JP2009233511A - Method of operating membrane filtration system - Google Patents

Method of operating membrane filtration system Download PDF

Info

Publication number
JP2009233511A
JP2009233511A JP2008080167A JP2008080167A JP2009233511A JP 2009233511 A JP2009233511 A JP 2009233511A JP 2008080167 A JP2008080167 A JP 2008080167A JP 2008080167 A JP2008080167 A JP 2008080167A JP 2009233511 A JP2009233511 A JP 2009233511A
Authority
JP
Japan
Prior art keywords
membrane
filtration
filtration system
water
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008080167A
Other languages
Japanese (ja)
Inventor
Noriko Hanaizumi
紀子 花泉
Takashi Minaki
尚 皆木
Toshiyuki Ishizaki
利之 石崎
Shinichi Minegishi
進一 峯岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008080167A priority Critical patent/JP2009233511A/en
Publication of JP2009233511A publication Critical patent/JP2009233511A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane filtration system which can operate stably for a long time by forecasting operating conditions through evaluating a membrane module for evaluation, in conjunction with a membrane filtering method for obtaining permeant water by filtering, through a membrane, water to be treated such as underground water, river water, lake/marsh water, sewage water to be secondarily treated. <P>SOLUTION: This membrane filtering system is equipped with a precise filtration membrane and/or ultrafiltration membrane, as well as the membrane module for valuation which evaluates the same water to be treated as in the case with the membrane filtration system body by accelerated velocity test. The method of operating the membrane filtration system is to optimize the operating conditions of the membrane filtration system body, considering the ascending degree of filtration resistance of the membrane module for evaluation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

浄水処理、工業用水製造、下排水処理、逆浸透膜前処理などの水処理に用いられる精密ろ過膜および/または限外ろ過膜を用いた膜ろ過システムの運転方法に関する。   The present invention relates to a method of operating a membrane filtration system using a microfiltration membrane and / or an ultrafiltration membrane used for water treatment such as water purification, industrial water production, sewage treatment, and reverse osmosis membrane pretreatment.

精密ろ過膜や限外ろ過膜などの分離膜は、食品工業や医療分野、用水製造、廃水処理分野等の様々な方面で利用されている。特に近年では、飲料用製造分野すなわち浄水処理過程において分離膜が使われることが多くなってきている。緩速ろ過もしくは急速ろ過による水処理と比べて、膜ろ過による水処理は、原水中の不純物を確実に、安定的に除去できる他、設備の設置面積が小さく用地が少なくてすむ、設備設置費が少ないという点で非常に優位である。このため、今後ますます安全な水を安定的に製造する方法として、膜ろ過による水処理の必要性が高まると考えられる。   Separation membranes such as microfiltration membranes and ultrafiltration membranes are used in various fields such as the food industry, the medical field, water production, and wastewater treatment fields. Particularly in recent years, separation membranes are increasingly used in the beverage manufacturing field, that is, in the process of water purification. Compared with water treatment by slow filtration or rapid filtration, water treatment by membrane filtration can remove impurities in raw water reliably and stably, and the installation area of equipment is small and requires less land. It is very advantageous in that there are few. For this reason, it is considered that the need for water treatment by membrane filtration will increase as a method for stably producing safer water in the future.

しかしながらその一方で、総ろ過水量の増加に伴う分離膜における汚れの蓄積、すなわち膜ファウリングによる性能低下が起こる。河川水や湖沼水など自然水の水源水質は様々であり、種々の不純物を含有する。そのため、膜ファウリングの進行、すなわち膜の性能推移もこの水源水質により変わってくる。したがって、膜ろ過プロセスの設計では膜供給水質とコストに応じた膜ろ過流束や洗浄条件の設定、前処理の選択が重要であるが、被処理水中に含有している成分は様々であるため膜のファウリング成分の特定は難しく、経験的に膜ろ過流束や洗浄条件の設定や前処理の選択を行っている。そのため、安全率を過大に見込んで膜ろ過流束を設定したり、過剰な前処理プロセスを付与して、コスト的に不利になることが多い。また水質は日々変化しており、急激に膜間差圧が上昇することがある。一度差圧が上がってしまった膜は、運転を停止し、薬品洗浄などしなければならない。このため、膜ろ過システムとして最適な条件で運転することはもちろん、日々の水質の変化をいち早く察知し、最適な運転条件に変更することが長期に、低コストで安定運転するためには必要になる。   However, on the other hand, the accumulation of dirt in the separation membrane accompanying the increase in the total amount of filtered water, that is, performance degradation due to membrane fouling occurs. Natural water sources such as river water and lake water have various water quality and contain various impurities. Therefore, the progress of membrane fouling, that is, the performance transition of the membrane also changes depending on the water source water quality. Therefore, in designing the membrane filtration process, it is important to set the membrane filtration flux and cleaning conditions according to the quality and cost of the membrane supply water, and the selection of pretreatment, but the components contained in the treated water are various. It is difficult to specify the fouling component of the membrane, and empirically setting the membrane filtration flux and cleaning conditions and selecting the pretreatment. Therefore, it is often disadvantageous in terms of cost by setting a membrane filtration flux with an excessively high safety factor or adding an excessive pretreatment process. Moreover, the water quality changes every day, and the transmembrane pressure difference may increase rapidly. Once the differential pressure has risen, the operation must be stopped and the chemicals must be washed. For this reason, it is necessary not only to operate under optimal conditions as a membrane filtration system, but also to detect daily water quality changes quickly and change to optimal operating conditions for long-term, low-cost and stable operation. Become.

このため、膜ろ過システムの運転条件を予測することが必要となってくるが、例えば非特許文献1にあるように、実用用途における実液透水性能を推定するためには、(a)極力実液そのもの、あるいは代表的実液、あるいは実液に近いモデル液を用い、(b)用いる膜についても極力実用に近いスケールのモジュールにて、(c)極力実用ろ過運転に近い運転方法によって、(d)ある程度の期間運転を行う「実液評価」が欠かせない。したがって結局は実際に運転してみないと、どの運転条件でどのくらいの期間、安定に運転できるかはわからない。   For this reason, it is necessary to predict the operating conditions of the membrane filtration system. For example, as described in Non-Patent Document 1, in order to estimate the actual liquid permeation performance in practical applications, (a) Using the liquid itself, or a representative actual liquid, or a model liquid close to the actual liquid, (b) the module to be used is a module of a scale that is as practical as possible, and (c) by an operation method that is as close to practical filtration operation as possible ( d) “Actual liquid evaluation” is essential for operation for a certain period of time. Therefore, in the end, if you do not actually drive, you will not know how long and how long you can drive stably under which operating conditions.

特許文献1では、膜分離活性汚泥装置に使用される分離膜の汚染の程度を見積もる方法が開示されているが、評価に用いる被処理水は、汚泥の上澄み液を用い、かつ固形分を分離する工程を必要とするため煩雑であり、かつ上澄み液の希釈倍率やろ過流量、評価時間など決められておらず、正しく評価するためには経験が必要になる。   Patent Document 1 discloses a method for estimating the degree of contamination of a separation membrane used in a membrane separation activated sludge apparatus, but the water to be used for evaluation uses a supernatant of sludge and separates solids. It requires a lot of work to do so, and the dilution ratio, filtration flow rate, and evaluation time of the supernatant are not determined.

また特許文献2では膜ろ過初期の膜ろ過特性の測定データから、膜ろ過プラントの長期安定膜ろ過流束の推定方法が開示されているが、流束以外の運転条件をあらかじめ決めておく必要がある。また実際には、一定の流束で運転し続けていると、台風や季節変動による自然の変化によって急激な差圧上昇が度々生じる。一度膜間差圧が上がってしまった膜は、膜ろ過システムを一度停止させ、薬品洗浄などをしなくてはならず、コスト的にも不利になる。
膜学実験法−人工膜編−日本膜学会2006年発行pp163-164 特開2007−125465号公報 国際公開第2006/059658号パンフレット
Patent Document 2 discloses a method for estimating a long-term stable membrane filtration flux of a membrane filtration plant from measurement data of membrane filtration characteristics at the initial stage of membrane filtration. However, it is necessary to determine operating conditions other than the flux in advance. is there. Actually, if the operation is continued at a constant flux, a sudden increase in the differential pressure often occurs due to natural changes caused by typhoons and seasonal fluctuations. Once the pressure difference between the membranes has increased, the membrane filtration system must be stopped once, and chemical cleaning must be performed, which is disadvantageous in terms of cost.
Membrane Experimental Method-Artificial Membrane Edition-Published by the Japanese Membrane Society 2006pp163-164 JP 2007-125465 A International Publication No. 2006/059658 Pamphlet

このように、簡便な方法で運転予測することは難しく、また水質は日々変化することから、一つの運転条件で安定運転を続けることは困難である。本発明は、地下水、河川水、湖沼水、海水、下水二次処理水などの被処理水を膜ろ過して透過水を得る膜ろ過システムにおいて、評価用膜モジュールから適切な運転条件を予測し、安定に長期間運転できる膜ろ過システムの運転方法を提供することにある。   As described above, it is difficult to predict the operation by a simple method, and since the water quality changes every day, it is difficult to continue the stable operation under one operation condition. The present invention predicts appropriate operating conditions from a membrane module for evaluation in a membrane filtration system that obtains permeate by subjecting treated water such as groundwater, river water, lake water, seawater, and secondary treated water to membrane filtration. An object of the present invention is to provide a method for operating a membrane filtration system that can be stably operated for a long time.

発明者らは、上記課題を解決するために鋭意検討した結果、断続的に評価用膜モジュールのろ過抵抗の上昇度を評価することで、膜ろ過システムの運転条件を決めることができることを知るに至った。すなわち本発明は、
(1)精密ろ過膜および/または限外ろ過膜を備えた膜ろ過システムにおいて、膜ろ過システム本体に使用されるろ過膜よりも膜面積の小さいろ過膜を有する、膜ろ過システム本体と同じ被処理水を評価する評価用膜モジュールを備え、その評価用膜モジュールでろ過抵抗の上昇度を測定し、その結果に基づいて膜ろ過システム本体の運転条件を最適化する膜ろ過システムの運転方法であって、その運転方法が、定流量運転または定圧運転であり、評価用膜モジュールの流束または圧力が膜ろ過システム本体のそれよりも1.1倍以上10倍以下の加速試験評価であることを特徴とする膜ろ過システムの運転方法。
(2)前記評価用膜モジュールで、ろ過抵抗の上昇度の値が0.5×1012m-2以上になった場合に、凝集剤を5ppm以上100ppm以下、および/または逆流物理洗浄で次亜塩素酸ナトリウムを10ppm以上500ppm以下添加する請求項1に記載の膜ろ過システムの運転方法。
As a result of intensive studies to solve the above problems, the inventors know that the operating conditions of the membrane filtration system can be determined by intermittently evaluating the degree of increase in the filtration resistance of the membrane module for evaluation. It came. That is, the present invention
(1) In a membrane filtration system equipped with a microfiltration membrane and / or an ultrafiltration membrane, the same treatment as the membrane filtration system main body having a filtration membrane having a smaller membrane area than the filtration membrane used in the membrane filtration system main body This is a membrane filtration system operation method that includes an evaluation membrane module that evaluates water, measures the degree of increase in filtration resistance with the evaluation membrane module, and optimizes the operating conditions of the membrane filtration system based on the results. The operation method is a constant flow operation or a constant pressure operation, and the evaluation test module module has a flux or pressure of 1.1 to 10 times that of the membrane filtration system. The operation method of the membrane filtration system characterized.
(2) In the membrane module for evaluation, when the increase in filtration resistance is 0.5 × 10 12 m −2 or more, the flocculant is 5 ppm or more and 100 ppm or less, and / or the reverse flow physical cleaning is performed. The method for operating a membrane filtration system according to claim 1, wherein sodium chlorite is added in an amount of 10 ppm to 500 ppm.

地下水、河川水、湖沼水、海水、下水二次処理水などの被処理水を膜ろ過して透過水を得る膜ろ過システムにおいて、安定に長期間運転できる膜ろ過システムの運転方法を提供することで、運転を停止し、薬品洗浄したり、膜交換したりすることによる水製造コスト高を抑えた膜ろ過システムの提供が可能になる。   To provide a method for operating a membrane filtration system that can be stably operated for a long period of time in a membrane filtration system that obtains permeate by subjecting treated water such as groundwater, river water, lake water, seawater, and sewage secondary treated water to membrane filtration. Therefore, it is possible to provide a membrane filtration system that suppresses the high water production cost by stopping operation, cleaning chemicals, and changing membranes.

本発明における膜ろ過システムは、地下水、河川水、湖沼水、海水、および下水二次処理水から選ばれる少なくとも一種からなる被処理水を膜ろ過するために用いられる精密ろ過膜および/または限外ろ過膜を備えた膜ろ過システムにおいて、精密ろ過膜および/または限外ろ過膜の前段、または並列に、膜ろ過システム本体に使用されるろ過膜よりも膜面積の小さい同じろ過膜を有する、膜ろ過システム本体と同じ被処理水を評価する評価用膜モジュールを備えていることを特徴とする。このように構成された本発明による方法では、膜ろ過システム本体でろ過される同じ被処理水を評価用膜モジュールで加速試験評価によってろ過することができる。それにより、評価用膜モジュールのファウリングが膜ろ過システム本体のそれよりも早期に進行し、膜ろ過システム本体におけるろ過差圧の上昇を前もって知ることが可能になる。   The membrane filtration system of the present invention is a microfiltration membrane and / or an ultrafiltration membrane used for membrane filtration of at least one kind of treated water selected from groundwater, river water, lake water, seawater, and sewage secondary treated water. In a membrane filtration system equipped with a filtration membrane, a membrane having the same filtration membrane having a membrane area smaller than that of the filtration membrane used in the membrane filtration system main body in front of or in parallel with the microfiltration membrane and / or ultrafiltration membrane The membrane module for evaluation which evaluates the to-be-processed water same as the filtration system main body is provided, It is characterized by the above-mentioned. In the method according to the present invention configured as described above, the same treated water to be filtered by the membrane filtration system main body can be filtered by the accelerated test evaluation by the evaluation membrane module. Accordingly, fouling of the evaluation membrane module proceeds earlier than that of the membrane filtration system body, and it becomes possible to know in advance the increase in the filtration differential pressure in the membrane filtration system body.

ろ過膜の細孔が目詰まりして透水量が減少するとろ過抵抗が上昇する。そのためこれまでの研究では、1回のろ過工程において、ろ過抵抗が上昇しにくい膜を用いることが安定運転に繋がると考えられていた。しかしながら、実際の運転ではろ過工程と物理洗浄工程を交互に実施する膜ろ過方法が主流であるため、安定運転を可能にするには1回のろ過工程におけるろ過抵抗の上昇を抑制するより、物理洗浄工程を含む連続運転におけるろ過抵抗の上昇を抑制することが求められる。   When the pores of the filtration membrane are clogged and the water permeation amount decreases, the filtration resistance increases. For this reason, in previous studies, it was considered that the use of a membrane in which the filtration resistance hardly increases in one filtration step leads to stable operation. However, since the membrane filtration method in which the filtration step and the physical cleaning step are alternately performed in the actual operation is the mainstream, in order to enable stable operation, the increase in the filtration resistance in one filtration step is suppressed rather than the physical resistance. It is required to suppress an increase in filtration resistance in continuous operation including a washing step.

つまり、ろ過工程で起こる目詰まりの程度ではなく、洗浄回復性を含んだろ過抵抗の変化が重要となる。1回のろ過工程においてろ過抵抗が上昇しても、物理洗浄工程において目詰まりを引き起こした成分が除去できれば、次のろ過工程開始時には透水量が増加してろ過抵抗は低下する。このように、ろ過工程および物理洗浄工程を交互に繰り返したときの総ろ過水量(m3/m2)を横軸に、式1から算出したろ過抵抗(1/m)を縦軸にプロットした図1において、各ろ過工程開始時のろ過抵抗を結んだ直線の傾きをろ過抵抗の上昇度とした。ろ過抵抗の上昇度が低いほど、ろ過、逆流物理洗浄を繰り返す膜ろ過運転において長期的には安定運転が可能となる。 In other words, not the degree of clogging that occurs in the filtration process, but the change in filtration resistance including the cleaning recovery property is important. Even if the filtration resistance increases in one filtration step, if the component that caused the clogging in the physical washing step can be removed, the amount of water permeation increases and the filtration resistance decreases at the start of the next filtration step. Thus, the total filtration water amount (m 3 / m 2 ) when the filtration step and the physical washing step were alternately repeated was plotted on the horizontal axis, and the filtration resistance (1 / m) calculated from Equation 1 was plotted on the vertical axis. In FIG. 1, the slope of the straight line connecting the filtration resistance at the start of each filtration step was defined as the increase in filtration resistance. The lower the degree of increase in filtration resistance, the longer the stable operation is possible in the membrane filtration operation that repeats filtration and backflow physical washing.

発明者らは評価用膜モジュールでろ過、逆流物理洗浄を繰り返す膜ろ過運転評価において、膜ろ過システム本体のように、スクラビング洗浄の操作がなくても、評価用膜モジュールで得られたろ過抵抗の上昇度と膜ろ過システム本体の差圧上昇傾向に相関があることを見出した。また評価用膜モジュールで膜ろ過システム本体の差圧よりも圧力を上げた、加速試験評価をしたときに得られたろ過抵抗の上昇度は、膜ろ過システム本体の差圧がその圧力まで上昇した際の差圧上昇傾向と相関があることを見出した。
(式1)
ろ過抵抗(1/m) =(ろ過圧力(Pa))×(密度(g/cm3))×10×(膜面積(m2))/((粘度(Pa・s)×(単位時間あたりの透過水量(g/s)))
ここで精密ろ過膜または限外ろ過膜とは、膜に供給される原水に含有される成分のうち、5μm以上の成分を90%以上、0.005μm以下の成分を90%未満除去する分離膜である。精密ろ過膜または限外ろ過膜の素材には、ポリアクリロニトリル、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフォン、ポリフェニレンスルフィドスルフォン、ポリフッ化ビニリデン、酢酸セルロース、ポリエチレン、ポリプロピレン等の高分子素材、セラミック等の無機素材等を挙げることができ、特に限定されないが、安定運転を考慮すると耐薬品性と透水性が高いポリフッ化ビニリデン系樹脂からなる場合が好ましい。ろ過膜の形状は中空糸状であっても平膜状であっても構わない。
In the membrane filtration operation evaluation that repeats filtration and backflow physical washing with the membrane module for evaluation in the evaluation, the inventors of the membrane resistance of the filtration resistance obtained with the membrane module for evaluation, even without the scrubbing washing operation as in the membrane filtration system main body. We found that there is a correlation between the degree of increase and the increasing pressure difference of the membrane filtration system. In addition, the increase in the filtration resistance obtained when evaluating the acceleration test with the membrane module for evaluation increased from the differential pressure of the membrane filtration system, the differential pressure of the membrane filtration system increased to that pressure. It was found that there was a correlation with the increasing pressure differential.
(Formula 1)
Filtration resistance (1 / m) = (filtration pressure (Pa)) × (density (g / cm 3 )) × 10 6 × (membrane area (m 2 )) / ((viscosity (Pa · s) × (unit time Permeated water volume (g / s))
Here, a microfiltration membrane or an ultrafiltration membrane is a separation membrane that removes 90% or more of a component of 5 μm or more and less than 90% of a component of 0.005 μm or less from components contained in raw water supplied to the membrane. It is. The material of the microfiltration membrane or ultrafiltration membrane includes polyacrylonitrile, polysulfone, polyether sulfone, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polymer materials such as cellulose acetate, polyethylene and polypropylene, and inorganic materials such as ceramics. Although a raw material etc. can be mentioned and it does not specifically limit, The case where it consists of a polyvinylidene fluoride type-resin with high chemical resistance and water permeability is preferable when stable operation is considered. The shape of the filtration membrane may be a hollow fiber shape or a flat membrane shape.

評価用膜モジュールは膜ろ過システム本体と同じ被処理水を評価するため、本体の前段または並列に設置する。中空糸膜モジュールは、膜ろ過システム本体と同じ形状をした、大きさは特に限定されないが、筒状の容器に長さ10cm〜50cmの中空糸を1本〜100本収納し、両端を封止したものが好ましい。平膜モジュールの場合も大きさは特に限定されないが、直径15mm〜300mmの円上に切り取った膜を基盤上でOリングなどで封止したものが好ましい。評価用膜モジュールのろ過および逆流物理洗浄の流量、圧力は膜ろ過システム本体とは別に調整するため、それぞれ流量調節バルブ、圧力計を備えていることが好ましい。   The evaluation membrane module is installed in front of or in parallel with the main body of the membrane filtration system in order to evaluate the same treated water. The hollow fiber membrane module has the same shape as the main body of the membrane filtration system. The size is not particularly limited, but one to 100 hollow fibers having a length of 10 cm to 50 cm are stored in a cylindrical container and sealed at both ends. Is preferred. In the case of a flat membrane module, the size is not particularly limited, but a membrane cut out on a circle having a diameter of 15 mm to 300 mm and sealed on the base with an O-ring or the like is preferable. Since the flow rate and pressure of filtration and backflow physical washing of the evaluation membrane module are adjusted separately from the main body of the membrane filtration system, it is preferable to include a flow rate adjustment valve and a pressure gauge, respectively.

加速試験評価は、まず膜ろ過システム本体の単位面積あたりの1回のろ過流量、逆流物理洗浄量と評価用膜モジュールの単位面積あたりの1回のろ過流量、逆流物理洗浄量が同じになるように設定する。定流量加速運転評価では、単位面積(m2)あたりの水の移動量(m3/s)から求められる流束(m3/m2・s)を膜ろ過システム本体の1.1倍以上10倍以下にした定流量条件で評価用膜モジュールを運転する。10倍を超えると評価用膜モジュールのろ過圧力が高くなり、膜が潰れるなどの問題が生じ、また1.1倍未満では加速評価ではなくなるので、膜ろ過システム本体の変化への対応が遅くなる場合がある。好ましくは1.1倍以上3倍以下である。 In the accelerated test evaluation, first, the filtration flow rate per unit area of the membrane filtration system main body, the backflow physical washing amount and the filtration flow rate per unit area of the evaluation membrane module, and the backflow physical washing amount are the same. Set to. In constant flow acceleration operation evaluation, the flux (m 3 / m 2 · s) obtained from the amount of water movement (m 3 / s) per unit area (m 2 ) is 1.1 times or more that of the membrane filtration system. The evaluation membrane module is operated under a constant flow rate condition of 10 times or less. If it exceeds 10 times, the filtration pressure of the membrane module for evaluation will increase, causing problems such as the membrane being crushed. If it is less than 1.1 times, it will not be an accelerated evaluation, so the response to changes in the membrane filtration system body will be delayed. There is a case. Preferably they are 1.1 times or more and 3 times or less.

例えば膜ろ過システム本体で流束1.5m/dで運転している場合、評価用膜モジュールでは2.0m/dになるように運転することが好ましい。逆流物理洗浄流束もろ過流束の加速倍率に合わせることが好ましい。定圧加速運転評価では、圧力を膜ろ過システム本体の1.1倍以上10倍以下の定圧条件で評価用膜モジュールを運転する。10倍を超えると評価用膜モジュールのろ過圧力が高くなり、膜が潰れるなどの問題が生じ、また1.1倍未満では加速評価ではなくなるので、膜ろ過システム本体の変化への対応が遅くなる場合がある。好ましくは1.2倍以上5倍以下である。例えば、膜ろ過システム本体のろ過差圧が20kPa〜40kPaであれば、評価用膜モジュールは50kPa、膜ろ過システム本体のろ過差圧が40〜60kPaであれば、評価用膜モジュールは80kPaとすることが好ましい。このとき逆流物理洗浄圧力は、ろ過圧力の加速倍率に合わせることが好ましい。より加速運転評価する場合は、評価用膜モジュールの単位面積あたりの1回のろ過流量、逆流物理洗浄量を増やしてもよい。   For example, when the membrane filtration system is operated at a flux of 1.5 m / d, the evaluation membrane module is preferably operated at 2.0 m / d. It is preferable to match the reverse flow physical washing flux with the acceleration rate of the filtration flux. In the constant pressure acceleration operation evaluation, the evaluation membrane module is operated under a constant pressure condition in which the pressure is 1.1 to 10 times that of the membrane filtration system main body. If it exceeds 10 times, the filtration pressure of the membrane module for evaluation will increase, causing problems such as the membrane being crushed. If it is less than 1.1 times, it will not be an accelerated evaluation, so the response to changes in the membrane filtration system body will be delayed. There is a case. Preferably they are 1.2 times or more and 5 times or less. For example, if the filtration differential pressure of the membrane filtration system body is 20 kPa to 40 kPa, the evaluation membrane module is 50 kPa. If the filtration differential pressure of the membrane filtration system body is 40 to 60 kPa, the evaluation membrane module is 80 kPa. Is preferred. At this time, it is preferable to match the backflow physical washing pressure with the acceleration magnification of the filtration pressure. When more accelerated operation is evaluated, the filtration flow rate per unit area of the evaluation membrane module and the backflow physical cleaning amount may be increased.

一度の評価で、ろ過工程、逆流物理洗浄工程は5回以上繰り返すことが必要である。この評価は毎日行ってもよいし、数日に1回であってもよい。水質は日々変化することから、毎日評価する方が、膜ろ過システム本体への早期対応が可能になる。評価用膜モジュールは装置に取り付けたまま、何度でも評価が可能である。ただし、ろ過抵抗の上昇度の値が1.0×1012m-2以上になった評価用膜モジュールは、新品と取り替えることが好ましい。 It is necessary to repeat the filtration process and the backflow physical washing process at least five times in one evaluation. This evaluation may be performed every day or once every few days. Since water quality changes from day to day, early assessment of the membrane filtration system is possible by daily assessment. The evaluation membrane module can be evaluated any number of times while attached to the apparatus. However, it is preferable to replace the membrane module for evaluation whose filtration resistance rise value is 1.0 × 10 12 m −2 or more with a new one.

ろ過抵抗の上昇度の評価は、総ろ過水量(m3/m2)を横軸に、式1から算出したろ過抵抗(1/m)を縦軸にプロットした図1において、各ろ過工程開始時のろ過抵抗5点を結んだ直線の傾きを指す。ただし、5点が直線上に乗らない場合には、線形近似で直線の傾きを求めてろ過抵抗の上昇度とする。 The degree of increase in filtration resistance is evaluated by starting each filtration step in Fig. 1 where the total filtered water volume (m 3 / m 2 ) is plotted on the horizontal axis and the filtration resistance (1 / m) calculated from Equation 1 is plotted on the vertical axis. It refers to the slope of a straight line connecting the five filtration resistance points. However, when 5 points do not lie on the straight line, the slope of the straight line is obtained by linear approximation to determine the increase in filtration resistance.

このろ過抵抗の上昇度の値が0.5×1012m-2未満、特に0.3×1012m-2以下であれば、膜ろ過システム本体の差圧は大きく変化せず、安定に長期運転が可能になる。ろ過抵抗の上昇度の値が0.5×1012m-2以上となった場合は、膜ろ過システム本体の膜間差圧は徐々に上昇し、特に1.0×1012m-2以上となった場合は、膜ろ過システム本体の膜間差圧は急激に上昇する。 If the value of the increase in filtration resistance is less than 0.5 × 10 12 m −2 , especially 0.3 × 10 12 m −2 or less, the differential pressure of the membrane filtration system body does not change greatly and is stable. Long-term operation is possible. When the value of the increase in filtration resistance is 0.5 × 10 12 m −2 or more, the transmembrane pressure difference of the membrane filtration system body gradually increases, especially 1.0 × 10 12 m −2 or more. In this case, the transmembrane pressure difference of the membrane filtration system main body increases rapidly.

そこで本発明では、ろ過抵抗の上昇度の値が0.5×1012m-2以上となった場合、あるいは1.0×1012m-2以上となった場合に、前処理として膜ろ過システム本体に入る被処理水にポリ塩化アルミニウムなどのアルミニウム塩や硫酸鉄などの鉄塩などの凝集剤を5ppm以上100ppm以下添加する、および/または逆流物理洗浄で膜ろ過システム本体に次亜塩素酸ナトリウムを10ppm以上500ppm以下添加することで安定運転を維持できることを見出した。 Therefore, in the present invention, when the value of the increase in filtration resistance is 0.5 × 10 12 m −2 or more, or when it is 1.0 × 10 12 m −2 or more, membrane filtration is performed as a pretreatment. Add flocculant such as aluminum salt such as polyaluminum chloride and iron salt such as iron sulfate to the treated water entering the system body and / or hypochlorous acid to the membrane filtration system body by backflow physical cleaning It has been found that stable operation can be maintained by adding 10 ppm to 500 ppm of sodium.

添加剤の効果、コストを考慮するとより好ましくは凝集剤が5ppm以上50ppm以下、次亜塩素酸ナトリウムが10ppm以上300ppm以下である。また他にも効果はあまり高くないが、ろ過流束を小さくする、ろ過時間を短くする、逆流物理洗浄流束を大きくする、逆流物理洗浄時間を長くするなどの膜ろ過システム本体の運転条件を変更してもよい。変更する膜ろ過システム本体の運転条件は、必要透水量およびコスト試算などから考えて決めるとよい。   In consideration of the effect and cost of the additive, the flocculant is more preferably 5 ppm to 50 ppm and the sodium hypochlorite is 10 ppm to 300 ppm. In addition, although the effect is not so high, the operating conditions of the membrane filtration system main body such as reducing the filtration flux, shortening the filtration time, increasing the backflow physical washing flux, increasing the backflow physical washing time, etc. It may be changed. The operating conditions of the membrane filtration system to be changed may be determined based on the required water permeability and cost estimation.

評価用膜モジュールは凝集剤、次亜塩素酸ナトリウムを添加しない被処理水のろ過抵抗の上昇度を測定しており、ろ過抵抗の上昇度の値から運転条件を決めることができる。そのため被処理水が変化し、ろ過抵抗の上昇度の値が0.5×1012m-2以上となり、凝集剤などを添加して運転を継続した後に、再びその値が0.5×1012m-2以上から0.5×1012m-2未満になった場合は、凝集剤の添加などの条件を必要としなくなる。このようにコストや環境への負荷を最低限にした適切な条件で膜ろ過システム本体の運転を長期に安定運転できることが本発明の効果である。 The membrane module for evaluation measures the degree of increase in the filtration resistance of water to be treated without adding a flocculant and sodium hypochlorite, and the operating conditions can be determined from the value of the degree of increase in filtration resistance. Therefore, the water to be treated is changed, the value of the increase in filtration resistance is 0.5 × 10 12 m −2 or more, and after the operation is continued by adding a flocculant or the like, the value is again 0.5 × 10 10. In the case of 12 m −2 or more and less than 0.5 × 10 12 m −2 , conditions such as addition of a flocculant are not necessary. Thus, it is an effect of the present invention that the operation of the membrane filtration system main body can be stably operated over a long period of time under appropriate conditions with minimum cost and environmental load.

以下に具体的な実施例を挙げて本発明を説明するが、本発明はこれら実施例に何ら限定されるものではない。   The present invention will be described below with reference to specific examples, but the present invention is not limited to these examples.

平均孔径が0.05μmのポリフッ化ビニリデン製中空糸膜モジュール(膜面積11.5m2)を用いて、琵琶湖水の定流量外圧全ろ過運転を行った。運転条件は、ろ過流束2.5m/d、逆流物理洗浄流束5.0m/d、回収率95%(ろ過30分、逆流物理洗浄30秒、スクラビング洗浄60秒)とした。 Using a hollow fiber membrane module made of polyvinylidene fluoride having an average pore size of 0.05 μm (membrane area 11.5 m 2 ), a constant flow rate external pressure total filtration operation of Lake Biwa water was performed. The operating conditions were a filtration flux of 2.5 m / d, a reverse flow physical washing flux of 5.0 m / d, and a recovery rate of 95% (filtration 30 minutes, reverse flow physical washing 30 seconds, scrubbing washing 60 seconds).

図2には膜ろ過システム本体に並列につなげた、中空糸膜評価用膜モジュール装置を示した。筒状容器内に膜ろ過システム本体と同じ平均孔径が0.05μmのポリフッ化ビニリデン製中空糸膜6本を収納して端部固定した長さ15mmの評価用膜モジュール1(膜面積0.004m2)を取り付けた。膜ろ過工程では、被処理水を取水口2から採水し、流量調節バルブ3で流量、圧力計4で圧力を調整し、開放したバルブ5の先につなげた評価用膜モジュール1に通水し、開放したバルブ6の先から膜を透過したろ過水9が得られる。このときバルブ7およびバルブ8は閉じてある。逆流物理洗浄工程では、膜を透過したろ過水9を流量調節バルブ10で流量、圧力計11で圧力を調整し、開放したバルブ8の先につなげた評価用膜モジュール1に通水し、開放したバルブ7の先から排水する。このときバルブ5およびバルブ6は閉じている。このろ過、逆流物理洗浄工程を繰り返して、ろ過抵抗の上昇度を求めた。 FIG. 2 shows a hollow fiber membrane evaluation membrane module device connected in parallel to the membrane filtration system main body. A 15 mm long evaluation membrane module 1 (membrane area 0.004 m) in which six hollow fiber membranes made of polyvinylidene fluoride having the same average pore diameter of 0.05 μm as the membrane filtration system main body are housed in a cylindrical container and fixed at the ends. 2 ) Installed. In the membrane filtration process, water to be treated is collected from the water inlet 2, the flow rate is adjusted by the flow rate adjusting valve 3, the pressure is adjusted by the pressure gauge 4, and the water is passed through the evaluation membrane module 1 connected to the end of the opened valve 5. Thus, filtered water 9 that has passed through the membrane from the tip of the opened valve 6 is obtained. At this time, the valve 7 and the valve 8 are closed. In the backflow physical cleaning process, the filtered water 9 that has passed through the membrane is adjusted by the flow rate adjusting valve 10, the pressure is adjusted by the pressure gauge 11, passed through the evaluation membrane module 1 connected to the end of the opened valve 8, and opened. Drain from the tip of the valve 7. At this time, the valve 5 and the valve 6 are closed. This filtration and backflow physical washing steps were repeated to determine the degree of increase in filtration resistance.

実施例1
膜ろ過システムを22日間運転した。評価用膜モジュールは定圧加速運転で、5日ごとに評価用膜モジュールのろ過抵抗の上昇度を測定した。運転初期は、膜ろ過システム本体の膜間差圧は30kPaであり、評価用膜モジュールのろ過圧力は50kPaとした。ろ過抵抗の上昇度は0.4×1012m-2でほぼ一定であった。このとき膜ろ過システム本体の膜間差圧は22日間、30kPaから40kPaであり、安定して運転することができた。
Example 1
The membrane filtration system was operated for 22 days. The evaluation membrane module was measured at a constant pressure acceleration operation every 5 days to measure the degree of increase in the filtration resistance of the evaluation membrane module. In the initial stage of operation, the transmembrane pressure difference of the membrane filtration system main body was 30 kPa, and the filtration pressure of the evaluation membrane module was 50 kPa. The increase in filtration resistance was approximately constant at 0.4 × 10 12 m −2 . At this time, the transmembrane pressure difference of the membrane filtration system main body was from 30 kPa to 40 kPa for 22 days, and could be operated stably.

実施例2
実施例1と同時期に、評価用膜モジュールは定流量加速運転で、5日ごとに評価用膜モジュールのろ過抵抗の上昇度を測定した。ろ過流束は3.0m/d、逆流物理洗浄流束6.0m/dとした。ろ過抵抗の上昇度は0.3×1012m-2でほぼ一定であり、このときの膜ろ過システム本体の膜間差圧は22日間、30kPaから40kPaであり、安定して運転することができた。
Example 2
In the same period as in Example 1, the evaluation membrane module was operated at a constant flow rate acceleration, and the degree of increase in the filtration resistance of the evaluation membrane module was measured every 5 days. The filtration flux was 3.0 m / d and the reverse flow physical washing flux was 6.0 m / d. The increase in filtration resistance is 0.3 × 10 12 m −2 , which is almost constant. At this time, the transmembrane pressure difference of the membrane filtration system body is from 30 kPa to 40 kPa for 22 days. did it.

比較例1
実施例1と同時期に、評価用膜モジュールは定圧加速運転で、評価用膜モジュールのろ過抵抗の上昇度を測定した。評価用膜モジュールのろ過圧力を膜ろ過システム本体の膜間差圧30kPaの15倍の450kPaにしたところ、膜が潰れ、透水量が低下し、評価用膜モジュールで評価することができなかった。
Comparative Example 1
At the same time as Example 1, the evaluation membrane module was measured at a constant pressure acceleration operation to measure the degree of increase in the filtration resistance of the evaluation membrane module. When the filtration pressure of the membrane module for evaluation was set to 450 kPa, which is 15 times the transmembrane differential pressure of 30 kPa of the membrane filtration system main body, the membrane was crushed and the amount of water permeation decreased, and the evaluation membrane module could not be evaluated.

比較例2
実施例1と同時期に、評価用膜モジュールは定流量加速運転で、評価用膜モジュールのろ過抵抗の上昇度を測定した。評価用膜モジュールのろ過流束を2.5m/dの12倍の30m/dにしたところ、ろ過圧力が急激に上昇し、膜が潰れ、透水量が低下し、評価用膜モジュールで評価することができなかった。
Comparative Example 2
In the same period as in Example 1, the evaluation membrane module was subjected to constant flow acceleration operation, and the degree of increase in the filtration resistance of the evaluation membrane module was measured. When the filtration flux of the evaluation membrane module is increased to 30 m / d, which is 12 times 2.5 m / d, the filtration pressure rises rapidly, the membrane is crushed, and the water permeability is reduced. I couldn't.

実施例3
実施例1とは別の時期に、膜ろ過システムを15日間運転した。運転初期の膜ろ過システム本体のろ過差圧は35kPaであった。評価用膜モジュールは定圧加速運転で、ろ過圧力を50kPaとした。ろ過抵抗の上昇度は0.9×1012m-2となり、膜ろ過システム本体の膜間差圧の急激な上昇が予想されたことから、すみやかに膜ろ過システム本体の条件をろ過流束2.5m/dのまま、膜ろ過システム本体に入る被処理水にポリ塩化アルミニウム10mg/L添加した。膜ろ過システム本体の膜間差圧は40kPaから50kPaの間で安定になり、15日目でも50kPaであった。
Example 3
At a time different from Example 1, the membrane filtration system was operated for 15 days. The filtration differential pressure of the membrane filtration system main body in the initial operation was 35 kPa. The evaluation membrane module was operated at a constant pressure and the filtration pressure was 50 kPa. The increase in filtration resistance was 0.9 × 10 12 m −2 , and a sudden increase in the transmembrane pressure difference of the membrane filtration system was predicted. The polyaluminum chloride 10 mg / L was added to the to-be-processed water which enters into a membrane filtration system main part with 0.5 m / d. The transmembrane pressure difference of the membrane filtration system body became stable between 40 kPa and 50 kPa, and was 50 kPa even on the 15th day.

比較例3
実施例3と同時期に、膜ろ過システムを15日間運転した。運転初期の膜ろ過システム本体のろ過差圧は35kPaであった。評価用膜モジュールは定圧加速運転で、ろ過圧力を50kPaとした。ろ過抵抗の上昇度はそれぞれ0.9×1012m-2となり、膜ろ過システム本体の膜間差圧の急激な上昇が予想されたことから、すみやかに膜ろ過システム本体の条件をろ過流束2.5m/dのまま、膜ろ過システム本体に入る被処理水にポリ塩化アルミニウム2mg/L添加した。膜ろ過システム本体の膜間差圧は2日目で50kPaに達し、膜間差圧は上昇し続け、15日目には120kPaに達し、運転を停止した。
Comparative Example 3
At the same time as Example 3, the membrane filtration system was operated for 15 days. The filtration differential pressure of the membrane filtration system main body in the initial operation was 35 kPa. The evaluation membrane module was operated at a constant pressure and the filtration pressure was 50 kPa. The increase in filtration resistance was 0.9 × 10 12 m −2 respectively, and a sudden increase in the transmembrane pressure difference of the membrane filtration system was expected. With 2.5 m / d, 2 mg / L of polyaluminum chloride was added to the water to be treated entering the membrane filtration system main body. The transmembrane pressure difference of the membrane filtration system main body reached 50 kPa on the second day, the transmembrane pressure differential continued to rise, reached 120 kPa on the 15th day, and the operation was stopped.

実施例4
実施例3と同時期に、膜ろ過システムを15日間運転した。運転初期の膜ろ過システム本体のろ過差圧は35kPaであった。評価用膜モジュールは定圧加速運転で、ろ過圧力を50kPaとした。ろ過抵抗の上昇度はそれぞれ0.9×1012m-2となり、膜ろ過システム本体の膜間差圧の急激な上昇が予想されたことから、すみやかに膜ろ過システム本体の逆流物理洗浄に次亜塩素酸ナトリウムを20ppm添加した。膜ろ過システム本体の膜間差圧は45kPaから55kPaの間で安定になり、15日目でも55kPaであった。
Example 4
At the same time as Example 3, the membrane filtration system was operated for 15 days. The filtration differential pressure of the membrane filtration system main body in the initial operation was 35 kPa. The evaluation membrane module was operated at a constant pressure and the filtration pressure was 50 kPa. The increase in filtration resistance was 0.9 × 10 12 m -2 respectively, and a sudden increase in the transmembrane pressure difference of the membrane filtration system was expected. 20 ppm of sodium chlorite was added. The transmembrane pressure difference of the membrane filtration system body became stable between 45 kPa and 55 kPa, and was 55 kPa even on the 15th day.

比較例4
実施例3と同時期に、膜ろ過システムを15日間運転した。運転初期の膜ろ過システム本体のろ過差圧は35kPaであった。評価用膜モジュールは定圧加速運転で、ろ過圧力を50kPaとした。ろ過抵抗の上昇度はそれぞれ0.9×1012m-2となり、膜ろ過システム本体の膜間差圧の急激な上昇が予想されたことから、すみやかに膜ろ過システム本体の逆流物理洗浄に次亜塩素酸ナトリウムを5ppm添加した。膜ろ過システム本体の膜間差圧は上昇し続け、15日目には150kPaに達し、運転を停止した。
Comparative Example 4
At the same time as Example 3, the membrane filtration system was operated for 15 days. The filtration differential pressure of the membrane filtration system main body in the initial operation was 35 kPa. The evaluation membrane module was operated at a constant pressure and the filtration pressure was 50 kPa. The increase in filtration resistance was 0.9 × 10 12 m -2 respectively, and a sudden increase in the transmembrane pressure difference of the membrane filtration system was expected. 5 ppm of sodium chlorite was added. The transmembrane pressure difference of the membrane filtration system body continued to rise and reached 150 kPa on the 15th day, and the operation was stopped.

本発明の膜ろ過システムは、地下水、河川水、湖沼水、海水、下水2次処理水などを膜ろ過する際に利用することができる。 The membrane filtration system of the present invention can be used for membrane filtration of groundwater, river water, lake water, seawater, sewage secondary treated water, and the like.

ろ過実験による総ろ過水量−ろ過抵抗のグラフの一例を示す。An example of the graph of the total amount of filtrate water-filtration resistance by a filtration experiment is shown. 評価用膜モジュールの概略図である。It is the schematic of the membrane module for evaluation.

符号の説明Explanation of symbols

1:評価用膜モジュール
2:取水口
3:流量調整バルブ
4:圧力計
5:バルブ
6:バルブ
7:バルブ
8:バルブ
9:ろ過水
10:流量調整バルブ
11:圧力計
1: Membrane module for evaluation 2: Intake port 3: Flow rate adjusting valve 4: Pressure gauge 5: Valve 6: Valve 7: Valve 8: Valve 9: Filtrated water 10: Flow rate adjusting valve 11: Pressure gauge

Claims (2)

精密ろ過膜および/または限外ろ過膜を備えた膜ろ過システムにおいて、膜ろ過システム本体に使用されるろ過膜よりも膜面積の小さいろ過膜を有する、膜ろ過システム本体と同じ被処理水を評価する評価用膜モジュールを備え、その評価用膜モジュールでろ過抵抗の上昇度を測定し、その結果に基づいて膜ろ過システム本体の運転条件を最適化する膜ろ過システムの運転方法であって、その運転方法が定流量運転または定圧運転であり、評価用膜モジュールの流束または圧力が膜ろ過システム本体のそれよりも1.1倍以上10倍以下の加速試験評価であることを特徴とする膜ろ過システムの運転方法。 For membrane filtration systems equipped with microfiltration membranes and / or ultrafiltration membranes, evaluate the same treated water as the membrane filtration system body, which has a filtration membrane with a smaller membrane area than the filtration membrane used in the membrane filtration system body A membrane filtration system operating method for measuring the degree of increase in filtration resistance with the evaluation membrane module and optimizing the operating conditions of the membrane filtration system based on the results. A membrane characterized in that the operation method is a constant flow rate operation or a constant pressure operation, and the flux or pressure of the membrane module for evaluation is 1.1 to 10 times faster than that of the membrane filtration system main body. How to operate the filtration system. ろ過抵抗の上昇度の値が0.5×1012m-2以上になった場合に、凝集剤を5ppm以上100ppm以下、および/または逆流物理洗浄で次亜塩素酸ナトリウムを10ppm以上500ppm以下添加する請求項1に記載の膜ろ過システムの運転方法。 When the degree of increase in filtration resistance is 0.5 × 10 12 m −2 or more, add 5 ppm to 100 ppm flocculant and / or add 10 ppm to 500 ppm sodium hypochlorite by backflow physical cleaning The operation method of the membrane filtration system according to claim 1.
JP2008080167A 2008-03-26 2008-03-26 Method of operating membrane filtration system Pending JP2009233511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008080167A JP2009233511A (en) 2008-03-26 2008-03-26 Method of operating membrane filtration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008080167A JP2009233511A (en) 2008-03-26 2008-03-26 Method of operating membrane filtration system

Publications (1)

Publication Number Publication Date
JP2009233511A true JP2009233511A (en) 2009-10-15

Family

ID=41248166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080167A Pending JP2009233511A (en) 2008-03-26 2008-03-26 Method of operating membrane filtration system

Country Status (1)

Country Link
JP (1) JP2009233511A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012213674A (en) * 2011-03-31 2012-11-08 Kurita Water Ind Ltd Membrane separator and method for predicting deterioration of separation membrane
CN103180034A (en) * 2010-10-21 2013-06-26 日东电工株式会社 Membrane separation apparatus, membrane separation apparatus operation method, and evaluation method using the membrane separation apparatus
WO2013136735A1 (en) * 2012-03-12 2013-09-19 日東電工株式会社 Membrane separation device, method for measuring membrane fouling, method for operating membrane separation device, and submodule
CN104093478A (en) * 2011-11-25 2014-10-08 吉普斯兰中心地区自来水公司 A method for accelerated testing of a membrane module
JP2015009174A (en) * 2013-06-27 2015-01-19 株式会社日立製作所 Water treatment system and water treatment method for water treatment system
WO2022009833A1 (en) * 2020-07-06 2022-01-13 株式会社クボタ Method of administering coagulant
WO2023189001A1 (en) * 2022-03-31 2023-10-05 オルガノ株式会社 System for predicting water quality in water treatment system, and method for predicting water quality
JP7387560B2 (en) 2020-08-27 2023-11-28 水ing株式会社 Method for estimating membrane contamination rate of hollow fiber membranes and method for estimating chemical cleaning intervals for submerged membrane modules having hollow fiber membranes

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103180034A (en) * 2010-10-21 2013-06-26 日东电工株式会社 Membrane separation apparatus, membrane separation apparatus operation method, and evaluation method using the membrane separation apparatus
JP2012213674A (en) * 2011-03-31 2012-11-08 Kurita Water Ind Ltd Membrane separator and method for predicting deterioration of separation membrane
CN104093478A (en) * 2011-11-25 2014-10-08 吉普斯兰中心地区自来水公司 A method for accelerated testing of a membrane module
WO2013136735A1 (en) * 2012-03-12 2013-09-19 日東電工株式会社 Membrane separation device, method for measuring membrane fouling, method for operating membrane separation device, and submodule
JP2015009174A (en) * 2013-06-27 2015-01-19 株式会社日立製作所 Water treatment system and water treatment method for water treatment system
WO2022009833A1 (en) * 2020-07-06 2022-01-13 株式会社クボタ Method of administering coagulant
JP7387560B2 (en) 2020-08-27 2023-11-28 水ing株式会社 Method for estimating membrane contamination rate of hollow fiber membranes and method for estimating chemical cleaning intervals for submerged membrane modules having hollow fiber membranes
WO2023189001A1 (en) * 2022-03-31 2023-10-05 オルガノ株式会社 System for predicting water quality in water treatment system, and method for predicting water quality

Similar Documents

Publication Publication Date Title
JP2009233511A (en) Method of operating membrane filtration system
JP5549589B2 (en) Fresh water system
JP4867413B2 (en) Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
JP5343655B2 (en) Operation method of membrane module
Abbasi-Garravand et al. Role of two different pretreatment methods in osmotic power (salinity gradient energy) generation
WO2014115769A1 (en) Method for operating freshwater production device
JP5151009B2 (en) Membrane separation device and membrane separation method
WO2016035175A1 (en) Water treatment device and operating method for water treatment device
KR101522254B1 (en) Two stage membrane filtration system having flexible recovery ratio and operation method thereof
JP2013212497A (en) Water treating method
JP7103526B2 (en) Cleaning trouble judgment method and cleaning trouble judgment program of water production equipment
JP7103513B2 (en) Control method of water production equipment by filtration characteristic prediction, trouble judgment method of water production equipment, water production equipment, operation program of water production equipment, trouble judgment program of water production equipment, and recording medium
EP3056258B1 (en) Chemical cleaning method for membrane systems
JP5054289B2 (en) Operation method of membrane separator
EP3056259A1 (en) Device for measuring membrane fouling index
JP2006082027A (en) Water treatment method using filtration membrane and its apparatus
JP4517615B2 (en) Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
JP2006130496A (en) Water treatment device and its operating method
Choi et al. Large-pore membrane filtration with coagulation as an MF/UF pretreatment process
KR20150005008A (en) Maintenance chemical cleaning method of separation membrane and Maintenance chemical cleaning system thereof
WO2017183131A1 (en) Filtration equipment, desalination plant comprising filtration equipment, and filtration method
Lin et al. A pilot study of ultrafiltration pretreatment for seawater reverse osmosis desalination in Bohai Bay
Curcio et al. Membranes for desalination
Dietze et al. Phosphorus removal with membrane filtration for surface water treatment
Xie et al. Understanding permeability decay of pilot-scale microfiltration in secondary effluent reclamation