JP2000084377A - Removal of membrane contaminated substance for tubular membrane device - Google Patents

Removal of membrane contaminated substance for tubular membrane device

Info

Publication number
JP2000084377A
JP2000084377A JP10263254A JP26325498A JP2000084377A JP 2000084377 A JP2000084377 A JP 2000084377A JP 10263254 A JP10263254 A JP 10263254A JP 26325498 A JP26325498 A JP 26325498A JP 2000084377 A JP2000084377 A JP 2000084377A
Authority
JP
Japan
Prior art keywords
membrane
water
pressure
tubular membrane
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10263254A
Other languages
Japanese (ja)
Inventor
Osamu Hatakeyama
治 畠山
Ayano Yamada
綾野 山田
Yoshiaki Nishimura
由明 西村
Yasukiyo Sato
泰清 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Organo Corp
Original Assignee
Tohoku Electric Power Co Inc
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Organo Corp, Japan Organo Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP10263254A priority Critical patent/JP2000084377A/en
Publication of JP2000084377A publication Critical patent/JP2000084377A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a removing method of membrane contaminated substance in a vertical installation type internal pressure type tubular membrane device using a tubular membrane (hollow fiber membrane, tubular membrane or the like) such as a precise filter membrane, an ultrafiltration membrane, which is capable of effectively removing the membrane contaminated substance stuck to the inner surface of the tubular membrane and excellently cleaning not only the tubular membrane existing at the center part of the membrane module but the tubular membrane existing at the peripheral part of the membrane module. SOLUTION: A water drawing process for drawing a part of or the whole distilled water in the tubular membrane 6 of the membrane module 4 from the inside of the tubular membrane, a high pressure water passing process for passing high pressure water 25 downward through the tubular membrane after finishing the water drawing process and a high pressure gas passing process for passing a high pressure gas 27 upward through the tubular membrane after finishing the high pressure water passing process are performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば一般水、発
電所復水、一般産業復水、工業用水、一般産業希薄排水
などの濾過処理を行う膜濾過装置の膜汚染物質除去方法
に関し、さらに詳述すると、精密濾過膜、限外濾過膜等
の管状膜(中空糸膜、チューブラ膜等)を用いた垂直設
置式内圧型管状膜装置の膜汚染物質除去方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of removing membrane contaminants in a membrane filtration apparatus for filtering general water, condensate of a power plant, condensate of general industry, industrial water, dilute wastewater of general industry, etc. More specifically, the present invention relates to a method for removing a membrane contaminant of a vertically installed internal pressure type tubular membrane device using a tubular membrane (a hollow fiber membrane, a tubular membrane, or the like) such as a microfiltration membrane or an ultrafiltration membrane.

【0002】[0002]

【従来の技術】前述したような濾過処理を行う膜濾過装
置として、内部に精密濾過膜、限外濾過膜等の中空糸膜
の多数本を垂直に設置してなる中空糸膜モジュールを用
いた垂直設置式内圧型中空糸膜装置がある。この装置で
は、膜モジュール内に原水を下から上に向けて通水し、
中空糸膜の内側から外側に原水を流すことにより、原水
を濾過する。
2. Description of the Related Art A hollow fiber membrane module in which a number of hollow fiber membranes such as a microfiltration membrane and an ultrafiltration membrane are vertically installed is used as a membrane filtration device for performing the above-mentioned filtration treatment. There is a vertical installation type internal pressure type hollow fiber membrane device. In this device, raw water flows through the membrane module from bottom to top,
The raw water is filtered by flowing the raw water from the inside to the outside of the hollow fiber membrane.

【0003】上述した垂直設置式内圧型中空糸膜装置で
は、濾過運転中に中空糸膜の内面に原水中に含まれる成
分が付着して中空糸膜が汚染される。そのため、濾過運
転中に定期的(通常10分〜数10分に1回の頻度)に
逆洗を行うことにより、中空糸膜の内面に付着した膜汚
染物質を除去している。
In the above-described vertical installation type internal pressure type hollow fiber membrane device, components contained in raw water adhere to the inner surface of the hollow fiber membrane during the filtration operation, and the hollow fiber membrane is contaminated. Therefore, the membrane contaminants adhering to the inner surface of the hollow fiber membrane are removed by performing backwashing periodically (usually once every 10 minutes to several tens of minutes) during the filtration operation.

【0004】上記垂直設置式内圧型中空糸膜装置の逆洗
は、次のように行われる。まず、逆洗用流体(通常は透
過水を使用)を膜モジュール内に濾過時と逆方向、すな
わち膜の外側から内側に逆洗用流体を濾過時の数倍の流
量で流すことにより、中空糸膜の内面から膜汚染物質を
剥離させる。次に、中空糸膜内に洗い流し用流体(通常
は原水を使用)を下から上に向けて流し(濾過時の通水
方向と同じ)、この洗い流し用流体で膜内面から剥離し
た膜汚染物質を洗い流して中空糸膜内から除去するもの
である。なお、洗い流し用流体は中空糸膜の下端開口部
から中空糸膜内に流入させ、上端開口部から流出させ
る。この場合、後段の膜汚染物質を洗い流す工程におい
て、洗い流し用流体として水に気泡状の空気を混入させ
た水・空気混相流を用いることもある。
[0004] Backwashing of the vertical installation type internal pressure type hollow fiber membrane device is performed as follows. First, the backwash fluid (usually using permeated water) flows through the membrane module in the opposite direction to that during filtration, that is, the backwash fluid flows from the outside to the inside of the membrane at a flow rate several times higher than that during filtration. Peel off membrane contaminants from the inner surface of the yarn membrane. Next, a flushing fluid (usually using raw water) is allowed to flow upward from the bottom into the hollow fiber membrane (usually in the direction of water flow during filtration), and membrane contaminants separated from the membrane inner surface by the flushing fluid are used. Is washed out and removed from the inside of the hollow fiber membrane. The flushing fluid flows into the hollow fiber membrane from the lower end opening of the hollow fiber membrane and flows out from the upper end opening. In this case, a water / air mixed-phase flow in which bubble air is mixed with water may be used as a flushing fluid in a subsequent step of flushing the membrane contaminants.

【0005】[0005]

【発明が解決しようとする課題】しかし、前述した逆洗
による従来の膜汚染物質除去方法には、下記〜のよ
うな問題点があった。 中空糸膜は、細径のものでは内径0.8mm程度であ
り、このような細径の中空糸膜の場合、逆洗用流体及び
洗い流し用流体として水のみを用いた逆洗では、十分な
洗浄効果が得られない。また、洗い流し用流体として前
記水・空気混相流を用いた場合は、それなりの効果はあ
るが、やはり満足すべき洗浄効果は得られない。 中空糸膜モジュールの中央部(モジュールを水平に切
った断面における中央部)は、逆洗用流体及び洗い流し
用流体が流れやすいため、この部分に存在する中空糸膜
の内面は比較的良好に洗浄される。しかし、中空糸膜モ
ジュールの周辺部(モジュールを水平に切った断面にお
ける周辺部)は、逆洗用流体及び洗い流し用流体が中央
部に較べて流れにくいので、この部分に存在する中空糸
膜の内面は洗浄されにくい。そのため、上記周辺部に存
在する中空糸膜の閉塞が生じやすく、またいったん閉塞
が生じると、前記のように中空糸膜モジュールの周辺部
は逆洗用流体及び洗い流し用流体が流れにくいため、閉
塞を通常の逆洗によって回復することは難しい。なお、
この問題は、洗い流し用流体として水のみを用いた場合
及び水・空気混相流を用いた場合のいずれでも同様であ
る。 洗い流し用流体による洗浄力が弱いので、膜内面から
剥離した膜汚染物質を十分に洗い流すためには洗い流し
用流体を多量に使用する必要があり、その結果水回収率
が低くなる。
However, the conventional method for removing film contaminants by back washing described above has the following problems. The hollow fiber membrane has an inner diameter of about 0.8 mm in the case of a small-diameter hollow fiber membrane. In the case of such a small-diameter hollow fiber membrane, sufficient back-washing using only water as the back-washing fluid and the flushing fluid is not sufficient. The cleaning effect cannot be obtained. Further, when the water / air mixed phase flow is used as the flushing fluid, there is a certain effect, but still a satisfactory cleaning effect cannot be obtained. The center part of the hollow fiber membrane module (the central part in the cross section of the module when cut horizontally) is easy for the backwashing fluid and the flushing fluid to flow. Therefore, the inner surface of the hollow fiber membrane existing in this part is relatively well cleaned. Is done. However, the peripheral portion of the hollow fiber membrane module (peripheral portion in a cross section obtained by cutting the module horizontally) is less likely to flow the backwashing fluid and the flushing fluid than the central portion. The inner surface is difficult to clean. Therefore, the hollow fiber membrane existing in the peripheral portion is likely to be blocked, and once the blockage occurs, the peripheral portion of the hollow fiber membrane module is difficult to flow the backwashing fluid and the flushing fluid as described above. Is difficult to recover by normal backwashing. In addition,
This problem is the same in both the case where only water is used as the flushing fluid and the case where a water / air mixed phase flow is used. Since the detergency of the rinsing fluid is weak, it is necessary to use a large amount of the rinsing fluid in order to sufficiently remove the membrane contaminants separated from the inner surface of the membrane, resulting in a low water recovery rate.

【0006】したがって、従来の逆洗では中空糸膜内面
の十分な洗浄効果が得られないので、比較的高頻度で、
かつ大量の逆洗流体及び洗い流し用流体を使用して逆洗
を繰り返しても、中空糸膜の汚染を効果的に防止するこ
とができず、また膜モジュールの周辺部に存在する中空
糸膜の閉塞が生じやすかった。その結果、薬品洗浄、す
なわち膜汚染物質を化学的に溶解することにより除去す
る洗浄を、比較的高い頻度で行う必要があった。
[0006] Therefore, the conventional backwashing does not provide a sufficient cleaning effect on the inner surface of the hollow fiber membrane, so that it is relatively frequently used.
Further, even if the backwash is repeated using a large amount of the backwash fluid and the flushing fluid, the contamination of the hollow fiber membrane cannot be effectively prevented, and the hollow fiber membrane existing around the membrane module cannot be prevented. Obstruction was likely to occur. As a result, chemical cleaning, that is, cleaning for removing film contaminants by chemical dissolution, must be performed at a relatively high frequency.

【0007】本発明は、上記事情に鑑みてなされたもの
で、精密濾過膜、限外濾過膜等の管状膜(中空糸膜、チ
ューブラ膜等)を用いた垂直設置式内圧型管状膜装置の
膜汚染物質除去方法であって、上記管状膜の内面に付着
した膜汚染物質を効果的に除去することができ、しかも
膜モジュールの中央部に存在する管状膜のみならず、膜
モジュールの周辺部に存在する管状膜も良好に洗浄する
ことが可能な膜汚染物質除方法を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and is directed to a vertically installed internal pressure type tubular membrane device using a tubular membrane (such as a hollow fiber membrane or a tubular membrane) such as a microfiltration membrane or an ultrafiltration membrane. A method for removing membrane contaminants, wherein the membrane contaminants adhered to the inner surface of the tubular membrane can be effectively removed, and not only the tubular membrane present at the center of the membrane module but also the periphery of the membrane module It is an object of the present invention to provide a method for removing a membrane contaminant that can well clean a tubular membrane existing in a membrane.

【0008】[0008]

【課題を解決するための手段】本発明は、前記目的を達
成するため、垂直設置式内圧型管状膜装置の膜汚染物質
除去方法であって、濾過終了後、管状膜内の滞留水の一
部又は全部を該管状膜内から抜く水抜き工程と、水抜き
工程終了後の管状膜内に上から下に向けて高圧水を通す
高圧通水工程と、高圧通水工程終了後の管状膜内に上か
ら下に向けて高圧ガスを通す高圧通気工程とを含むこと
を特徴とする管状膜装置の膜汚染物質除去方法を提供す
る。
In order to achieve the above object, the present invention provides a method for removing membrane contaminants of a vertical installation type internal pressure type tubular membrane device, which comprises: A draining step of draining part or all of the tubular membrane from the inside of the tubular membrane, a high-pressure water passing step of passing high-pressure water downward from above in the tubular membrane after the completion of the draining step, and a tubular membrane after finishing the high-pressure water passing step And a high-pressure aeration step of passing a high-pressure gas from top to bottom in the inside thereof.

【0009】垂直設置式内圧型管状膜装置の管状膜の内
部(管内)に高圧水又は高圧ガスを通した場合、上記高
圧水と管内の気体との界面、又は、上記高圧ガスと管内
の水との界面が膜内面を通過するときに、管状膜の内面
に付着した膜汚染物質に強いせん断力が与えられ、この
せん断力によって管状膜内面の膜汚染物質が効果的に剥
離される。
When high-pressure water or high-pressure gas is passed through the inside of the tubular membrane (inside the pipe) of the vertical installation type internal pressure type tubular membrane apparatus, the interface between the high-pressure water and the gas in the pipe, or the high-pressure gas and the water in the pipe, When the interface with the membrane passes through the inner surface of the membrane, a strong shearing force is applied to the membrane contaminant attached to the inner surface of the tubular membrane, and this shearing force effectively exfoliates the membrane contaminant on the inner surface of the tubular membrane.

【0010】本発明では、濾過終了後、まず、管状膜内
の滞留水(管状膜内に残留している原水))の一部又は
全部を抜く水抜き工程を行う。その後、高圧通水工程に
おいて、水抜き工程終了後の管状膜内に上から下に向け
て高圧水を通すと、管状膜内の気相に高圧水が流入し、
高圧水と管内の空気との界面が管状膜内を上から下に通
過する。また、次の高圧通気工程において、高圧通水工
程終了後の管状膜内に上から下に向けて高圧ガスを通す
と、管状膜内の水相に高圧ガスが流入し、高圧ガスと管
内の水との界面が管状膜内を上から下に通過する。その
ため、高圧通水工程における高圧水と気体との界面の通
過時、及び、高圧通気工程における高圧ガスと水との界
面の通過時にそれぞれ膜汚染物質に与えられる強いせん
断力により、管状膜内面の膜汚染物質が効果的に剥離さ
れる。また、高圧通気工程において、管状膜内面から剥
離された膜汚染物質が高圧ガス流に同伴して管状膜外に
排出される。さらに、管状膜の内面に膜汚染物質が残存
していても、高圧通気工程から通常の濾過工程に移ると
きに、管内の気体と原水との界面が管状膜内を下から上
に通過するので、上記界面によって膜汚染物質に与えら
れるせん断力により、管状膜内面の膜汚染物質が剥離、
除去される。
In the present invention, after the filtration is completed, first, a draining step of draining part or all of the water retained in the tubular membrane (raw water remaining in the tubular membrane) is performed. Thereafter, in the high-pressure water passing step, when high-pressure water is passed from above to below in the tubular membrane after the draining step, high-pressure water flows into the gas phase in the tubular membrane,
The interface between the high pressure water and the air in the tube passes through the tubular membrane from top to bottom. Also, in the next high-pressure aeration step, when high-pressure gas is passed from the top to the bottom in the tubular membrane after the high-pressure water passing step, the high-pressure gas flows into the aqueous phase in the tubular membrane, and the high-pressure gas and the The interface with water passes through the tubular membrane from top to bottom. Therefore, at the time of passage through the interface between high-pressure water and gas in the high-pressure water passage process, and at the time of passage through the interface between high-pressure gas and water in the high-pressure ventilation step, the strong shearing force applied to the membrane contaminants causes the inner surface of the tubular membrane to be damaged. The film contaminants are effectively stripped. In the high-pressure ventilation step, the membrane contaminants separated from the inner surface of the tubular membrane are discharged out of the tubular membrane along with the high-pressure gas flow. Furthermore, even if membrane contaminants remain on the inner surface of the tubular membrane, the interface between the gas in the tube and the raw water passes through the inside of the tubular membrane from bottom to top when moving from the high-pressure aeration process to the normal filtration process. Due to the shear force applied to the membrane contaminant by the interface, the membrane contaminant on the inner surface of the tubular membrane is peeled off,
Removed.

【0011】また、高圧ガスが膜モジュール内に流入す
るときには、まず膜モジュール内の上部にガス相が形成
され、このガス相からガスが流動して管状膜内に流入す
るが、ガスは質量が小さいために上記流動時の慣性力は
水に比べると著しく小さくなる。その結果、膜モジュー
ル内の上部のガス相内では圧力分布がほぼ均一となり、
膜モジュールの中央部及び周辺部に存在する管状膜にほ
ぼ同じ圧力で高圧ガスが流入する。そのため、ガスの流
入初期に管状膜内で水が押し下げられる過程において、
膜モジュールの中央部及び周辺部に存在する管状膜の全
てにほぼ均等な押し下げ力が与えられることになる。し
たがって、膜モジュールの中央部に存在する管状膜のみ
ならず、膜モジュールの周辺部に存在する管状膜も良好
に洗浄され、膜モジュールの周辺部に存在する管状膜が
閉塞しやすいという問題が解消される。
When the high-pressure gas flows into the membrane module, a gas phase is first formed in the upper part of the membrane module, and the gas flows from the gas phase and flows into the tubular membrane. Due to the small size, the inertia force at the time of the flow becomes significantly smaller than that of water. As a result, the pressure distribution becomes almost uniform in the upper gas phase in the membrane module,
The high-pressure gas flows into the tubular membranes at the center and the periphery of the membrane module at substantially the same pressure. Therefore, in the process where water is pushed down in the tubular membrane in the early stage of gas inflow,
All of the tubular membranes existing in the central part and the peripheral part of the membrane module will be given a substantially equal pressing force. Therefore, not only the tubular membrane present in the center of the membrane module but also the tubular membrane present in the peripheral part of the membrane module is well cleaned, and the problem that the tubular membrane present in the peripheral part of the membrane module is easily clogged is solved. Is done.

【0012】さらに、高圧通気工程において高圧ガスが
管状膜内を通るときには、前述した高圧ガスと水との界
面が管状膜内を通過することによる作用効果、及び、膜
汚染物質が高圧ガス流に同伴して管状膜外に排出される
という作用効果に加え、下記の作用効果が得られ、その
ため本発明によれば、管状膜の内面に付着した膜汚染物
質を極めて効果的かつ経済的に除去することができる。 (A)膜内面に付着している水膜状の付着物質を、下方に
向かうガス流に同伴させながら、飛沫化させて剥離す
る。 (B)前記飛沫が高速で移動する際に、飛沫が下流側に存
在する膜面付着物質に衝突し、この膜面付着物質が剥離
される。 (C)管状膜を高圧ガス流で微振動させ、この振動によっ
て膜面付着物質を剥離させる。 (D)高圧ガス流によって膜面付着物質の剥離及び剥離し
た物質の管外への排出を行うことができるので、洗浄水
の水量を低減することができる。
Furthermore, when the high-pressure gas passes through the tubular membrane in the high-pressure aeration step, the above-mentioned effect of the interface between the high-pressure gas and water passing through the tubular membrane and the effect of membrane contaminants on the high-pressure gas flow are obtained. In addition to the function and effect of being discharged out of the tubular membrane, the following function and effect are obtained. Therefore, according to the present invention, the membrane contaminants attached to the inner surface of the tubular membrane are extremely and economically removed. can do. (A) A water film-like substance adhering to the inner surface of the film is formed into droplets and separated while being accompanied by a downward gas flow. (B) When the droplet moves at a high speed, the droplet collides with the film surface adhering substance existing on the downstream side, and the film surface adhering material is peeled off. (C) The tubular membrane is finely vibrated by a high-pressure gas flow, and the vibration causes the substance adhering to the membrane to be peeled off. (D) Since the substance adhering to the membrane surface can be separated by the high-pressure gas flow and the separated substance can be discharged out of the pipe, the amount of washing water can be reduced.

【0013】また、本発明においては、管状膜内に上か
ら下に向けて高圧ガス及び高圧水を通すことにより、下
記の作用効果が得られ、そのため本発明によれば、管状
膜の内面に付着した膜汚染物質を極めて効果的に除去す
ることができる。 (a)高圧ガス通気時の管内滞留水の排出及び高圧水の通
水に重力を利用できるので、高速に通気及び通水を行う
ことができ、その結果高圧ガス及び高圧水による洗浄効
果が向上する。(b)前述した、膜モジュール内の上部の
ガス相内で圧力分布がほぼ均一となり、その結果膜モジ
ュールの中央部及び周辺部に存在する管状膜にほぼ同じ
圧力で高圧ガスが流入するという利点は、管状膜内に上
から下に向けて高圧ガスを通すことによってのみ得られ
る。
Further, in the present invention, the following effects can be obtained by passing high-pressure gas and high-pressure water through the tubular membrane from top to bottom. Therefore, according to the present invention, the inner surface of the tubular membrane is The attached film contaminants can be removed very effectively. (a) Gravity can be used for draining high-pressure water and discharging accumulated water in pipes when high-pressure gas is ventilated, so that high-speed ventilation and water can be performed, and as a result, the cleaning effect by high-pressure gas and high-pressure water is improved. I do. (b) As described above, the pressure distribution becomes almost uniform in the upper gas phase in the membrane module, and as a result, the high pressure gas flows into the tubular membranes existing at the center and the periphery of the membrane module at substantially the same pressure. Can only be obtained by passing a high pressure gas through the tubular membrane from top to bottom.

【0014】以下、本発明につきさらに詳しく説明す
る。本発明を適用できる垂直設置式内圧型管状膜装置の
種類に限定はないが、例えば、管状膜として限外濾過
膜、精密濾過膜等の中空糸膜やチューブラ膜を用いたも
のが挙げられる。また、垂直設置式内圧型管状膜装置
は、クロスフロー型の装置でも全量濾過型の装置でもよ
く、またエレメントあるいはモジュールといった膜単位
を複数使用したものでもよく、単数使用したものでもよ
い。
Hereinafter, the present invention will be described in more detail. The type of the vertical installation type internal pressure type tubular membrane device to which the present invention can be applied is not limited, and examples thereof include a tubular membrane using a hollow fiber membrane such as an ultrafiltration membrane or a microfiltration membrane, or a tubular membrane. Further, the vertical installation type internal pressure type tubular membrane device may be a cross-flow type device or an all-filtration type device, or may use a plurality of membrane units such as elements or modules, or may use a single unit.

【0015】本発明では、水抜き工程において任意の手
段で管状膜内から滞留水(管状膜内に残留している原
水)を抜くことができ、例えば管状膜内の滞留水を自重
により落下させて管状膜内から滞留水の一部又は全部を
抜く方法や、管状膜内に高圧ガスを通気して滞留水をガ
スの圧力により押し出す方法等を採用することができる
が、短時間で水抜きを行うことができるという点で高圧
ガスで押し出す方法がより好ましい。
According to the present invention, in the water draining step, accumulated water (raw water remaining in the tubular membrane) can be drained from the tubular membrane by any means. For example, the accumulated water in the tubular membrane is dropped by its own weight. A method in which part or all of the retained water is drained from the inside of the tubular membrane, or a method in which high-pressure gas is passed through the tubular membrane to push out the retained water by the pressure of the gas. The method of extruding with a high-pressure gas is more preferable in that it can be performed.

【0016】また、本発明では、水抜き工程終了後に、
高圧通水工程及び高圧通気工程を交互にそれぞれ複数回
行うことができ、これにより管状膜の内面に付着した膜
汚染物質をより効果的に除去することができる。
Further, according to the present invention, after the draining step is completed,
The high-pressure water-flowing step and the high-pressure aeration step can be performed alternately a plurality of times, respectively, whereby the membrane contaminants attached to the inner surface of the tubular membrane can be more effectively removed.

【0017】[0017]

【発明の実施の形態】図1は、本発明を適用する垂直設
置式内圧型管状膜装置(中空糸膜装置)の一例を示すフ
ロー図である。図1の装置において、2は原水槽、4は
内部に精密濾過膜、限外濾過膜等の中空糸膜6の多数本
が垂直に設置された中空糸膜モジュール、8は原水槽2
と中空糸膜モジュール4の下端部の原水室5との間に設
けられた原水導入管を示す。原水導入管8には、上流側
から下流側にかけて順次自動弁10及び原水ポンプ12
が介装されている。また、原水導入管8の原水ポンプ1
2設置個所の下流側には、自動弁14が介装された洗浄
水排出管16が連結されている。
FIG. 1 is a flow chart showing an example of a vertically installed internal pressure type tubular membrane device (hollow fiber membrane device) to which the present invention is applied. In the apparatus shown in FIG. 1, 2 is a raw water tank, 4 is a hollow fiber membrane module in which a number of hollow fiber membranes 6 such as a microfiltration membrane and an ultrafiltration membrane are vertically installed, and 8 is a raw water tank 2
2 shows a raw water introducing pipe provided between the raw water chamber 5 at the lower end of the hollow fiber membrane module 4 and the raw water chamber 5. The raw water introduction pipe 8 has an automatic valve 10 and a raw water pump 12 sequentially from the upstream side to the downstream side.
Is interposed. The raw water pump 1 of the raw water introduction pipe 8
A washing water discharge pipe 16 provided with an automatic valve 14 is connected downstream of the two installation locations.

【0018】図中18は中空糸膜モジュール4の濾過水
室7の上部に連結された透過水流出管、20は透過水流
出管18に介装された自動弁、22は透過水流出管18
から流出する透過水を貯留する処理水貯留槽、23は処
理水貯留槽22に連結された処理水排出管、24は中空
糸膜モジュール4の上端部の濃縮水室9に連結された濃
縮水流出管、26は濃縮水流出管24に介装された自動
弁を示す。濃縮水流出管24の流出端は原水槽2に接続
されている。
In the figure, reference numeral 18 denotes a permeated water outlet pipe connected to the upper part of the filtered water chamber 7 of the hollow fiber membrane module 4, reference numeral 20 denotes an automatic valve interposed in the permeated water outlet pipe 18, and reference numeral 22 denotes a permeated water outlet pipe 18.
A treated water discharge pipe connected to a treated water storage tank 22; and a concentrated water connected to a concentrated water chamber 9 at the upper end of the hollow fiber membrane module 4. The outflow pipe 26 indicates an automatic valve interposed in the concentrated water outflow pipe 24. The outlet end of the concentrated water outlet pipe 24 is connected to the raw water tank 2.

【0019】また、図中28は密閉容器状の水・ガス加
圧槽、29は水・ガス加圧槽28の上部に連結されたエ
アベント管、31はエアベント管29に介装された自動
弁、30は処理水貯留槽22と水・ガス加圧槽28との
間に設けられた洗浄水導入管を示す。エアベント管29
の端部は大気に開放されている。洗浄水導入管30に
は、上流側から下流側にかけて順次自動弁32及び洗浄
水ポンプ34が介装されている。
In the figure, reference numeral 28 denotes a water / gas pressurized tank in the form of a closed container, 29 denotes an air vent pipe connected to the upper part of the water / gas pressurized tank 28, and 31 denotes an automatic valve interposed in the air vent pipe 29. Reference numeral 30 denotes a washing water introduction pipe provided between the treated water storage tank 22 and the water / gas pressurizing tank 28. Air vent pipe 29
Is open to the atmosphere. The washing water introduction pipe 30 is provided with an automatic valve 32 and a washing water pump 34 sequentially from the upstream side to the downstream side.

【0020】図中36は高圧ガス源、38は高圧ガス源
36と水・ガス加圧槽28との間に設けられた高圧ガス
導入管、40は高圧ガス導入管38に介装された自動
弁、42は流入端が水・ガス加圧槽28の下端部に連結
され、流出端が濃縮水流出管24の自動弁26設置個所
の上流に連結された水・ガス導入管、44は水・ガス導
入管42に介装された自動弁、46は中空糸膜モジュー
ル4の上端部に連結されたエアベント管、48はエアベ
ント管46に介装された自動弁を示す。エアベント管4
6の端部は大気に開放されている。
In the figure, 36 is a high-pressure gas source, 38 is a high-pressure gas introduction pipe provided between the high-pressure gas source 36 and the water / gas pressurizing tank 28, and 40 is an automatic high-pressure gas introduction pipe 38 A valve 42 is a water / gas inlet pipe having an inflow end connected to the lower end of the water / gas pressurized tank 28 and an outflow end upstream of the concentrated water outflow pipe 24 at a location where the automatic valve 26 is installed. An automatic valve interposed in the gas introduction pipe 42, an air vent pipe 46 connected to the upper end of the hollow fiber membrane module 4, and an automatic valve 48 interposed in the air vent pipe 46. Air vent pipe 4
The end of 6 is open to the atmosphere.

【0021】本例の装置は、次の動作で濾過処理を行
う。すなわち、自動弁10,20,26を開、自動弁1
4,32,40,44,48を閉とし、原水ポンプ12
の作動により中空糸膜モジュール4の原水室5に原水槽
2内の原水を通水し、原水室5に連通する中空糸膜6の
一端開口部から原水を中空糸膜6内に流入させ、中空糸
膜6の内側から外側に原水の一部を通すことにより中空
糸膜6で原水を濾過して、その透過水(処理水)を透過
水流出管18を通して処理水貯留槽22に送るととも
に、原水の他部を濃縮水として濃縮水室9及び濃縮水流
出管24を通して原水槽2に循環する。
The apparatus of this embodiment performs a filtering process by the following operation. That is, the automatic valves 10, 20, and 26 are opened,
4, 32, 40, 44 and 48 are closed and the raw water pump 12
The raw water in the raw water tank 2 is passed through the raw water chamber 5 of the hollow fiber membrane module 4 by the operation of the hollow fiber membrane module 4, and the raw water flows into the hollow fiber membrane 6 from one end opening of the hollow fiber membrane 6 communicating with the raw water chamber 5. The raw water is filtered by the hollow fiber membrane 6 by passing a part of the raw water from the inside to the outside of the hollow fiber membrane 6, and the permeated water (treated water) is sent to the treated water storage tank 22 through the permeated water outflow pipe 18. The other part of the raw water is circulated to the raw water tank 2 through the concentrated water chamber 9 and the concentrated water outlet pipe 24 as concentrated water.

【0022】また、本例の装置では、所定時間毎あるい
は必要に応じて、次の動作で本発明の膜汚染物質除去方
法を実施することができる。 (1)前記濾過動作の状態において、自動弁32,31
を開き、洗浄水ポンプ34の作動により、処理水貯留槽
22内の透過水の所定量(例えば20リットル)を、例
えば容量60リットルの水・ガス加圧槽28内に導入す
る。 (2)自動弁32,31を閉じるとともに、自動弁40
を開き、高圧ガス源36から所定圧力(例えば3kgf
/cm2G)の高圧ガス(例えば空気)の所定量(例え
ば40リットル)を水・ガス加圧槽28内に導入する。 (3)全自動弁10,14,20,26,31,32,
40,44,48を閉じた状態にして、前記濾過動作を
停止する。
Further, in the apparatus of this embodiment, the film contaminant removing method of the present invention can be carried out by the following operation at predetermined time intervals or as needed. (1) In the state of the filtration operation, the automatic valves 32, 31
Then, a predetermined amount (for example, 20 liters) of permeated water in the treated water storage tank 22 is introduced into the water / gas pressurized tank 28 having a capacity of, for example, 60 liters by the operation of the washing water pump 34. (2) The automatic valves 32 and 31 are closed and the automatic valve 40 is closed.
And a predetermined pressure (for example, 3 kgf)
/ Cm 2 G) of high pressure gas (for example, air) is introduced into the water / gas pressurizing tank 28 (for example, 40 liters). (3) Fully automatic valves 10, 14, 20, 26, 31, 32,
With 40, 44 and 48 closed, the filtration operation is stopped.

【0023】(4)自動弁14,48を開き、膜モジュ
ール4の中空糸膜6内の滞留水(残留原水)を自重によ
り落下させ、洗浄水排出管16を通して排出することに
より、中空糸膜6内から原水の一部又は全部を抜く(水
抜き工程)。 (5)自動弁48を閉じるとともに、自動弁44を開
く。これにより、まず、高圧ガスにより加圧された水・
ガス加圧槽28内の透過水(高圧水)25が、濃縮水室
9を介して中空糸膜6内を上から下に向けて流れる(1
回目の高圧通水工程)。次に、加圧槽28内の高圧水が
無くなると、上記高圧通水工程に連続して、水・ガス加
圧槽28内の高圧ガス27が濃縮水室9を介して中空糸
膜6内を上から下に向けて流れる(1回目の高圧通気工
程)。通水後の排水(洗浄排水)及び通気後のガス(洗
浄排ガス)は、原水室5を介して洗浄水排出管16から
排出される。
(4) Opening the automatic valves 14 and 48 to drop the stagnant water (residual raw water) in the hollow fiber membrane 6 of the membrane module 4 by its own weight and discharging the water through the washing water discharge pipe 16 6. Drain some or all of the raw water from inside 6 (draining step). (5) The automatic valve 48 is closed and the automatic valve 44 is opened. As a result, first, water pressurized by high-pressure gas
The permeated water (high-pressure water) 25 in the gas pressurized tank 28 flows downward through the hollow fiber membrane 6 through the concentrated water chamber 9 (1).
The second high-pressure water passage process). Next, when the high-pressure water in the pressurized tank 28 is exhausted, the high-pressure gas 27 in the water / gas pressurized tank 28 passes through the concentrated water chamber 9 into the hollow fiber membrane 6 continuously to the high-pressure water passing step. Flows from top to bottom (first high-pressure ventilation step). Drainage after washing (washing wastewater) and gas after aeration (washing waste gas) are discharged from the washing water discharge pipe 16 through the raw water chamber 5.

【0024】(6)自動弁44を閉じるとともに、自動
弁32,31を開き、洗浄水ポンプ34の作動により、
再び処理水貯留槽22内の透過水の所定量を水・ガス加
圧槽28内に導入する。 (7)自動弁32,31を閉じるとともに、自動弁38
を開き、高圧ガス源36から所定圧力の高圧ガスの所定
量を水・ガス加圧槽28内に導入する。 (8)自動弁44を開く。これにより、まず、高圧ガス
により加圧された水・ガス加圧槽28内の透過水(高圧
水)25が、中空糸膜6内を上から下に向けて流れる
(2回目の高圧通水工程)。次に、上記高圧通水工程に
連続して、水・ガス加圧槽28内の高圧ガス27が中空
糸膜6内を上から下に向けて流れる(2回目の高圧通気
工程)。通水後の排水(洗浄排水)及び通気後のガス
(洗浄排ガス)は、原水室5を介して洗浄水排出管16
から排出される。 (9)前記濾過動作に戻る。
(6) The automatic valve 44 is closed and the automatic valves 32 and 31 are opened.
Again, a predetermined amount of permeated water in the treated water storage tank 22 is introduced into the water / gas pressurized tank 28. (7) The automatic valves 32 and 31 are closed and the automatic valve 38 is closed.
Is opened, and a predetermined amount of a high-pressure gas having a predetermined pressure is introduced from the high-pressure gas source 36 into the water / gas pressurizing tank 28. (8) Open the automatic valve 44. Thereby, first, the permeated water (high-pressure water) 25 in the water / gas pressurized tank 28 pressurized by the high-pressure gas flows from the top to the bottom in the hollow fiber membrane 6 (second high-pressure water passage). Process). Next, the high-pressure gas 27 in the water / gas pressurizing tank 28 flows from the top to the bottom in the hollow fiber membrane 6 following the high-pressure water supply step (second high-pressure aeration step). Drained water after washing (washing wastewater) and gas after aeration (washing waste gas) are passed through the raw water chamber 5 to the washing water discharge pipe 16.
Is discharged from (9) Return to the filtering operation.

【0025】なお、本発明においては前記(5)の動作
まで終了した時点で、すなわち、第1回目の高圧通水工
程と高圧通気工程とを終了した時点で洗浄を終了し、濾
過動作に戻ってもよいことは勿論である。
In the present invention, at the time when the operation (5) is completed, that is, at the time when the first high-pressure water supply step and the first high-pressure ventilation step are completed, the washing is completed and the operation returns to the filtration operation. Of course, it may be possible.

【0026】さらに、本例の装置では、次の動作で、水
抜きを高圧ガスの通気によって行う膜汚染物質除去方法
を実施することができる。 前記濾過動作の状態において自動弁40を開き、高圧
ガス源36から所定圧力(例えば3kgf/cm2G)
の高圧ガス(例えば空気)の所定量(例えば60リット
ル)を水・ガス加圧槽28内に導入する。なお、この
時、透過水は導入しない。 全自動弁10,14,20,26,31,32,4
0,44,48を閉じた状態にして、前記濾過動作を停
止する。 自動弁44を開く。これにより、水・ガス加圧槽28
内の高圧ガスが濃縮水室9を介して中空糸膜6内に導入
され、中空糸膜6内の滞留水の一部又は全部が高圧ガス
の圧力によって強制的に押し出されて、洗浄水排出管1
6から排出される。
Further, in the apparatus of the present embodiment, it is possible to implement a membrane contaminant removing method in which water is drained by passing high-pressure gas through the following operation. In the state of the filtration operation, the automatic valve 40 is opened, and a predetermined pressure (for example, 3 kgf / cm 2 G) is applied from the high-pressure gas source 36.
A predetermined amount (for example, 60 liters) of the high-pressure gas (for example, air) is introduced into the water / gas pressurizing tank 28. At this time, no permeated water is introduced. Fully automatic valves 10, 14, 20, 26, 31, 32, 4
With 0, 44 and 48 closed, the filtration operation is stopped. The automatic valve 44 is opened. Thereby, the water / gas pressurizing tank 28
The high-pressure gas inside is introduced into the hollow fiber membrane 6 through the concentrated water chamber 9, and part or all of the water retained in the hollow fiber membrane 6 is forcibly pushed out by the pressure of the high-pressure gas, and the washing water is discharged. Tube 1
Exhausted from 6.

【0027】自動弁44を閉じるとともに、自動弁3
2,31を開き、洗浄水ポンプ34の作動により、処理
水貯留槽22内の透過水の所定量(例えば20リット
ル)を水・ガス加圧槽28内に導入する。 自動弁32,31を閉じるとともに、自動弁40を開
き、高圧ガス源36から所定圧力(例えば3kgf/c
2G)の高圧ガス(例えば空気)の所定量(例えば4
0リットル)を水・ガス加圧槽28内に導入する。 自動弁44を開く。これにより、まず、高圧ガスによ
り加圧された水・ガス加圧槽28内の透過水(高圧水)
25が、中空糸膜6内を上から下に向けて流れる(高圧
通水工程)。次に、上記高圧通水工程に連続して、水・
ガス加圧槽28内の高圧ガス27が中空糸膜6内を上か
ら下に向けて流れる(2回目の高圧通気工程)。通水後
の排水(洗浄排水)及び通気後のガス(洗浄排ガス)
は、洗浄水排出管16から排出される。 前記濾過動作に戻る。
When the automatic valve 44 is closed, the automatic valve 3
2, 31 are opened, and a predetermined amount (for example, 20 liters) of permeated water in the treated water storage tank 22 is introduced into the water / gas pressurized tank 28 by the operation of the washing water pump 34. The automatic valves 32 and 31 are closed, the automatic valve 40 is opened, and a predetermined pressure (for example, 3 kgf / c
m 2 G) of a high pressure gas (eg, air)
(0 liter) is introduced into the water / gas pressurized tank 28. The automatic valve 44 is opened. Thereby, first, the permeated water (high-pressure water) in the water / gas pressurized tank 28 pressurized by the high-pressure gas.
25 flows downward through the inside of the hollow fiber membrane 6 (high-pressure water passage step). Next, water and water
The high-pressure gas 27 in the gas pressurizing tank 28 flows from the top to the bottom in the hollow fiber membrane 6 (second high-pressure ventilation step). Drainage after washing (washing wastewater) and gas after ventilation (washing exhaust gas)
Is discharged from the washing water discharge pipe 16. The operation returns to the filtering operation.

【0028】なお、前述した膜汚染物質の除去は、複数
の膜モジュールを接続して使用している場合には、全膜
モジュールに対して同時に行ってもよく、膜モジュール
を複数のブロックに分け、各ブロック毎に行ってもよ
い。また、前述した膜汚染物質の除去動作は、液面電
極、圧力スイッチ、自動弁、タイマー等を用いて自動的
に実行されるようにしてもよい。
When a plurality of membrane modules are connected and used, the above-described removal of the membrane contaminants may be performed simultaneously on all the membrane modules, or the membrane modules may be divided into a plurality of blocks. May be performed for each block. Further, the operation of removing the film contaminants described above may be automatically executed using a liquid level electrode, a pressure switch, an automatic valve, a timer, or the like.

【0029】また、本例の装置では、図2に示す通常の
逆洗機構を付加することにより、前述した本発明の洗浄
に加えて、所定時間毎あるいは必要に応じて通常の逆洗
を行うようにしてもよい。図2において、50は流入端
が処理水貯留槽22に連結され、流出端が透過水流出管
18の自動弁20設置個所の上流に連結された逆洗水導
入管を示す。逆洗水導入管50には、上流側から下流側
にかけて順次逆洗ポンプ52及び自動弁54が介装され
ている。なお、その他の点については図1の装置と同様
であるため、図2において図1と同じ部分には、同一参
照符号を付してその説明を省略する。
Further, in the apparatus of this embodiment, by adding a normal backwashing mechanism shown in FIG. 2, in addition to the above-described cleaning of the present invention, normal backwashing is performed at predetermined time intervals or as necessary. You may do so. In FIG. 2, reference numeral 50 denotes a backwash water inlet pipe whose inflow end is connected to the treated water storage tank 22 and whose outflow end is connected to the permeated water outflow pipe 18 at a location upstream of the automatic valve 20. The backwash water introduction pipe 50 is provided with a backwash pump 52 and an automatic valve 54 sequentially from the upstream side to the downstream side. Since the other points are the same as those of the apparatus of FIG. 1, the same parts in FIG. 2 as those in FIG. 1 are denoted by the same reference numerals and the description thereof will be omitted.

【0030】上記通常の逆洗は、次の動作で行われる。
すなわち、自動弁10,20,26,31,32,3
4,40,44,48を閉、自動弁14,54を開とす
るとともに、原水ポンプ12の作動を停止して濾過動作
を停止した後、逆洗ポンプ52の作動により処理水貯留
槽22内の処理水を逆洗水導入管50を通して中空糸膜
モジュール4の濾過水室7に導入し、濾過動作における
通水方向とは逆方向で中空糸膜6の外側から内側に処理
水を通水する。通水後の排水(洗浄排水)は、原水室5
を介して洗浄水排出管16から排出される。
The above normal backwashing is performed by the following operation.
That is, the automatic valves 10, 20, 26, 31, 32, 3
4, 40, 44, and 48 are closed, the automatic valves 14 and 54 are opened, and the operation of the raw water pump 12 is stopped to stop the filtration operation. Is introduced into the filtration water chamber 7 of the hollow fiber membrane module 4 through the backwash water introduction pipe 50, and the treated water is passed from the outside to the inside of the hollow fiber membrane 6 in the direction opposite to the water flow direction in the filtration operation. I do. Drainage after washing (washing drainage) is
Is discharged from the washing water discharge pipe 16 through

【0031】[0031]

【実施例】図2に示した垂直設置式内圧型管状膜装置を
用いて実験を行った。膜モジュール4としては、内部に
限外濾過膜(UF膜)の中空糸膜(旭化成社製LNV−
5010)の多数本を垂直に設置してなる中空糸膜モジ
ュールを使用した。実験では、同一の原水の濾過処理に
使用した3本の膜モジュールのそれぞれについて、水抜
きを高圧ガスの通気で行う前記〜の工程からなる本
発明の洗浄と、やはり前述した通常の逆洗とをそれぞれ
行い、UF膜の膜間差圧の減少量の測定、及び、洗浄水
排出管16から排出された洗浄排水の分析を行った。こ
の場合、本発明の洗浄は、高圧通水工程で使用する水の
量を1回目の実験では40リットル/モジュール、2回
目の実験ではその半分の20リットル/モジュールとし
て、2回行った。結果を表1に示す。
EXAMPLE An experiment was conducted using a vertical installation type internal pressure type tubular membrane device shown in FIG. The membrane module 4 includes an ultrafiltration membrane (UF membrane) hollow fiber membrane (LNV- manufactured by Asahi Kasei Corporation).
5010), a hollow fiber membrane module in which a number of tubes are vertically installed. In the experiment, for each of the three membrane modules used for the filtration treatment of the same raw water, the washing of the present invention consisting of the steps (1) to (4) in which water was drained by passing high-pressure gas, and the usual backwashing also described above. The measurement of the amount of decrease in the transmembrane pressure difference of the UF membrane and the analysis of the washing wastewater discharged from the washing water discharge pipe 16 were performed. In this case, the washing of the present invention was performed twice, with the amount of water used in the high-pressure water-passing step being 40 liters / module in the first experiment and 20 liters / module in the second experiment. Table 1 shows the results.

【0032】[0032]

【表1】 [Table 1]

【0033】表1より、本発明の洗浄では洗浄排水の濁
度及びTOC濃度が通常の逆洗に比べて格段に多く(濃
度・水量の積で比較すると30倍弱)、本発明の洗浄に
よれば中空糸膜の内面に付着した膜汚染物質を通常の逆
洗よりも効果的に除去できることが分かる。したがっ
て、本発明の洗浄は、UF膜の膜間差圧上昇の抑制に大
きな効果があると判断される。なお、UF膜における膜
間差圧上昇の主原因がTOCであることは、文献や試験
等で確認されている。
As can be seen from Table 1, the turbidity and TOC concentration of the washing wastewater in the cleaning of the present invention are much higher than those in the normal backwashing (less than 30 times as compared with the product of the concentration and the amount of water). According to this, it can be seen that the membrane contaminants attached to the inner surface of the hollow fiber membrane can be removed more effectively than ordinary backwashing. Therefore, it is determined that the cleaning of the present invention has a great effect on suppressing the increase in the transmembrane pressure difference of the UF film. Note that TOC is the main cause of the increase in the transmembrane pressure difference in the UF film, which has been confirmed in literatures, tests, and the like.

【0034】また、本実験により次のことも分かった。 1回目及び2回目の本発明による洗浄実験時に洗浄排
水の性状を観察したところ、1回目及び2回目の実験の
高圧通水工程及び高圧通気工程においてそれぞれ気液の
界面がUF膜内を通過する時に、洗浄排水が特異的・限
定的に濁ることが分かった。したがって、高圧水と管内
の気体との界面、又は、上記高圧ガスと管内の水との界
面が膜内面を通過するときに、管状膜の内面に付着した
膜汚染物質に強いせん断力が与えられ、このせん断力に
よって管状膜内面の膜汚染物質が効果的に剥離されるこ
とが確認された。
The following was also found from this experiment. When the properties of the washing drainage were observed during the first and second washing experiments according to the present invention, the gas-liquid interface passes through the UF membrane in the high-pressure water passage step and the high-pressure ventilation step in the first and second experiments, respectively. Occasionally, it was found that the wash effluent was specifically and limitedly turbid. Therefore, when the interface between the high-pressure water and the gas in the pipe or the interface between the high-pressure gas and the water in the pipe passes through the inner surface of the membrane, a strong shearing force is applied to the membrane contaminants attached to the inner surface of the tubular membrane. It was confirmed that the membrane contaminants on the inner surface of the tubular membrane were effectively peeled off by the shearing force.

【0035】2回目の本発明による洗浄実験では洗浄
水量を1回目の実験の1/2に減らしたが、洗浄排水の
濁度及びTOC濃度は1回目のほぼ倍に増加し、したが
って本発明の洗浄では高圧通水工程における高圧水の通
水量を相当減らしても膜汚染物質を効果的に除去するこ
とができることが分かった。この場合、本実験から判断
すると、高圧通水工程における高圧水の通水量は、2回
目の本発明による洗浄実験での通水量より更に減らすこ
とが可能であり、したがって水回収率を通常の逆洗に比
べて著しく改善できると判断される。
In the second washing experiment according to the present invention, the amount of washing water was reduced to half of that in the first experiment, but the turbidity and TOC concentration of the washing wastewater almost doubled in the first experiment. It was found that the membrane contaminants can be effectively removed even if the amount of high-pressure water in the high-pressure water supply process is considerably reduced in the cleaning. In this case, judging from this experiment, the flow rate of high-pressure water in the high-pressure flow process can be further reduced than the flow rate of water in the second washing experiment according to the present invention. It is judged that it can be remarkably improved compared to washing.

【0036】[0036]

【発明の効果】本発明によれば、垂直設置式内圧型管状
膜装置の管状膜の内面に付着した膜汚染物質を効果的に
除去することができ、しかも膜モジュールの中央部に存
在する管状膜のみならず、膜モジュールの周辺部に存在
する管状膜も良好に洗浄することが可能である。
According to the present invention, it is possible to effectively remove the membrane contaminants adhering to the inner surface of the tubular membrane of the vertical installation type internal pressure type tubular membrane apparatus, and to remove the tubular contaminant existing at the center of the membrane module. Not only the membrane but also the tubular membrane existing around the membrane module can be cleaned well.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用する垂直設置式内圧型管状膜装置
の一例を示すフロー図である。
FIG. 1 is a flowchart showing an example of a vertical installation type internal pressure type tubular membrane device to which the present invention is applied.

【図2】本発明を適用する垂直設置式内圧型管状膜装置
の他の例を示すフロー図である。
FIG. 2 is a flowchart showing another example of the vertical installation type internal pressure type tubular membrane device to which the present invention is applied.

【符号の説明】[Explanation of symbols]

2 原水槽 4 中空糸膜モジュール 6 中空糸膜 16 洗浄水排出管 18 透過水流出管 22 処理水貯留槽 24 濃縮水流出管 25 高圧水 27 高圧ガス 28 水・ガス加圧槽 30 洗浄水導入管 36 高圧ガス源 42 水・ガス導入管 46 エアベント管 2 Raw water tank 4 Hollow fiber membrane module 6 Hollow fiber membrane 16 Cleaning water discharge pipe 18 Permeated water outflow pipe 22 Treated water storage tank 24 Concentrated water outflow pipe 25 High pressure water 27 High pressure gas 28 Water / gas pressurized tank 30 Cleaning water introduction pipe 36 High-pressure gas source 42 Water / gas introduction pipe 46 Air vent pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 由明 宮城県仙台市青葉区一番町3丁目7番1号 (72)発明者 佐藤 泰清 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 Fターム(参考) 4D006 GA06 GA07 HA02 HA16 HA18 HA26 KA12 KA16 KA72 KC03 KC14 KC20 PC31 PC32  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yoshiaki Nishimura 3-7-1, Ichibancho, Aoba-ku, Sendai, Miyagi Prefecture (72) Inventor Yasuyoshi Sato 1-2-8, Shinsuna, Koto-ku, Tokyo Olga F Co., Ltd. F-term (reference) 4D006 GA06 GA07 HA02 HA16 HA18 HA26 KA12 KA16 KA72 KC03 KC14 KC20 PC31 PC32

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 垂直設置式内圧型管状膜装置の膜汚染物
質除去方法であって、濾過終了後、管状膜内の滞留水の
一部又は全部を該管状膜内から抜く水抜き工程と、水抜
き工程終了後の管状膜内に上から下に向けて高圧水を通
す高圧通水工程と、高圧通水工程終了後の管状膜内に上
から下に向けて高圧ガスを通す高圧通気工程とを含むこ
とを特徴とする管状膜装置の膜汚染物質除去方法。
1. A method for removing a membrane contaminant of a vertical installation type internal pressure type tubular membrane device, wherein after a filtration is completed, a part or all of water retained in the tubular membrane is drained from the inside of the tubular membrane. A high-pressure water passage step in which high-pressure water is passed from top to bottom in the tubular membrane after the drainage step, and a high-pressure ventilation step in which high-pressure gas is passed in the tubular membrane after the high-pressure water step from top to bottom. A method for removing membrane contaminants in a tubular membrane device, comprising:
【請求項2】 水抜き工程において、管状膜内に上から
下に向けて高圧ガスを通して管状膜内から滞留水の一部
又は全部を抜く請求項1に記載の管状膜装置の膜汚染物
質除去方法。
2. The removal of membrane contaminants of a tubular membrane device according to claim 1, wherein in the draining step, part or all of the retained water is drained from inside the tubular membrane by passing a high-pressure gas from top to bottom into the tubular membrane. Method.
【請求項3】 水抜き工程終了後に、高圧通水工程及び
高圧通気工程を交互にそれぞれ複数回行う請求項1又は
2に記載の管状膜装置の膜汚染物質除去方法。
3. The method according to claim 1, wherein the high-pressure water-flowing step and the high-pressure aeration step are alternately performed a plurality of times after the draining step.
JP10263254A 1998-09-17 1998-09-17 Removal of membrane contaminated substance for tubular membrane device Pending JP2000084377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10263254A JP2000084377A (en) 1998-09-17 1998-09-17 Removal of membrane contaminated substance for tubular membrane device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10263254A JP2000084377A (en) 1998-09-17 1998-09-17 Removal of membrane contaminated substance for tubular membrane device

Publications (1)

Publication Number Publication Date
JP2000084377A true JP2000084377A (en) 2000-03-28

Family

ID=17386925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10263254A Pending JP2000084377A (en) 1998-09-17 1998-09-17 Removal of membrane contaminated substance for tubular membrane device

Country Status (1)

Country Link
JP (1) JP2000084377A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053160A (en) * 2001-08-14 2003-02-25 Mitsubishi Rayon Co Ltd Cleaning method for separating membrane and membrane filtrater
JP2003094058A (en) * 2001-09-27 2003-04-02 Daicel Chem Ind Ltd Method for treating water
KR100461227B1 (en) * 2001-01-31 2004-12-13 가부시끼가이샤 도시바 Filter, reverse-washing method of filter, filtering unit and power plant
JP2009220018A (en) * 2008-03-17 2009-10-01 Metawater Co Ltd Method and device for cleaning membrane
JP2013121587A (en) * 2011-11-10 2013-06-20 Sumitomo Heavy Ind Ltd Water treatment method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100461227B1 (en) * 2001-01-31 2004-12-13 가부시끼가이샤 도시바 Filter, reverse-washing method of filter, filtering unit and power plant
US7309424B2 (en) 2001-01-31 2007-12-18 Kabushiki Kaisha Toshiba Filtering apparatus, back wash method therefor, filtering device and power plant
US7754074B2 (en) 2001-01-31 2010-07-13 Kabushiki Kaisha Toshiba Filtering apparatus, back wash method therefor, filtering device and power plant
JP2003053160A (en) * 2001-08-14 2003-02-25 Mitsubishi Rayon Co Ltd Cleaning method for separating membrane and membrane filtrater
JP2003094058A (en) * 2001-09-27 2003-04-02 Daicel Chem Ind Ltd Method for treating water
JP2009220018A (en) * 2008-03-17 2009-10-01 Metawater Co Ltd Method and device for cleaning membrane
JP2013121587A (en) * 2011-11-10 2013-06-20 Sumitomo Heavy Ind Ltd Water treatment method

Similar Documents

Publication Publication Date Title
EP1704911B1 (en) Method for cleaning a separation membrane in a membrane bioreactor system
US5690830A (en) Waste water treatment apparatus and washing method thereof
US5632903A (en) High volume self-cleaning filter
JPH11156166A (en) Cleaning method for hollow fiber membrane module
JPWO2011158559A1 (en) Membrane module cleaning method
JPH06292820A (en) Membrane separation device
JP2007296500A (en) Membrane separation apparatus and membrane filtration method
JPH09122460A (en) Cleaning method for membrane module
JP3984145B2 (en) Cleaning method for solid-liquid separator
JP3494744B2 (en) Chemical solution cleaning method for membrane in immersion type membrane filtration device and chemical solution cleaning device
JP2000084377A (en) Removal of membrane contaminated substance for tubular membrane device
JP3615918B2 (en) Method and apparatus for cleaning reverse osmosis membrane module
JP3943748B2 (en) Cleaning method for membrane filtration equipment
JP2004057883A (en) Water cleaning method using external pressure type hollow fiber membrane module and apparatus therefor
JPH04126528A (en) Method for cleaning hollow-fiber membrane filter device the same
JPH07251041A (en) Membrane separation apparatus and washing method therefor
JP2009039677A (en) Cleaning method of immersion type membrane module and immersion type membrane filtering apparatus
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
JPH0667456B2 (en) Filtration device
JP2001259381A (en) Membrane filter apparatus
JP3953673B2 (en) Membrane separator
JP2009233504A (en) Method of cleaning dipping-type membrane module and cleaner for dipping-type membrane module as well as dipping-type membrane filter using the same
JP3371767B2 (en) Operating method of membrane deaerator and membrane deaerator
JP3430385B2 (en) Cleaning method of membrane
JP2585879Y2 (en) Membrane separation device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070313