WO2013021966A1 - Dehydration system and dehydration method - Google Patents

Dehydration system and dehydration method Download PDF

Info

Publication number
WO2013021966A1
WO2013021966A1 PCT/JP2012/069969 JP2012069969W WO2013021966A1 WO 2013021966 A1 WO2013021966 A1 WO 2013021966A1 JP 2012069969 W JP2012069969 W JP 2012069969W WO 2013021966 A1 WO2013021966 A1 WO 2013021966A1
Authority
WO
WIPO (PCT)
Prior art keywords
water separation
separation membrane
water
membrane unit
dehydration
Prior art date
Application number
PCT/JP2012/069969
Other languages
French (fr)
Japanese (ja)
Inventor
田中 幸男
大空 弘幸
肇 長野
晴章 平山
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2013021966A1 publication Critical patent/WO2013021966A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/368Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/32By heating or pyrolysis

Definitions

  • the present invention relates to a dehydration system and a dehydration method. More specifically, the present invention relates to a dehydration system and a dehydration method capable of efficiently dehydrating a mixture of ethanol, propanol, and water having an azeotropic composition with water, or a mixture of acid and water.
  • Ethanol is attracting attention as a fuel source to replace petroleum fuel, and its market size is predicted to be 115 million kiloliters in 2015.
  • a crude product obtained from a bio raw material such as corn must be purified by distillation and dehydrated to at least 99.5 wt% or more.
  • a dilute ethanol aqueous solution is concentrated in the distillation column to near the azeotropic point of the ethanol / water system and then dehydrated.
  • Patent Document 1 Japanese Patent Laid-Open No. 58-21629.
  • the present invention has been made in view of the above circumstances, and provides a dehydration system and a dehydration method in which the water separation membrane is regenerated and the required number of water separation membranes is reduced while the entire system is in operation.
  • the purpose is to provide.
  • a dehydration system for separating water from a fluid to be treated, comprising at least one water separation membrane unit in operation, and the at least one water separation
  • the membrane unit is configured such that at least one non-operating water separation membrane unit can be installed, and the flow path of the fluid to be treated of the water separation membrane constituting the non-operating water separation membrane unit is heat for regeneration.
  • the water separation membrane can be regenerated by allowing the regeneration hot gas to permeate the water separation membrane in a state where the gas supply path is operated and the dehydration system is in operation. .
  • the dehydration system includes a line for separating water from a fluid to be processed that is processed by the water separation membrane unit in operation, and a water separation membrane unit that is not in operation.
  • the regeneration hot gas can be sucked at an operating pressure for separating water by joining a line for sucking the regeneration hot gas.
  • the present invention is a dehydration method in another aspect, and in the dehydration method of separating water from a fluid to be treated, the dehydration method includes at least one water separation membrane unit in operation, and the at least one water separation membrane unit A dehydration system in which at least one non-operating water separation membrane unit is installed, supplying regeneration hot gas to the flow path of the fluid to be treated of the water separation membrane constituting the non-operating water separation membrane unit; The regeneration hot gas permeates through the water separation membrane and the water separation membrane is regenerated while the dehydration system is in operation.
  • the dehydration method according to the present invention includes a line for separating water from a fluid to be treated that is processed by the water separation membrane unit in operation, and a water separation membrane unit that is not in operation.
  • the regeneration hot gas can be sucked at an operating pressure for separating water by joining a line for sucking the regeneration hot gas.
  • the fluid to be treated is generally an organic aqueous solution.
  • Organic components of the organic aqueous solution include alcohols such as ethanol, propanol, isopropanol and glycol, carboxylic acids such as acetic acid, ethers such as dimethyl ether and diethyl ether, aldehydes such as acetaldehyde, ketones such as acetone and methyl ethyl ketone, and ethyl acetate.
  • One organic component selected from the group consisting of esters, which is soluble in water, can be mentioned.
  • An inert gas is suitable as the regeneration hot gas that can be employed in the present invention.
  • the inert gas include the following. (1) Nitrogen gas If the oxygen concentration increases to the air level, the separation membrane is modified by oxidation, which is not preferable. Accordingly, the oxygen content is preferably less than 10%. In addition, if it is a small amount, the removal by partial combustion of ethanol is advantageous on the contrary, and when aiming at such an effect, oxygen may be contained up to about 5%. (2) Carbon dioxide Nitrogen can be used instead. Carbon dioxide produced as a by-product in the production of ethanol can also be used. (3) Other inert gases It should be noted that an inert gas on the periodic table such as Ar can be used instead of nitrogen.
  • the temperature of the regenerating hot gas is preferably 78 ° C. to 300 ° C., which is an intermediate region between the boiling point of ethanol of 78.3 ° C. and the temperature exceeding 300 ° C. at which carbon starts to precipitate on the film from ethanol. .
  • the heat of the product fluid obtained from the fluid to be treated can be recovered by a heat exchanger.
  • a dehydration system and a dehydration method in which the water separation membrane is regenerated and the required number of water separation membranes is reduced while the entire system is in operation.
  • FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along the line BB of FIG. 2A regarding one embodiment of a water separation membrane that can be employed in the present invention.
  • FIG. 3A is a plan view and FIG. 3B is a cross-sectional view taken along the line CC of FIG. 3A for one embodiment of a water separation membrane that can be employed in the present invention.
  • a dehydration system including a specific number of water separation membrane units will be exemplified, but the present invention is not limited to a specific number of water separation membrane units.
  • a description will be given of a form in which the fluid to be treated is crude ethanol containing water and the regenerating hot gas is a heated nitrogen gas.
  • the present invention is applied based on the technical common sense of those skilled in the art even in the case of using other types of fluids to be treated or hot gas for regeneration.
  • FIG. 1 shows an embodiment of a dehydrating system according to the present invention.
  • the dehydration system according to the present embodiment includes an operating water separation membrane unit 10 and a water separation membrane unit 20 being regenerated.
  • These water separation membrane units 10 and 20 are devices for separating water from the crude ethanol using the water separation membranes 11 and 21 by the pervaporation method.
  • the water separation membrane units 10 and 20 are provided with water separation membranes 11 and 21 having one or more flow paths 12 and 22 extending in the left and right directions through which crude ethanol passes in the main body.
  • a crude ethanol inlet is provided on the left side of the water separation membranes 11 and 21, and a crude ethanol outlet is provided on the right side.
  • Shell portions 13 and 23 are defined on the water permeation side by the outer peripheral surfaces of the water separation membranes 11 and 21 and the inner wall of the unit main body.
  • the valve 15 on the water separation membrane unit 10 side is opened, and the valve 25 on the water separation membrane unit 20 side is closed.
  • the valve 19 on the water separation membrane unit 10 side is opened, and the valve 29 on the water separation membrane unit 20 side is closed.
  • the valve 17 on the water separation membrane unit 10 side is closed, and the valve 27 on the water separation membrane unit 20 side is opened.
  • nitrogen gas heated to 78 ° C. to 300 ° C. is supplied to the water separation membrane unit 20 from the line 26 as a regenerating hot gas via the heat exchanger 32.
  • Nitrogen gas is supplied to the flow path 22 and pushes out the ethanol accumulated in the water separation membrane 21.
  • the extruded nitrogen gas containing ethanol is sucked from the line 33.
  • the water separation membrane 21 is porous, and ethanol molecules are accumulated in the pores.
  • a line 31 for separating water from the crude ethanol treated in the water separation membrane unit 10 and a line 33 for sucking nitrogen gas from the water separation membrane unit 20 are merged to form water. Nitrogen gas is also sucked at an operating pressure [133.22 to 13332.2 Pa (10 to 100 torr)] for reducing the pressure.
  • the water separation membrane unit 20 can be regenerated at an operating pressure for reducing the pressure of the water separation membrane unit 10 in operation. For this reason, another decompression device is not required.
  • the discharge lines 31 and 33 from the shell portions 13 and 23 can be commonly used in both the operation and regeneration states of the water separation membranes 10 and 20, and the number of parts can be reduced.
  • the sucked nitrogen gas contains extruded ethanol. Also, ethanol may be contained in the water that is suction-separated from the water separation membrane unit 10. Therefore, a recovery device for recovering ethanol from the mixture that is joined and discharged by the pump 30 can be provided, and this can be returned to the water separation membrane unit 10 that is operating.
  • FIG. 1 is a simplified conceptual diagram for explanation, and an apparatus not shown can be implemented as a form provided without departing from the spirit of the present invention. . Moreover, it can also implement as a form provided with two or more water separation membrane units in operation. Such a form group is also included in the concept of the present invention, and will be described below as an example.
  • crude ethanol is preferably heated to about 100 to 150 ° C. Therefore, it is general to provide a heater in the lines 14 and 24 in the upstream of the water separation membrane units 10 and 20. As a result, the resulting product ethanol will have heat. This heat can also be imparted to the supplied crude ethanol using a heat exchanger. Furthermore, a part of ethanol obtained from the line 18 can be returned to the line 14 again to separate the water that has not been removed.
  • a plurality of water separation membrane units 10 in operation can be provided in parallel.
  • the ethanol that has passed through the first stage water separation membrane unit is sent to the second stage water separation membrane unit. It is also possible to send ethanol that has passed through the water separation membrane unit at the stage to the water separation membrane unit at the third stage, and finally recover the product ethanol.
  • the water collected from all the water separation membrane units in operation and the water separation membrane unit being regenerated can be collected, and ethanol leaking into the water can be collected by the collection device.
  • the deterioration ratio is a ratio between a water permeation rate at the beginning of the use period and a water permeation rate at that time.
  • the deterioration ratio is set to 0.8.
  • the reason why the deterioration ratio can be set as high as 0.8 is that the water separation membrane unit can be simultaneously regenerated in the operating state.
  • the dehydration system according to the present invention can be realized as a multistage dehydration system having more than three stages, and the number of water separation membrane units to be regenerated is limited to one. is not.
  • a concentration meter for monitoring the concentration of ethanol taken out from each water separation membrane unit can be installed in each water separation membrane unit. As a result, the deterioration ratio can be monitored. Furthermore, a thermometer for monitoring the temperature of the product fluid taken out from each water separation membrane unit may be provided.
  • FIG. 1 An alternative form that is possible in the form of employing one operating water separation membrane unit as shown in FIG. 1 is also adopted in a form having two or more working water separation membrane units unless contrary to the object of the present invention. can do.
  • Water separation membranes used in water separation membrane units such as the water separation membrane units 10, 20 etc. separate crude ethanol into anhydride and water.
  • Such water separation membranes are known in various forms and are commercially available.
  • a monolith type and a tubular type water separation membrane can be used.
  • FIG. 2B is a cross section taken along line BB of FIG. 2A.
  • the monolith-type water separation membrane 110 is provided with a plurality of crude ethanol flow paths 110 that are one or more hollow portions extending vertically to pass crude ethanol through a cylindrical water separation membrane 110.
  • the crude ethanol flow path 110c inside the water separation membrane is called the primary side or supply side of the membrane, and the outside of the water separation membrane 110 is the secondary side of the membrane, or It is called the transmission side.
  • the water separation membrane 110 is arranged such that the flow path direction is parallel to the vertical direction as shown in FIG. It can also be installed. Then, while reducing the permeation side of the water separation membrane 110, the crude ethanol is supplied from the inlet 110a on the lower side in the vertical direction, flows in the direction opposite to the gravity, and is discharged from the outlet 110b on the upper side in the vertical direction. By this operation, the water in the crude ethanol becomes water vapor and is extracted from the side surface of the cylindrical water separation membrane 110 to the permeate side. As a result, the crude ethanol recovered from the water separation membrane part outlet 110b is dehydrated.
  • the illustrated monolith-type water separation membrane 110 is schematic, but as an example, a columnar water separation membrane with a diameter of 30 mm is provided with 30 holes with a diameter of 3 mm. Can do. As another example, a water separation membrane having a diameter of 150 to 200 mm and having 200 holes having a diameter of 2 mm can be used.
  • the length of the water separation membrane can be appropriately determined by those skilled in the art according to the desired membrane performance, but as an example, a length of 150 mm to 1 m can be used.
  • the tubular water separation membrane 210 has a tubular shape in which only one crude ethanol passage 210c is provided.
  • the tubular-type water separation membrane 210 has the same installation mode and effect as the monolith-type water separation membrane.
  • the tubular water separation membrane one having an outer diameter of 10 mm and an inner diameter of 7 mm can be used, and as another example, one having an outer diameter of 30 mm and an inner diameter of 22 mm can be used.
  • a length of 150 mm to 1 m can be used.
  • a microporous membrane having a nano-order or smaller pore size precisely controlled with an inorganic material can be used as a material for the water separation membrane.
  • the microporous membrane exhibits a molecular sieving effect that allows a gas with a small molecular diameter to pass through and excludes a gas with a large molecular diameter, and shows a behavior of activated diffusion in which the permeability coefficient increases with increasing temperature.
  • the microporous membrane include a carbon membrane, a silica membrane, and a zeolite membrane.
  • a carbon-based inorganic water separation membrane having a pore diameter of 10 angstroms or less is suitable as the water separation membrane.
  • an inorganic water separation membrane described in Japanese Patent No. 2808479 can be applied.
  • the inorganic water separation membrane of Patent No. 2808479 is an acid-resistant composite separation obtained by supporting silica gel obtained through hydrolysis of an alkoxysilane containing an ethoxy group or a methoxy group in the pores of an inorganic porous body. It is a membrane.
  • the form, size, and material of the water separation membrane can be appropriately selected by those skilled in the art according to the purpose of use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided are a dehydration system and dehydration method, said dehydration system carrying out regeneration of water separation membranes while the system as a whole is in operation and being made such that the number of water separation membranes required is reduced. The dehydration system has at least one water separation membrane unit (10) in operation and is configured such that for the at least one water separation membrane unit (10) in operation, there can be at least one water separation membrane unit (20) not in operation. Heated gas for regeneration is supplied to a flow path (22) for a fluid to be treated with a water separation membrane (21) of the water separation membrane unit (20) not in operation, and in a state in which the dehydration system is in operation, the water separation membrane (21) can be regenerated by the heated gas for regeneration passing through the water separation membrane (21).

Description

脱水システム及び脱水方法Dehydration system and method
 本発明は、脱水システム及び脱水方法に関する。さらに詳しくは、水との共沸組成を持つエタノールやプロパノールと水との混合物、又は酸と水との混合物などを効率的に脱水することができる脱水システム及び脱水方法に関する。 The present invention relates to a dehydration system and a dehydration method. More specifically, the present invention relates to a dehydration system and a dehydration method capable of efficiently dehydrating a mixture of ethanol, propanol, and water having an azeotropic composition with water, or a mixture of acid and water.
 石油燃料を代替する燃料源として、エタノールが注目されており、その市場規模は、2015年に11500万キロリットルと予測されている。しかし、エタノールを燃料として採用するためには、トウモロコシ等のバイオ原料から得た粗製物を蒸留精製し、少なくとも99.5wt%以上に脱水しなければならない。
 従来、脱水にあたっては、希薄エタノール水溶液を、蒸留塔で蒸留することにより、エタノール/水系の共沸点近くまで濃縮し、次いで脱水するといったことが行われている。
Ethanol is attracting attention as a fuel source to replace petroleum fuel, and its market size is predicted to be 115 million kiloliters in 2015. However, in order to employ ethanol as a fuel, a crude product obtained from a bio raw material such as corn must be purified by distillation and dehydrated to at least 99.5 wt% or more.
Conventionally, in dehydration, a dilute ethanol aqueous solution is concentrated in the distillation column to near the azeotropic point of the ethanol / water system and then dehydrated.
 脱水するための手法としては、エントレーナを加え、共沸蒸留で脱水する方法がある。しかし、この方法では、三成分系を共沸蒸留し、さらにエントレーナを回収するといった工程を踏む必要があり、多大の熱エネルギーを必要とするといったような欠点があった。 As a method for dehydrating, there is a method of adding an entrainer and dehydrating by azeotropic distillation. However, this method has a drawback in that it requires a step of azeotropic distillation of the ternary system and further recovery of the entrainer, which requires a large amount of heat energy.
 また、モレキュラーシーブ槽を複数並列し、これらをバッチ切替しながら脱水する方法もある。しかし、この方法でも、モレキュラーシーブ層の再生に多大なエネルギーを消費するという難点があった。 There is also a method in which a plurality of molecular sieve tanks are juxtaposed and dewatered while switching batches. However, even with this method, there is a problem that a great amount of energy is consumed for the regeneration of the molecular sieve layer.
 そこで、水分離膜のように、以上の欠点を伴わない要素を用いることが考案されている(特許文献1:特開昭58-21629号公報)。 Therefore, it has been devised to use elements that do not have the above disadvantages, such as a water separation membrane (Patent Document 1: Japanese Patent Laid-Open No. 58-21629).
 しかし、水分離膜を備える水分離膜ユニットを用いたPV(パーベーパレーション)を採用する場合、水分離膜が劣化するため、その入替頻度が高く、その入れ替えに伴い、頻繁にプラントを停止しなければならないといった不都合があった。 However, when PV (pervaporation) using a water separation membrane unit equipped with a water separation membrane is adopted, the water separation membrane deteriorates, so the replacement frequency is high, and the plant is frequently stopped along with the replacement. There was an inconvenience of having to.
 また、このような水分離膜の劣化を予測し、使用期間後期の許容される劣化比を設定している。例えば、200本の水分離膜を使用するとして、使用期間の最初の劣化比を1とし、許容される劣化比の限界を0.4とする。そうすると使用期間当初の必要本数は、200/0.4=500(本)となる。したがって、一般に、装備しなければならない水分離膜の本数は、過大になりがちであった。 Also, such deterioration of the water separation membrane is predicted, and an allowable deterioration ratio in the later period of use is set. For example, assuming that 200 water separation membranes are used, the initial deterioration ratio in the usage period is set to 1, and the limit of the allowable deterioration ratio is set to 0.4. Then, the required number at the beginning of the usage period is 200 / 0.4 = 500 (books). Therefore, in general, the number of water separation membranes to be equipped tends to be excessive.
特開昭58-21629号公報JP 58-21629 A
 本発明は、上記事情に鑑みてなされたもので、システム全体を稼働させたまま、水分離膜の再生を行い、かつ水分離膜の必要本数を減少させるようにした脱水システム、及び脱水方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a dehydration system and a dehydration method in which the water separation membrane is regenerated and the required number of water separation membranes is reduced while the entire system is in operation. The purpose is to provide.
 上記目的を達成するため、本発明に係る脱水システムは、被処理流体から水を分離する脱水システムであって、少なくとも一以上の稼働中の水分離膜ユニットを備え、該少なくとも一以上の水分離膜ユニットに対し、少なくとも一以上の非稼働中の水分離膜ユニットを設置できるように構成し、該非稼働中の水分離膜ユニットを構成する水分離膜の被処理流体の流路を再生用熱ガスの供給路とし、脱水システムを稼働させた状態で、上記再生用熱ガスが上記水分離膜を透過することによって、上記水分離膜を再生することができるようにしてなることを特徴とする。 In order to achieve the above object, a dehydration system according to the present invention is a dehydration system for separating water from a fluid to be treated, comprising at least one water separation membrane unit in operation, and the at least one water separation The membrane unit is configured such that at least one non-operating water separation membrane unit can be installed, and the flow path of the fluid to be treated of the water separation membrane constituting the non-operating water separation membrane unit is heat for regeneration. The water separation membrane can be regenerated by allowing the regeneration hot gas to permeate the water separation membrane in a state where the gas supply path is operated and the dehydration system is in operation. .
 本発明に係る脱水システムは、その一実施の形態で、上記稼働中の水分離膜ユニットで処理される被処理流体から水を分離するためのラインと、上記非稼働中の水分離膜ユニットから再生用熱ガスを吸引するためのラインとを合流させ、水を分離するための運転圧力で、上記再生用熱ガスを吸引するようにすることができる。 In one embodiment, the dehydration system according to the present invention includes a line for separating water from a fluid to be processed that is processed by the water separation membrane unit in operation, and a water separation membrane unit that is not in operation. The regeneration hot gas can be sucked at an operating pressure for separating water by joining a line for sucking the regeneration hot gas.
 本発明は、他の側面で脱水方法であり、被処理流体から水を分離する脱水方法において、少なくとも一以上の稼働中の水分離膜ユニットを備え、該少なくとも一以上の水分離膜ユニットに対し、少なくとも一以上の非稼働中の水分離膜ユニットを設置した脱水システムで、該非稼働中の水分離膜ユニットを構成する水分離膜の被処理流体の流路に再生用熱ガスを供給し、上記脱水システムを稼働させた状態で、上記再生用熱ガスを、上記水分離膜を透過させ、上記水分離膜を再生することを特徴とする。 The present invention is a dehydration method in another aspect, and in the dehydration method of separating water from a fluid to be treated, the dehydration method includes at least one water separation membrane unit in operation, and the at least one water separation membrane unit A dehydration system in which at least one non-operating water separation membrane unit is installed, supplying regeneration hot gas to the flow path of the fluid to be treated of the water separation membrane constituting the non-operating water separation membrane unit; The regeneration hot gas permeates through the water separation membrane and the water separation membrane is regenerated while the dehydration system is in operation.
 本発明に係る脱水方法は、その一実施の形態で、上記稼働中の水分離膜ユニットで処理される被処理流体から水を分離するためのラインと、上記非稼働中の水分離膜ユニットから再生用熱ガスを吸引するためのラインとを合流させ、水を分離するための運転圧力で、上記再生用熱ガスを吸引するようにすることができる。 In one embodiment, the dehydration method according to the present invention includes a line for separating water from a fluid to be treated that is processed by the water separation membrane unit in operation, and a water separation membrane unit that is not in operation. The regeneration hot gas can be sucked at an operating pressure for separating water by joining a line for sucking the regeneration hot gas.
 本発明では、被処理流体は、一般的には有機水溶液である。
 有機水溶液の有機成分としては、エタノール、プロパノール、イソプロパノール、グリコール等のアルコール、酢酸等のカルボン酸、ジメチルエーテル、ジエチルエーテル等のエーテル、アセトアルデヒド等のアルデヒド、アセトン、メチルエチルケトン等のケトン、酢酸エチルエステル等のエステルからなる群から選択される一の有機成分であって、水に可溶なものを挙げることができる。
In the present invention, the fluid to be treated is generally an organic aqueous solution.
Organic components of the organic aqueous solution include alcohols such as ethanol, propanol, isopropanol and glycol, carboxylic acids such as acetic acid, ethers such as dimethyl ether and diethyl ether, aldehydes such as acetaldehyde, ketones such as acetone and methyl ethyl ketone, and ethyl acetate. One organic component selected from the group consisting of esters, which is soluble in water, can be mentioned.
 本発明で採用できる再生用熱ガスは、不活性なガスが好適である。
 不活性なガスとして以下のものを挙げることができる。
(1)窒素ガス
 空気レベルまで酸素濃度が高くなると、酸化による分離膜の改質が起こり、好ましくない。したがって、酸素の含有量は、10%未満であることが好適である。なお、少量であれば、エタノールの一部燃焼による除去は、却って好都合であり、このような効果を狙う場合には、酸素を5%程度まで含有してもよい。 
(2)二酸化炭素
 窒素を代替して用いることができる。エタノールの生産で副生する二酸化炭素を用いることもできる。
(3)他の不活性ガス
 なお、窒素を代替して、Ar等の周期律表上の不活性ガスも勿論採用できる。
(4)混合物
 さらに、窒素を代替して、以上に挙げた不活性ガスの混合物を採用することもできる。
 再生用熱ガスの温度は、エタノールの沸点78.3℃とコーキングを起しエタノールから膜上で炭素が析出を開始する300℃を越える温度の中間領域である78℃~300℃が好適である。ガスの加熱方法としては、実際に加熱することの他、被処理流体から得られる製品流体の持つ熱を、熱交換器で回収するといったこともできる。
An inert gas is suitable as the regeneration hot gas that can be employed in the present invention.
Examples of the inert gas include the following.
(1) Nitrogen gas If the oxygen concentration increases to the air level, the separation membrane is modified by oxidation, which is not preferable. Accordingly, the oxygen content is preferably less than 10%. In addition, if it is a small amount, the removal by partial combustion of ethanol is advantageous on the contrary, and when aiming at such an effect, oxygen may be contained up to about 5%.
(2) Carbon dioxide Nitrogen can be used instead. Carbon dioxide produced as a by-product in the production of ethanol can also be used.
(3) Other inert gases It should be noted that an inert gas on the periodic table such as Ar can be used instead of nitrogen.
(4) Mixture Further, instead of nitrogen, a mixture of the inert gases mentioned above can also be adopted.
The temperature of the regenerating hot gas is preferably 78 ° C. to 300 ° C., which is an intermediate region between the boiling point of ethanol of 78.3 ° C. and the temperature exceeding 300 ° C. at which carbon starts to precipitate on the film from ethanol. . As a gas heating method, in addition to the actual heating, the heat of the product fluid obtained from the fluid to be treated can be recovered by a heat exchanger.
 本発明によれば、システム全体を稼働させたまま、水分離膜の再生を行い、かつ水分離膜の必要本数を減少させるようにした脱水システム、及び脱水方法が提供される。 According to the present invention, there are provided a dehydration system and a dehydration method in which the water separation membrane is regenerated and the required number of water separation membranes is reduced while the entire system is in operation.
本発明に係る脱水方法を実施するための脱水システムについて、その一実施の形態を説明する概念図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram explaining the embodiment about the dehydration system for implementing the dehydration method which concerns on this invention. 本発明で採用することができる水分離膜の一実施の形態について、図2Aは、平面図、図2Bは、図2AのB-B線による断面図である。FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along the line BB of FIG. 2A regarding one embodiment of a water separation membrane that can be employed in the present invention. 本発明で採用することができる水分離膜の一実施の形態について、図3Aは、平面図、図3Bは、図3AのC-C線による断面図である。FIG. 3A is a plan view and FIG. 3B is a cross-sectional view taken along the line CC of FIG. 3A for one embodiment of a water separation membrane that can be employed in the present invention.
 以下に、本発明に係る脱水システム及び脱水方法について、その実施の形態を参照しながらさらに詳細に説明する。以下の実施形態においては、特定の数の水分離膜ユニットを備える脱水システムについて例示するが、本発明は特定の数の水分離膜ユニットに限定して適用されるものではない。
 また、被処理流体を、水を含む粗エタノールとし、再生用熱ガスを加熱した窒素ガスとした形態について説明する。しかし、他の種類の被処理流体、又は再生用熱ガスを使用する形態についても、当業者の技術的常識に基づいて本発明が適用されることを妨げるものではない。
Hereinafter, the dehydration system and the dehydration method according to the present invention will be described in more detail with reference to embodiments thereof. In the following embodiments, a dehydration system including a specific number of water separation membrane units will be exemplified, but the present invention is not limited to a specific number of water separation membrane units.
A description will be given of a form in which the fluid to be treated is crude ethanol containing water and the regenerating hot gas is a heated nitrogen gas. However, it does not preclude that the present invention is applied based on the technical common sense of those skilled in the art even in the case of using other types of fluids to be treated or hot gas for regeneration.
 本発明に係る脱水システムの基本形態
 図1に、本発明に係る脱水システムの一実施の形態を示す。
 本実施の形態に係る脱水システムは、稼働中の水分離膜ユニット10と、再生中の水分離膜ユニット20とを備える。
 これらの水分離膜ユニット10、20は、水分離膜11、21を用いて、パーベーパレーション法により、粗エタノールから水を分離する装置である。
 水分離膜ユニット10、20は、本体内に、粗エタノールを通すための左右に延びる一以上の流路12、22を有する水分離膜11、21を備える。水分離膜11、21の左側には、粗エタノール入口を、右側には、粗エタノール出口を備える。
 水分離膜11、21の外周面と、ユニット本体内壁とで、水の透過側にシェル部13、23を規定する。
FIG. 1 shows an embodiment of a dehydrating system according to the present invention.
The dehydration system according to the present embodiment includes an operating water separation membrane unit 10 and a water separation membrane unit 20 being regenerated.
These water separation membrane units 10 and 20 are devices for separating water from the crude ethanol using the water separation membranes 11 and 21 by the pervaporation method.
The water separation membrane units 10 and 20 are provided with water separation membranes 11 and 21 having one or more flow paths 12 and 22 extending in the left and right directions through which crude ethanol passes in the main body. A crude ethanol inlet is provided on the left side of the water separation membranes 11 and 21, and a crude ethanol outlet is provided on the right side.
Shell portions 13 and 23 are defined on the water permeation side by the outer peripheral surfaces of the water separation membranes 11 and 21 and the inner wall of the unit main body.
 図示の状態では、原料(粗エタノール)の供給ライン14、24において、水分離膜ユニット10側の弁15は、開放され、水分離膜ユニット20側の弁25は、閉成されている。また、製品の排出ライン18、28において、水分離膜ユニット10側の弁19は、開放され、水分離膜ユニット20側の弁29は、閉成されている。
 一方、窒素ガスの供給ライン16、26において、水分離膜ユニット10側の弁17は、閉成され、水分離膜ユニット20側の弁27は、開放されている。
In the illustrated state, in the raw material (crude ethanol) supply lines 14 and 24, the valve 15 on the water separation membrane unit 10 side is opened, and the valve 25 on the water separation membrane unit 20 side is closed. In the product discharge lines 18 and 28, the valve 19 on the water separation membrane unit 10 side is opened, and the valve 29 on the water separation membrane unit 20 side is closed.
On the other hand, in the nitrogen gas supply lines 16 and 26, the valve 17 on the water separation membrane unit 10 side is closed, and the valve 27 on the water separation membrane unit 20 side is opened.
 本発明に係る脱水方法の一実施の形態
 図1の形態に係る脱水システムによる、本発明に係る脱水方法の一実施の形態を次に説明する。
 図示の状態で、粗エタノールは、水分離膜ユニット10にのみ供給され、流路12から水分離膜11を透過した水は、減圧ポンプ30による減圧作用により、吸引され、シェル部13から排出ライン31を経て分離される。水と分離されたエタノールは、製品として回収される。
One Embodiment of the Dehydration Method According to the Present Invention Next, one embodiment of the dehydration method according to the present invention using the dehydration system according to the embodiment of FIG. 1 will be described.
In the state shown in the figure, the crude ethanol is supplied only to the water separation membrane unit 10, and the water that has permeated the water separation membrane 11 from the flow path 12 is sucked by the decompression action by the decompression pump 30 and is discharged from the shell portion 13. 31 to separate. Ethanol separated from water is recovered as a product.
 一方、水分離膜ユニット20には、78℃~300℃に加熱した窒素ガスが熱交換器32を経由して、ライン26から再生用熱ガスとして供給される。窒素ガスは、流路22に供給され、水分離膜21に蓄積されたエタノールを押し出す。押し出されたエタノールを含む窒素ガスは、ライン33から吸引される。なお、水分離膜21は、多孔質であり、その細孔内にエタノール分子が蓄積される。 On the other hand, nitrogen gas heated to 78 ° C. to 300 ° C. is supplied to the water separation membrane unit 20 from the line 26 as a regenerating hot gas via the heat exchanger 32. Nitrogen gas is supplied to the flow path 22 and pushes out the ethanol accumulated in the water separation membrane 21. The extruded nitrogen gas containing ethanol is sucked from the line 33. The water separation membrane 21 is porous, and ethanol molecules are accumulated in the pores.
 そして、図示のように、水分離膜ユニット10で処理される粗エタノールから水を分離するためのライン31と、水分離膜ユニット20から窒素ガスを吸引するためのライン33とを合流させ、水を分離するための減圧作用のための運転圧力[1333.22~13332.2Pa(10~100torr)]で、窒素ガスも吸引している。 Then, as shown in the figure, a line 31 for separating water from the crude ethanol treated in the water separation membrane unit 10 and a line 33 for sucking nitrogen gas from the water separation membrane unit 20 are merged to form water. Nitrogen gas is also sucked at an operating pressure [133.22 to 13332.2 Pa (10 to 100 torr)] for reducing the pressure.
 図1の形態では、脱水システム全体の運転を止めることなく、劣化した水分離膜ユニットの再生を行うことができる。しかも、稼働中の水分離膜ユニット10を減圧するための運転圧力で、水分離膜ユニット20を再生することができる。このため、他の減圧機器を要することがない。かつ、水分離膜10、20の稼働、再生の両状態でシェル部13、23からの排出ライン31、33を共通して用いることができ、部品点数も削減できる。  In the form of FIG. 1, it is possible to regenerate the deteriorated water separation membrane unit without stopping the operation of the entire dehydration system. Moreover, the water separation membrane unit 20 can be regenerated at an operating pressure for reducing the pressure of the water separation membrane unit 10 in operation. For this reason, another decompression device is not required. In addition, the discharge lines 31 and 33 from the shell portions 13 and 23 can be commonly used in both the operation and regeneration states of the water separation membranes 10 and 20, and the number of parts can be reduced. *
 吸引される窒素ガスは、押し出されたエタノールを含んでいる。また、水分離膜ユニット10から吸引分離される水にもエタノールが含まれていることがある。そこで、合流してポンプ30により排出される混合物からエタノールを回収するための回収装置を設け、さらにこれを稼働している水分離膜ユニット10に戻すこともできる。 The sucked nitrogen gas contains extruded ethanol. Also, ethanol may be contained in the water that is suction-separated from the water separation membrane unit 10. Therefore, a recovery device for recovering ethanol from the mixture that is joined and discharged by the pump 30 can be provided, and this can be returned to the water separation membrane unit 10 that is operating.
 本発明に係る脱水システムの他の形態
 図1は、説明のため簡略化した概念図であり、図示されていない機器を、本発明の趣旨に反しない範囲で備えた形態として実施することができる。また、稼働中の水分離膜ユニットを複数備える形態として実施することもできる。そのような形態群も本発明の概念に含まれるものであり、以下に、それらについて例示的に説明する。
Other Forms of Dehydration System According to the Present Invention FIG. 1 is a simplified conceptual diagram for explanation, and an apparatus not shown can be implemented as a form provided without departing from the spirit of the present invention. . Moreover, it can also implement as a form provided with two or more water separation membrane units in operation. Such a form group is also included in the concept of the present invention, and will be described below as an example.
 原料である粗エタノールから水を分離する際、粗エタノールの温度が高いほど有利である。そこで、例えば粗エタノールであれば、これを100~150℃程度に加熱することが好適である。そこで、水分離膜ユニット10、20の前流において、ライン14、24に、加熱器を設けることが一般的である。
 その結果、得られる製品エタノールは、熱を持つことになる。供給される粗エタノールに、熱交換器を利用してこの熱を付与することもできる。
 さらに、ライン18から得られるエタノールの一部を再度ライン14に戻し、取り切れていない水を分離するようにすることもできる。
When water is separated from the raw raw ethanol, the higher the temperature of the crude ethanol, the more advantageous. Therefore, for example, crude ethanol is preferably heated to about 100 to 150 ° C. Therefore, it is general to provide a heater in the lines 14 and 24 in the upstream of the water separation membrane units 10 and 20.
As a result, the resulting product ethanol will have heat. This heat can also be imparted to the supplied crude ethanol using a heat exchanger.
Furthermore, a part of ethanol obtained from the line 18 can be returned to the line 14 again to separate the water that has not been removed.
 また、稼働中の水分離膜ユニット10を複数並列して設けることもできる。この場合、水分離膜ユニットを粗エタノールの流れ方向に対して直列し、例えば、三段設けるとき、一段目の水分離膜ユニットを経たエタノールを二段目の水分離膜ユニットに送り、さらに二段目の水分離膜ユニットを経たエタノールを三段目の水分離膜ユニットに送り、製品エタノールを最終的に回収するといったことも可能である。
 この形態で、稼働中の全ての水分離膜ユニット及び再生中の水分離膜ユニットから回収された水をまとめ、この水の中に漏出するエタノールを回収装置で回収するようにすることもできる。
Also, a plurality of water separation membrane units 10 in operation can be provided in parallel. In this case, when the water separation membrane units are arranged in series with respect to the flow direction of the crude ethanol, for example, when three stages are provided, the ethanol that has passed through the first stage water separation membrane unit is sent to the second stage water separation membrane unit. It is also possible to send ethanol that has passed through the water separation membrane unit at the stage to the water separation membrane unit at the third stage, and finally recover the product ethanol.
In this form, the water collected from all the water separation membrane units in operation and the water separation membrane unit being regenerated can be collected, and ethanol leaking into the water can be collected by the collection device.
 さらに、ここで、劣化比の低い順に一段目から三段目に振り分けて使用し、劣化比が設定値になった順に稼働を止め、再生処理を行うようにすることができる。このように稼働させることにより、一段目から三段目にかけた全体の処理能力を一定に保つことができる。すなわち、再生サイクルを構築することもできる。 Further, here, it is possible to distribute the first to third stages in order from the lowest deterioration ratio, stop the operation in the order in which the deterioration ratio reaches the set value, and perform the regeneration process. By operating in this way, the overall processing capacity from the first stage to the third stage can be kept constant. That is, a regeneration cycle can be constructed.
 なお、本明細書中、劣化比とは、使用期間当初の水透過速度とその時点での水透過速度との比である。ここで、例えば、劣化比を0.8と設定したとする。実機においては、図1について説明した脱水システム又はその変形形態に係る脱水システムを処理量に応じて複数併設する。このようなことを想定し、例えば、200本の水分離膜を常時稼働させるとした場合、使用期間当初の必要本数は、200/0.8=250(本)となる。すなわち、劣化比の設定によって、水分離膜の必要本数を削減することができる。
 なお、劣化比を0.8のように高く設定できるのは、稼働状態で同時に水分離膜ユニットを再生できるためである。
In the present specification, the deterioration ratio is a ratio between a water permeation rate at the beginning of the use period and a water permeation rate at that time. Here, for example, assume that the deterioration ratio is set to 0.8. In the actual machine, a plurality of dehydration systems described with reference to FIG. Assuming such a situation, for example, when 200 water separation membranes are always operated, the required number in the initial period of use is 200 / 0.8 = 250 (pieces). That is, the required number of water separation membranes can be reduced by setting the deterioration ratio.
The reason why the deterioration ratio can be set as high as 0.8 is that the water separation membrane unit can be simultaneously regenerated in the operating state.
 このような再生サイクルの実行を含め、本発明に係る脱水システムの稼働、及び本発明に係る脱水方法の実行にあたっては、当業者の技術常識に従ったプロセッサ・コントロールを行うことができる。 In the operation of the dehydration system according to the present invention and the execution of the dehydration method according to the present invention including the execution of such a regeneration cycle, processor control according to the common general technical knowledge of those skilled in the art can be performed.
 なお、その目的を妨げるものでない限り、本発明に係る脱水システムは、三段を超えるさらに多段の脱水システムとしても実現することができ、再生する水分離膜ユニットの数も一に限定されるものではない。 As long as the purpose is not hindered, the dehydration system according to the present invention can be realized as a multistage dehydration system having more than three stages, and the number of water separation membrane units to be regenerated is limited to one. is not.
 また、各水分離膜ユニットから取り出されるエタノールの濃度を監視する濃度計を、各水分離膜ユニットに設置することもできる。これによって、劣化比を監視することができる。
 さらにまた、各水分離膜ユニットから取り出される製品流体の温度を監視する温度計を備えるようにすることもできる。
Further, a concentration meter for monitoring the concentration of ethanol taken out from each water separation membrane unit can be installed in each water separation membrane unit. As a result, the deterioration ratio can be monitored.
Furthermore, a thermometer for monitoring the temperature of the product fluid taken out from each water separation membrane unit may be provided.
 さらに、図1のような一の稼働中の水分離膜ユニットを採用する形態で可能な代替形態は、本発明の目的に反しない限り二以上の稼働中の水分離膜ユニットを備える形態でも採用することができる。 Further, an alternative form that is possible in the form of employing one operating water separation membrane unit as shown in FIG. 1 is also adopted in a form having two or more working water separation membrane units unless contrary to the object of the present invention. can do.
 本発明で採用することができる水分離膜
 水分離膜ユニット10、20等のような水分離膜ユニットに用いられる水分離膜は、粗エタノールを無水物と水とに分離する。かかる水分離膜としては、様々な形態のものが知られており、市販されている。本発明では、例えば、モノリス型のものと、チューブラ型の水分離膜を用いることができる。
Water Separation Membrane that can be Employed in the Present Invention Water separation membranes used in water separation membrane units such as the water separation membrane units 10, 20 etc. separate crude ethanol into anhydride and water. Such water separation membranes are known in various forms and are commercially available. In the present invention, for example, a monolith type and a tubular type water separation membrane can be used.
 図2A及び図2Bにモノリス型の水分離膜110の例を挙げて説明する。図2Bは、図2AのB-Bにおける断面である。モノリス型の水分離膜110は、円柱状の水分離膜110に粗エタノールを通すための上下に延びる一以上の中空部である粗エタノールの流路110を複数設けたものである。通常、かかる形態の水分離膜においては、水分離膜内部の粗エタノールの流路110cを、膜の一次側、または供給側といい、水分離膜110の外側を、膜の二次側、または透過側とよぶ。 An example of the monolith type water separation membrane 110 will be described with reference to FIGS. 2A and 2B. FIG. 2B is a cross section taken along line BB of FIG. 2A. The monolith-type water separation membrane 110 is provided with a plurality of crude ethanol flow paths 110 that are one or more hollow portions extending vertically to pass crude ethanol through a cylindrical water separation membrane 110. Usually, in such a form of water separation membrane, the crude ethanol flow path 110c inside the water separation membrane is called the primary side or supply side of the membrane, and the outside of the water separation membrane 110 is the secondary side of the membrane, or It is called the transmission side.
 このような水分離膜110を用いたパーベーパレーション法膜分離においては、図1の形態と異なり、図2のように、水分離膜110を、流路の方向が鉛直方向と平行になるように設置することもできる。
 そして、水分離膜110の透過側を減圧しながら、鉛直方向下側の入口110aから粗エタノールを供給し、重力と逆の向きに流して、鉛直方向上側の出口110bから粗エタノールを排出する。かかる操作により、粗エタノール中の水が、水蒸気となって、円柱状の水分離膜110の側面から、透過側に引き抜かれる。その結果、水分離膜部出口110bから回収される粗エタノールは、脱水されたものとなっている。
In such a pervaporation membrane separation using the water separation membrane 110, unlike the embodiment shown in FIG. 1, the water separation membrane 110 is arranged such that the flow path direction is parallel to the vertical direction as shown in FIG. It can also be installed.
Then, while reducing the permeation side of the water separation membrane 110, the crude ethanol is supplied from the inlet 110a on the lower side in the vertical direction, flows in the direction opposite to the gravity, and is discharged from the outlet 110b on the upper side in the vertical direction. By this operation, the water in the crude ethanol becomes water vapor and is extracted from the side surface of the cylindrical water separation membrane 110 to the permeate side. As a result, the crude ethanol recovered from the water separation membrane part outlet 110b is dehydrated.
 図示したモノリス型の水分離膜110は、概略的なものであるが、一例として、直径が30mmの円柱状の水分離膜に対して、直径が3mmの穴を30個設けたものを用いることができる。別の例として、直径が150~200mmの水分離膜に対して、直径が2mmの穴を200個設けたものを用いることもできる。水分離膜の長さは、所望の膜性能に応じて当業者が適宜決定することができるが、一例として、150mmから1mのものを用いることができる。 The illustrated monolith-type water separation membrane 110 is schematic, but as an example, a columnar water separation membrane with a diameter of 30 mm is provided with 30 holes with a diameter of 3 mm. Can do. As another example, a water separation membrane having a diameter of 150 to 200 mm and having 200 holes having a diameter of 2 mm can be used. The length of the water separation membrane can be appropriately determined by those skilled in the art according to the desired membrane performance, but as an example, a length of 150 mm to 1 m can be used.
 別の例として、図3A及び図3Bにチューブラ型を挙げて説明する。図3Bは、図3AのC-Cにおける断面である。チューブラ型の水分離膜210は、内部に粗エタノールの流路210cがひとつだけ設けられた管状のものである。チューブラ型の水分離膜210も、その設置態様および作用効果は、モノリス型の水分離膜と同様である。チューブラ型の水分離膜の一例としては、外径が10mm、内径が7mmのものを用いることができ、別の例としては、外径が30mm、内径が22mmのものを用いることができる。長さは、一例として、150mmから1mのものを用いることができる。 As another example, a tubular type will be described with reference to FIGS. 3A and 3B. 3B is a cross-sectional view taken along the line CC of FIG. 3A. The tubular water separation membrane 210 has a tubular shape in which only one crude ethanol passage 210c is provided. The tubular-type water separation membrane 210 has the same installation mode and effect as the monolith-type water separation membrane. As an example of the tubular water separation membrane, one having an outer diameter of 10 mm and an inner diameter of 7 mm can be used, and as another example, one having an outer diameter of 30 mm and an inner diameter of 22 mm can be used. As an example, a length of 150 mm to 1 m can be used.
 水分離膜の材質としては、無機材でナノオーダーまたはそれより小さい孔径が精密に制御された微細孔多孔膜を用いることができる。微細孔多孔膜は、小さい分子径のガスを通し、大きい分子径のガスを排除する分子ふるい効果を発現し、その透過係数は温度上昇とともに増加する活性化拡散の挙動を示す。微細孔多孔膜の例としては、炭素膜、シリカ膜、ゼオライト膜が挙げられる。本実施形態においては、水分離膜としては、細孔径10オングストローム以下の炭素系無機水分離膜が好適である。 As a material for the water separation membrane, a microporous membrane having a nano-order or smaller pore size precisely controlled with an inorganic material can be used. The microporous membrane exhibits a molecular sieving effect that allows a gas with a small molecular diameter to pass through and excludes a gas with a large molecular diameter, and shows a behavior of activated diffusion in which the permeability coefficient increases with increasing temperature. Examples of the microporous membrane include a carbon membrane, a silica membrane, and a zeolite membrane. In the present embodiment, a carbon-based inorganic water separation membrane having a pore diameter of 10 angstroms or less is suitable as the water separation membrane.
 また、特許第2808479号記載の無機水分離膜も適用可能である。該特許第2808479号の無機水分離膜は、無機多孔体の細孔内に、エトキシ基又はメトキシ基を含むアルコキシシランの加水分解を経て得られたシリカゲルを担持することによって得られる耐酸性複合分離膜である。 Also, an inorganic water separation membrane described in Japanese Patent No. 2808479 can be applied. The inorganic water separation membrane of Patent No. 2808479 is an acid-resistant composite separation obtained by supporting silica gel obtained through hydrolysis of an alkoxysilane containing an ethoxy group or a methoxy group in the pores of an inorganic porous body. It is a membrane.
 なお、水分離膜部の形態、サイズ、および材質は、使用目的に応じて当業者が適宜選択することができる。 It should be noted that the form, size, and material of the water separation membrane can be appropriately selected by those skilled in the art according to the purpose of use.
 10、20  水分離膜ユニット
 11、21  水分離膜
 12、22  流路
 13、23  シェル部
 14、24、16、26、18、28、31 ライン
 15、25、17、27、19、29  弁
 30     減圧ポンプ
 32     熱交換器
 110、210 水分離膜
 110a、210a 粗エタノールの入口
 110b、210b 粗エタノールの出口
 110c、210c 流路 
10, 20 Water separation membrane unit 11, 21 Water separation membrane 12, 22 Flow path 13, 23 Shell portion 14, 24, 16, 26, 18, 28, 31 Line 15, 25, 17, 27, 19, 29 Valve 30 Pressure reduction pump 32 Heat exchanger 110, 210 Water separation membrane 110a, 210a Crude ethanol inlet 110b, 210b Crude ethanol outlet 110c, 210c Flow path

Claims (8)

  1.  被処理流体から水を分離する脱水システムであって、少なくとも一以上の稼働中の水分離膜ユニットを備え、該少なくとも一以上の水分離膜ユニットに対し、少なくとも一以上の非稼働中の水分離膜ユニットを設置できるように構成し、該非稼働中の水分離膜ユニットを構成する水分離膜の被処理流体の流路を再生用熱ガスの供給路とし、脱水システムを稼働させた状態で、上記再生用熱ガスが上記水分離膜を透過することによって、上記水分離膜を再生することができるようにしてなることを特徴とする脱水システム。 A dehydration system for separating water from a fluid to be treated, comprising at least one active water separation membrane unit, and at least one non-operating water separation for the at least one water separation membrane unit In a state where the membrane unit can be installed, the flow path of the fluid to be treated of the water separation membrane constituting the non-operating water separation membrane unit is the supply path for the regenerating hot gas, and the dehydration system is in operation. A dehydration system characterized in that the water separation membrane can be regenerated by allowing the regeneration hot gas to permeate the water separation membrane.
  2.  上記稼働中の水分離膜ユニットで処理される被処理流体から水を分離するためのラインと、上記非稼働中の水分離膜ユニットから再生用熱ガスを吸引するためのラインとを合流させ、水を分離するための運転圧力で、上記再生用熱ガスを吸引するようにしてなることを特徴とする請求項1の脱水システム。 A line for separating water from the fluid to be treated that is processed by the water separation membrane unit in operation and a line for sucking the regeneration hot gas from the non-operating water separation membrane unit, 2. The dehydration system according to claim 1, wherein the regeneration hot gas is sucked at an operating pressure for separating water.
  3.  上記被処理流体が、有機水溶液であることを特徴とする請求項1又は2に記載の脱水システム。 The dehydration system according to claim 1 or 2, wherein the fluid to be treated is an organic aqueous solution.
  4.  上記有機水溶液の有機成分が、エタノール、プロパノール、イソプロパノール、グリコール等のアルコール、酢酸等のカルボン酸、ジメチルエーテル、ジエチルエーテル等のエーテル、アセトアルデヒド等のアルデヒド、アセトン、メチルエチルケトン等のケトン、酢酸エチルエステル等のエステルからなる群から選択される一の有機成分であって、水に可溶なものであることを特徴とする請求項1~3のいずれかに記載の脱水システム。 The organic components of the organic aqueous solution include alcohols such as ethanol, propanol, isopropanol and glycol, carboxylic acids such as acetic acid, ethers such as dimethyl ether and diethyl ether, aldehydes such as acetaldehyde, ketones such as acetone and methyl ethyl ketone, and ethyl acetate. The dehydration system according to any one of claims 1 to 3, wherein the organic component is one organic component selected from the group consisting of esters and is soluble in water.
  5.  被処理流体から水を分離する脱水方法において、少なくとも一以上の稼働中の水分離膜ユニットを備え、該少なくとも一以上の水分離膜ユニットに対し、少なくとも一以上の非稼働中の水分離膜ユニットを設置した脱水システムで、該非稼働中の水分離膜ユニットを構成する水分離膜の被処理流体の流路に再生用熱ガスを供給し、上記脱水システムを稼働させた状態で、上記再生用熱ガスを、上記水分離膜を透過させ、上記水分離膜を再生することを特徴とする脱水方法。 In a dehydration method for separating water from a fluid to be treated, at least one water separation membrane unit in operation is provided, and at least one non-operational water separation membrane unit is provided for the at least one water separation membrane unit. In the dehydration system installed, the regeneration hot gas is supplied to the flow path of the fluid to be treated of the water separation membrane constituting the non-operating water separation membrane unit, and the regeneration A dehydration method, wherein hot water is permeated through the water separation membrane to regenerate the water separation membrane.
  6.  上記稼働中の水分離膜ユニットで処理される被処理流体から水を分離するためのラインと、上記非稼働中の水分離膜ユニットから再生用熱ガスを吸引するためのラインとを合流させ、水を分離するための運転圧力で、上記再生用熱ガスを吸引するようにしてなることを特徴とする請求項5の脱水方法。 A line for separating water from the fluid to be treated that is processed by the water separation membrane unit in operation and a line for sucking the regeneration hot gas from the non-operating water separation membrane unit, 6. The dehydrating method according to claim 5, wherein the regeneration hot gas is sucked at an operating pressure for separating water.
  7.  上記被処理流体が、有機水溶液であることを特徴とする請求項5又は6に記載の脱水方法。 The dehydration method according to claim 5 or 6, wherein the fluid to be treated is an organic aqueous solution.
  8.  上記有機水溶液の有機成分が、エタノール、プロパノール、イソプロパノール、グリコール等のアルコール、酢酸等のカルボン酸、ジメチルエーテル、ジエチルエーテル等のエーテル、アセトアルデヒド等のアルデヒド、アセトン、メチルエチルケトン等のケトン、酢酸エチルエステル等のエステルからなる群から選択される一の有機成分であって、水に可溶なものであることを特徴とする請求項5~7のいずれかに記載の脱水方法。 The organic components of the organic aqueous solution include alcohols such as ethanol, propanol, isopropanol and glycol, carboxylic acids such as acetic acid, ethers such as dimethyl ether and diethyl ether, aldehydes such as acetaldehyde, ketones such as acetone and methyl ethyl ketone, and ethyl acetate. The dehydration method according to any one of claims 5 to 7, wherein the organic component is one organic component selected from the group consisting of esters and is soluble in water.
PCT/JP2012/069969 2011-08-10 2012-08-06 Dehydration system and dehydration method WO2013021966A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-175009 2011-08-10
JP2011175009A JP2013034969A (en) 2011-08-10 2011-08-10 Dehydration system and dehydration method

Publications (1)

Publication Number Publication Date
WO2013021966A1 true WO2013021966A1 (en) 2013-02-14

Family

ID=47668473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069969 WO2013021966A1 (en) 2011-08-10 2012-08-06 Dehydration system and dehydration method

Country Status (2)

Country Link
JP (1) JP2013034969A (en)
WO (1) WO2013021966A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999674A (en) * 2018-12-06 2019-07-12 曾杰 The cleaning-drying technique and device of filter based on microwave treatment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015181965A (en) * 2014-03-20 2015-10-22 日本碍子株式会社 Regeneration method and regeneration apparatus
JP6626736B2 (en) * 2016-02-25 2019-12-25 日立造船株式会社 Regeneration method of zeolite membrane composite
US11135545B2 (en) 2017-05-12 2021-10-05 Jgc Corporation Gas separation device
SE543848C2 (en) * 2019-12-10 2021-08-10 Nanosized Sweden Ab Membrane distiller and operation method therefore

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250907A (en) * 1986-04-25 1987-10-31 Shin Etsu Chem Co Ltd Method for regenerating performance of separation membrane
JPS6316006A (en) * 1986-07-04 1988-01-23 Sasakura Eng Co Ltd Method for operating pervaporization distiller
JPH04243527A (en) * 1991-01-24 1992-08-31 Nitto Denko Corp Operation of pervaporation membrane apparatus
JPH05103957A (en) * 1991-03-06 1993-04-27 Mitsui Eng & Shipbuild Co Ltd Performance recovering method of pervaporation membrane selectively permeating organic material
JPH1157415A (en) * 1997-08-28 1999-03-02 Kurita Water Ind Ltd Operating method of membrane deaerator and apparatus for the same
JP2010509034A (en) * 2006-11-08 2010-03-25 日本碍子株式会社 Ceramic filter and method for regenerating the same
JP2011083694A (en) * 2009-10-15 2011-04-28 Mitsubishi Heavy Ind Ltd Operation method of dehydrator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250907A (en) * 1986-04-25 1987-10-31 Shin Etsu Chem Co Ltd Method for regenerating performance of separation membrane
JPS6316006A (en) * 1986-07-04 1988-01-23 Sasakura Eng Co Ltd Method for operating pervaporization distiller
JPH04243527A (en) * 1991-01-24 1992-08-31 Nitto Denko Corp Operation of pervaporation membrane apparatus
JPH05103957A (en) * 1991-03-06 1993-04-27 Mitsui Eng & Shipbuild Co Ltd Performance recovering method of pervaporation membrane selectively permeating organic material
JPH1157415A (en) * 1997-08-28 1999-03-02 Kurita Water Ind Ltd Operating method of membrane deaerator and apparatus for the same
JP2010509034A (en) * 2006-11-08 2010-03-25 日本碍子株式会社 Ceramic filter and method for regenerating the same
JP2011083694A (en) * 2009-10-15 2011-04-28 Mitsubishi Heavy Ind Ltd Operation method of dehydrator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109999674A (en) * 2018-12-06 2019-07-12 曾杰 The cleaning-drying technique and device of filter based on microwave treatment
CN109999674B (en) * 2018-12-06 2021-09-10 曾杰 Cleaning and drying process and device of filter based on microwave treatment

Also Published As

Publication number Publication date
JP2013034969A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
WO2013021966A1 (en) Dehydration system and dehydration method
US20110011725A1 (en) Dehydrating system and dehydrating method
JP6715575B2 (en) Carbon dioxide separation method and carbon dioxide separation device
JP4427572B2 (en) Dehydrator
US8142662B2 (en) Dehydrating system and method for control of spare membrane unit
WO2016027713A1 (en) Separation device and regeneration method
WO2009084522A1 (en) Dehydrating system and method
JP2008221176A (en) Dewatering system and dewatering method
JP6953764B2 (en) Biogas Concentration System and Biogas Concentration Method
JP6733091B2 (en) Dehydration membrane separation system and dehydration membrane separation method
JP6164682B2 (en) Gas separation apparatus and acid gas separation method using the same
US20100116727A1 (en) Membrane container
JP5758096B2 (en) Dehydrator
JP5148578B2 (en) Dehydration system
JP2013240795A (en) Dewatering system and method for dewatering
US20120210870A1 (en) Method and device for separating gaseous mixtures by means of permeation
JP5591041B2 (en) Membrane container used in dehydrator
JP2010000507A5 (en)
JP5342134B2 (en) Dehydration method
JP6259375B2 (en) Hydrogen and olefin purification system
JP4950263B2 (en) Operation method of dehydrator
JP2011092870A (en) Organic solvent recovery system
EP2263783B1 (en) Membrane system for the dehydration of solvents
CA2665294C (en) Dehydrating system
JP2016179417A (en) Separation method and separation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822120

Country of ref document: EP

Kind code of ref document: A1