method for backwashing of hollow fiber membrane and hollow fiber membrane water treatment apparatus
JP2005238135A (en) Washing method of membrane separation device
JP2004057883A (en) Water cleaning method using external pressure type hollow fiber membrane module and apparatus therefor
JP2922059B2 (en) Operating method of hollow fiber membrane filter
KR101886215B1 (en) Apparatus for cleaning membrane
WO2012157668A1 (en) Filtration apparatus and method for washing filtration apparatus
JP2000084377A (en) Removal of membrane contaminated substance for tubular membrane device
EP1034139A1 (en) A method for purifying water using a membrane filtration unit and use of a rinsing unit for creating anaerobic conditions

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091122

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees