JP2013121587A - Water treatment method - Google Patents
Water treatment method Download PDFInfo
- Publication number
- JP2013121587A JP2013121587A JP2012246333A JP2012246333A JP2013121587A JP 2013121587 A JP2013121587 A JP 2013121587A JP 2012246333 A JP2012246333 A JP 2012246333A JP 2012246333 A JP2012246333 A JP 2012246333A JP 2013121587 A JP2013121587 A JP 2013121587A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- raw water
- water
- tubular membrane
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
本発明は、水処理方法に関する。より詳細には、内圧式の管状膜を用いた膜分離による水処理方法において、原水と処理水との固液分離を行う膜の目詰まりを軽減する方法に関する。 The present invention relates to a water treatment method. More specifically, the present invention relates to a method for reducing clogging of a membrane that performs solid-liquid separation between raw water and treated water in a water treatment method using membrane separation using an internal pressure tubular membrane.
近年、水処理において膜分離法が非常に着目されている。膜分離法とは、従来の水処理の固液分離を膜で行うものである。膜で固液分離することによって、処理水が清澄になり、沈殿池が不要になるため装置全体がコンパクトになる等のメリットが得られる。 In recent years, membrane separation methods have attracted much attention in water treatment. The membrane separation method is a method in which solid-liquid separation of conventional water treatment is performed with a membrane. By performing solid-liquid separation with a membrane, the treated water becomes clear and a sedimentation basin is not required, so that the entire apparatus is compact.
しかしながら、膜分離法において、運転時間が経過すると膜の目詰まりが進行してろ過水量が低下するという問題がある。そこで、気液二相流による膜面洗浄が広く行われている。 However, in the membrane separation method, there is a problem that when the operation time elapses, the clogging of the membrane proceeds and the amount of filtered water decreases. Therefore, membrane cleaning by gas-liquid two-phase flow is widely performed.
気液二相流による膜の洗浄方法として、例えば、汚泥含有水をろ過水と濃縮汚泥とに分離するための限外ろ過器のろ過膜の洗浄において、限外ろ過器への汚泥含有水の供給を続けながら、その汚泥含有水中に洗浄用気体を間欠的に供給する限外ろ過膜の洗浄方法が報告されている(特許文献1を参照)。 As a method for cleaning a membrane by a gas-liquid two-phase flow, for example, in cleaning a filtration membrane of an ultrafilter for separating sludge-containing water into filtered water and concentrated sludge, the sludge-containing water to the ultrafilter There has been reported a method for cleaning an ultrafiltration membrane in which a cleaning gas is intermittently supplied into the sludge-containing water while the supply is continued (see Patent Document 1).
しかしながら、特許文献1の方法では、気体による洗浄力が十分に発揮されず、投入している動力に対して見合った洗浄効果が得られない場合があった。そのため、膜面に汚泥などの物質が付着して閉塞が生じ、ろ過能力の低下が起こる場合があった。そこで本発明は、内圧式の管状膜を用いた膜分離法において、膜面に対する洗浄力を強化し、膜の目詰まりを軽減し、長時間安定したろ過能力を得る方法を提供することを目的とする。
However, in the method of
すなわち、本発明は、原水及び気体を内圧式の管状膜に供給し、管状膜の膜表面を洗浄すると同時に原水と処理水とを固液分離する工程を含む、水処理方法であって、管状膜に供給される原水及び気体の気体比率が0.4以上である、水処理方法を提供する。 That is, the present invention is a water treatment method comprising a step of supplying raw water and gas to an internal pressure tubular membrane, washing the membrane surface of the tubular membrane and simultaneously separating the raw water and treated water from solid and liquid, Provided is a water treatment method in which the ratio of raw water and gas supplied to the membrane is 0.4 or more.
上記本発明の膜分離法によれば、内圧式の管状膜の膜面に、より効率よくせん断力が与えられ、膜面に対する洗浄力が強化されるため、膜の目詰まりを軽減し、長時間安定したろ過能力を得ることができる。 According to the membrane separation method of the present invention, a shear force is more efficiently applied to the membrane surface of the internal pressure type tubular membrane, and the cleaning force on the membrane surface is strengthened. Time-stable filtration capacity can be obtained.
上記の気体比率は、0.4〜0.8であることが好ましい。気体比率がこの範囲であると、膜の目詰まりを軽減する効果が高い。 The gas ratio is preferably 0.4 to 0.8. When the gas ratio is within this range, the effect of reducing clogging of the film is high.
本発明により、内圧式の管状膜を用いた膜分離法において、膜面に対する洗浄力を強化し、膜の目詰まりを軽減し、長時間安定したろ過能力を得る方法が提供される。 The present invention provides a method for enhancing the detergency on the membrane surface, reducing clogging of the membrane, and obtaining stable filtration ability for a long time in the membrane separation method using an internal pressure type tubular membrane.
実施形態に係る水処理方法は、原水及び気体を内圧式の管状膜に供給し、管状膜の膜表面を洗浄すると同時に原水と処理水とを固液分離する工程を含み、管状膜に供給される原水及び気体の気体比率が0.4以上である。原水としては、特に限定されないが、河川水、飲用に供する原水、排水等が挙げられる。 The water treatment method according to the embodiment includes a step of supplying raw water and gas to an internal pressure tubular membrane, washing the membrane surface of the tubular membrane, and simultaneously separating the raw water and treated water from solid and liquid, and is supplied to the tubular membrane. The raw water and gas ratio is 0.4 or more. The raw water is not particularly limited, and examples thereof include river water, raw water for drinking, and drainage.
本明細書では、原水と処理水とを膜で固液分離する工程を含む水処理方法を膜分離法という。「内圧式の管状膜」とは、管状膜の内部に原水を供給し、管状膜の外部から処理水を回収する方式の膜分離法において使用する管状膜を意味する。また、「気体比率」とは、内圧式の管状膜に単位時間あたりに供給する、原水及び気体の体積の合計を基準とした気体の体積を意味する。例えば、管状膜に供給する原水の流量が120ml/分であり、管状膜に供給する気体の流量が80ml/分である場合、気体比率は、80/(120+80)=0.4である。 In the present specification, a water treatment method including a step of solid-liquid separation of raw water and treated water with a membrane is referred to as a membrane separation method. The “internal pressure type tubular membrane” means a tubular membrane used in a membrane separation method in which raw water is supplied to the inside of the tubular membrane and treated water is recovered from the outside of the tubular membrane. The “gas ratio” means the volume of gas based on the total volume of raw water and gas supplied per unit time to the internal pressure type tubular membrane. For example, when the flow rate of raw water supplied to the tubular membrane is 120 ml / min and the flow rate of gas supplied to the tubular membrane is 80 ml / min, the gas ratio is 80 / (120 + 80) = 0.4.
(膜)
本実施形態の水処理方法が対象とする膜は、通常の膜分離法に使用されるものでよく、塩素化ポリエチレン等のポリオレフィン系樹脂、ポリフッ化ビニリデン系樹脂、ポリ四弗化エチレン樹脂、ポリプロピレン、ポリエチレン、ポリスチレン、ポリアクリロニトリル、酢酸セルロース、ポリスルホン、ポリエーテルスルホン、セラミック等から形成された多孔質膜等が挙げられる。
(film)
Membranes targeted by the water treatment method of this embodiment may be those used in ordinary membrane separation methods, such as polyolefin resins such as chlorinated polyethylene, polyvinylidene fluoride resins, polytetrafluoroethylene resins, and polypropylene. , Porous membranes formed from polyethylene, polystyrene, polyacrylonitrile, cellulose acetate, polysulfone, polyethersulfone, ceramics, and the like.
膜の形態には、平膜、中空糸膜、管状膜(チューブラー膜)等が存在する。平膜とは、平面状又はシート状に成形した膜である。中空糸膜とは、内部が内径3mm程度以下の空洞である糸状の膜である。管状膜とは、内部が内径3〜5mm以上の空洞である管状の膜である。本実施形態では管状膜を対象とする。平膜や中空糸膜は原水槽に浸漬して使用される場合が多く、チューブラー膜は原水槽の槽外に設置して使用されることが多い。 As the form of the membrane, there are a flat membrane, a hollow fiber membrane, a tubular membrane (tubular membrane) and the like. A flat film is a film formed into a planar shape or a sheet shape. The hollow fiber membrane is a filamentous membrane whose inside is a cavity having an inner diameter of about 3 mm or less. The tubular membrane is a tubular membrane whose inside is a cavity having an inner diameter of 3 to 5 mm or more. In this embodiment, a tubular membrane is targeted. Flat membranes and hollow fiber membranes are often used by immersing them in the raw water tank, and tubular membranes are often used outside the raw water tank.
膜分離法には、槽外型及び浸漬型が存在する。槽外型膜分離法とは、原水と処理水とを分離する膜を、原水槽の外に設置し、原水と処理水とを分離する方式である。一方、浸漬型膜分離法とは、原水槽に膜を浸漬して、原水と処理水とを分離する方式である。実施形態に係る水処理方法は、管状膜を対象とすることから、主に槽外型膜分離法に適用する。 The membrane separation method includes an outside tank type and an immersion type. The outside tank type membrane separation method is a system in which a membrane for separating raw water and treated water is installed outside the raw water tank, and the raw water and treated water are separated. On the other hand, the submerged membrane separation method is a method of separating raw water and treated water by immersing a membrane in a raw water tank. Since the water treatment method according to the embodiment is intended for a tubular membrane, it is mainly applied to an outside tank type membrane separation method.
以下、本発明の実施例を示して、本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲での種々の変更が可能である。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples of the present invention. However, the present invention is not limited to these examples, and various modifications can be made without departing from the technical idea of the present invention. Can be changed.
管状膜試験装置を用いて、気体比率と限界フラックス(限界透過水量)との関係を検討した。 Using a tubular membrane testing device, the relationship between the gas ratio and the limit flux (limit permeate flow rate) was examined.
(管状膜試験装置)
図1は管状膜試験装置100の概略図である。原水及び圧縮空気を所定の気体比率となるように混合したものを、管状膜40の下部から導入し、評価した。より詳細には、容量ポンプ20を用い、ラインL10を通して水槽10内の原水を供給した。また、ラインL20を通して圧縮空気をマスフローコントローラ30に供給することで一定の風量を確保した。マスフローコントローラ30から供給した空気とラインL10を通して供給した原水とを混合し、ラインL30を通して膜分離槽50内の管状膜40の下部に導入した。ろ過水は、ラインL50を通して回収した。また、管状膜40と容量ポンプ70との間に連成圧用の圧力計60を設置して静圧を測定した。水槽10中の原水濃度及び水量を一定にするために、ろ過水は、ラインL60を通して全て水槽10に返送した。また、原水はラインL40を通して水槽10に返送した。また、流量測定の際には、ラインをL70に切り替えてメスシリンダーを用いて流量を測定した。
(Tubular membrane testing device)
FIG. 1 is a schematic view of a tubular
(限界フラックス測定)
上記の管状膜試験装置を使用して、気体比率と限界フラックスとの関係を検討した。原水の流量120及び300ml/分において、気体比率を変化させながら限界フラックスを測定した。例えば、原水の流量が120ml/分の場合、気体比率0.4となる空気の流量は80ml/分である。同様に、原水の流量が300ml/分の場合、気体比率0.4となる空気の流量は200ml/分である。
(Limit flux measurement)
Using the above tubular membrane test apparatus, the relationship between the gas ratio and the critical flux was examined. The critical flux was measured while changing the gas ratio at the raw water flow rate of 120 and 300 ml / min. For example, when the flow rate of raw water is 120 ml / min, the flow rate of air with a gas ratio of 0.4 is 80 ml / min. Similarly, when the flow rate of raw water is 300 ml / min, the flow rate of air with a gas ratio of 0.4 is 200 ml / min.
限界フラックスの測定は次のようにして行った。上記の管状膜試験装置を用い、各原水の流速・各気体比率において、15分間隔で容量ポンプの回転数を上げることにより、段階的にフラックスを上げていく運転を行った。これと同時に、膜間差圧を測定し、膜間差圧が上昇し始めた時のフラックスの値を限界フラックスとした。ここで、限界フラックスが低いことは、膜が目詰まりしやすいことを意味する。 The critical flux was measured as follows. Using the tubular membrane test apparatus, the flux was increased stepwise by increasing the rotational speed of the capacity pump at 15 minute intervals at each raw water flow rate and each gas ratio. At the same time, the transmembrane pressure difference was measured, and the value of the flux when the transmembrane pressure pressure began to rise was taken as the limit flux. Here, a low critical flux means that the film is easily clogged.
図2は、気体比率と限界フラックスとの関係を示すグラフである。この結果から、気体比率が0.4〜0.8の領域では、高い限界フラックスの値が得られることが明らかとなった。また、特に、気体比率が0.4〜0.6の範囲では、原水の流速にかかわらず、限界フラックスを高く維持することができることが明らかとなった。つまり、気体比率が0.4〜0.8の範囲では、膜の目詰まりを軽減し、長時間安定したろ過能力を得ることができる。 FIG. 2 is a graph showing the relationship between the gas ratio and the critical flux. From this result, it became clear that a high critical flux value can be obtained in the region where the gas ratio is 0.4 to 0.8. In particular, it was revealed that the critical flux can be kept high regardless of the flow rate of the raw water when the gas ratio is in the range of 0.4 to 0.6. That is, when the gas ratio is in the range of 0.4 to 0.8, clogging of the membrane can be reduced, and a stable filtration ability can be obtained for a long time.
(気泡の形状の観察)
水及び空気を、気体比率が0.1〜0.9となるように混合したものを、内径10mmの管に導入し、気泡の形状を観察した。なお、この内径の値は、内圧式の管状膜で一般的に用いられる範囲内である。
(Observation of bubble shape)
What mixed water and air so that a gas ratio might be set to 0.1-0.9 was introduce | transduced into the pipe | tube with an internal diameter of 10 mm, and the shape of the bubble was observed. The value of the inner diameter is in a range generally used for an internal pressure type tubular membrane.
図3(a)〜(f)は、内径10mmの管を用いた場合の各気体比率における気泡の形状を示す図である。図に記載された数値は気体比率を示す。 FIGS. 3A to 3F are diagrams showing the shape of bubbles at each gas ratio when a tube having an inner diameter of 10 mm is used. The numerical value described in the figure indicates the gas ratio.
その結果、気体比率が0.1〜0.2程度では、縦横の長さが同程度である形状の気泡が生成された。また、気体比率が0.4〜0.8程度では、縦長の形状の気泡が生成された。 As a result, when the gas ratio was about 0.1 to 0.2, bubbles having a shape with the same length in the vertical and horizontal directions were generated. When the gas ratio is about 0.4 to 0.8, vertically elongated bubbles are generated.
上述した限界フラックスの測定結果によれば、気体比率が0.1〜0.2程度の領域では、限界フラックスの値にまだ上昇する余地があった(図2)。一方、気体比率が0.4〜0.8の領域では、高い限界フラックスの値が得られた(図2)。以上の結果は、気体比率が0.4〜0.8の領域では、膜面に強いせん断力が発生することによると推測される。より具体的には、気体比率が0.4〜0.8の領域では、縦長の形状の気泡が生成されることによって、管状膜の全面に接触した気泡が管内を移動することになる。これにより、気泡と管状膜の膜面との間のわずかな隙間を、原水が気泡と逆向き(下向き)に速い流速で移動することになるため、膜面に強いせん断力が発生するものと推測される。これにより、膜面に対する洗浄力を強化し、膜の目詰まりを軽減し、長時間安定したろ過能力を得ることができる。 According to the measurement result of the limit flux described above, there was still room to increase the limit flux value in the region where the gas ratio was about 0.1 to 0.2 (FIG. 2). On the other hand, in the region where the gas ratio was 0.4 to 0.8, a high critical flux value was obtained (FIG. 2). The above results are presumed to be due to the generation of a strong shear force on the film surface in the region where the gas ratio is 0.4 to 0.8. More specifically, in the region where the gas ratio is 0.4 to 0.8, bubbles having a vertically long shape are generated, so that the bubbles in contact with the entire surface of the tubular membrane move in the tube. As a result, since the raw water moves in a slight gap between the bubble and the membrane surface of the tubular membrane in a direction opposite to the bubble (downward) at a high flow rate, a strong shear force is generated on the membrane surface. Guessed. Thereby, the detergency with respect to the membrane surface can be enhanced, the clogging of the membrane can be reduced, and a stable filtration ability for a long time can be obtained.
10…水槽、20,70…容量ポンプ、30…マスフローコントローラ、40…管状膜、50…膜分離槽、60…圧力計、L10,L20,L30,L40,L50,L60,L70…ライン、100…管状膜試験装置。
DESCRIPTION OF
Claims (2)
前記管状膜に供給される前記原水及び前記気体の気体比率が0.4以上である、水処理方法。 A water treatment method comprising a step of supplying raw water and gas to an internal pressure tubular membrane, and washing the membrane surface of the tubular membrane and simultaneously separating the raw water and treated water into solid and liquid,
The water treatment method, wherein a ratio of the raw water and the gas supplied to the tubular membrane is 0.4 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012246333A JP6052866B2 (en) | 2011-11-10 | 2012-11-08 | Water treatment method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011246401 | 2011-11-10 | ||
JP2011246401 | 2011-11-10 | ||
JP2012246333A JP6052866B2 (en) | 2011-11-10 | 2012-11-08 | Water treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013121587A true JP2013121587A (en) | 2013-06-20 |
JP6052866B2 JP6052866B2 (en) | 2016-12-27 |
Family
ID=48773894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012246333A Expired - Fee Related JP6052866B2 (en) | 2011-11-10 | 2012-11-08 | Water treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6052866B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020199424A (en) * | 2019-06-06 | 2020-12-17 | 日本ソリッド株式会社 | Water cleaning sheet for cleaning city water |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11145923B2 (en) * | 2016-10-13 | 2021-10-12 | Prologium Technology Co., Ltd. | Battery structure |
US11145924B2 (en) * | 2017-10-09 | 2021-10-12 | Prologium Technology Co., Ltd. | Battery structure |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000084377A (en) * | 1998-09-17 | 2000-03-28 | Tohoku Electric Power Co Inc | Removal of membrane contaminated substance for tubular membrane device |
JP2001179060A (en) * | 1999-12-27 | 2001-07-03 | Maezawa Ind Inc | Internal pressure type membrane treatment device |
JP2007253050A (en) * | 2006-03-23 | 2007-10-04 | Kurita Water Ind Ltd | Membrane separation device |
JP2007253105A (en) * | 2006-03-24 | 2007-10-04 | Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai | Gas diffusion structure and gas-liquid separator |
JP2010527773A (en) * | 2007-05-29 | 2010-08-19 | シーメンス ウォーター テクノロジース コーポレイション | Membrane cleaning using an air lift pump |
JP2011031174A (en) * | 2009-07-31 | 2011-02-17 | Sumitomo Electric Fine Polymer Inc | Separating membrane module and filter equipped with separating membrane module |
JP2012179556A (en) * | 2011-03-01 | 2012-09-20 | Kurita Water Ind Ltd | Anaerobic biological processing device and method for organic waste liquid |
-
2012
- 2012-11-08 JP JP2012246333A patent/JP6052866B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000084377A (en) * | 1998-09-17 | 2000-03-28 | Tohoku Electric Power Co Inc | Removal of membrane contaminated substance for tubular membrane device |
JP2001179060A (en) * | 1999-12-27 | 2001-07-03 | Maezawa Ind Inc | Internal pressure type membrane treatment device |
JP2007253050A (en) * | 2006-03-23 | 2007-10-04 | Kurita Water Ind Ltd | Membrane separation device |
JP2007253105A (en) * | 2006-03-24 | 2007-10-04 | Sekiyu Combinat Kodo Togo Unei Gijutsu Kenkyu Kumiai | Gas diffusion structure and gas-liquid separator |
JP2010527773A (en) * | 2007-05-29 | 2010-08-19 | シーメンス ウォーター テクノロジース コーポレイション | Membrane cleaning using an air lift pump |
JP2011031174A (en) * | 2009-07-31 | 2011-02-17 | Sumitomo Electric Fine Polymer Inc | Separating membrane module and filter equipped with separating membrane module |
JP2012179556A (en) * | 2011-03-01 | 2012-09-20 | Kurita Water Ind Ltd | Anaerobic biological processing device and method for organic waste liquid |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020199424A (en) * | 2019-06-06 | 2020-12-17 | 日本ソリッド株式会社 | Water cleaning sheet for cleaning city water |
Also Published As
Publication number | Publication date |
---|---|
JP6052866B2 (en) | 2016-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4445862B2 (en) | Hollow fiber membrane module, hollow fiber membrane module unit, membrane filtration device using the same, and operating method thereof | |
KR102329058B1 (en) | A computer readable recording medium recording a clogged point specific program of the separation membrane module, a tidal system and a tidal method | |
Xiong et al. | Self-adaptive dynamic membrane module with a high flux and stable operation for the municipal wastewater treatment | |
JP5343655B2 (en) | Operation method of membrane module | |
CN106103349A (en) | Method for treating water | |
JPWO2011158559A1 (en) | Membrane module cleaning method | |
JP6052866B2 (en) | Water treatment method | |
Li et al. | Ultrasonic visualization of sub-critical flux fouling in the double-end submerged hollow fiber membrane module | |
JP2009233511A (en) | Method of operating membrane filtration system | |
JP2012196590A (en) | Filtration membrane, cleaning means of filtration membrane, and selection method of pretreat means | |
JP5630961B2 (en) | Hollow fiber porous membrane and water treatment method | |
Lam et al. | High‐Pressure Jet Cleaning of Polymeric Microfiltration Membranes | |
JP2015006654A (en) | Filter device and immersion type filtration method using the same | |
JP2017056371A (en) | Operation method of filtration apparatus | |
JP2013212497A (en) | Water treating method | |
JP4979519B2 (en) | Operation method of membrane separation activated sludge treatment equipment | |
Cui et al. | Influence of selective permeation of backwashing solution on the cleaning effectiveness in hollow fiber system | |
JP2015231591A (en) | Remote supervisory control system | |
JP2010046561A (en) | Sludge dehydrating and concentrating method and apparatus thereof | |
US20130092618A1 (en) | Separation membrane, water treatment unit and water treatment apparatus | |
JP2018149500A (en) | Filtration film evaluation method and filtration film evaluation device | |
JP5548378B2 (en) | Water treatment apparatus and water treatment method | |
JP5429005B2 (en) | Pretreatment method for hollow fiber membrane module and water purifier using its own weight filtration system | |
JP5251472B2 (en) | Membrane module cleaning method | |
CN105592915A (en) | Chemical cleaning method for RO/NF membrane system consisting of two arrays |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150313 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20161028 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161122 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20161124 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6052866 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |