JP2006130496A - Water treatment device and its operating method - Google Patents

Water treatment device and its operating method Download PDF

Info

Publication number
JP2006130496A
JP2006130496A JP2005204509A JP2005204509A JP2006130496A JP 2006130496 A JP2006130496 A JP 2006130496A JP 2005204509 A JP2005204509 A JP 2005204509A JP 2005204509 A JP2005204509 A JP 2005204509A JP 2006130496 A JP2006130496 A JP 2006130496A
Authority
JP
Japan
Prior art keywords
water
membrane module
water treatment
treatment apparatus
reverse osmosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005204509A
Other languages
Japanese (ja)
Inventor
Yuya Sato
祐也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2005204509A priority Critical patent/JP2006130496A/en
Publication of JP2006130496A publication Critical patent/JP2006130496A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treatment device capable of preventing the reduction of a permeated water amount at the time of the water permeation operation and performing a stable long run even if raw water containing turbid components is permeated by selecting proper operating conditions and suitable membranes to regularly or irregularly perform back-pressure washing from a permeation water side in a water treatment device using a reverse osmosis membrane module or nano-filtering membrane module and a method of operating it. <P>SOLUTION: The water treatment device and the method of operating it in the method for operating the water treatment device in which permeated water and concentrated water are separated by supplying the raw water to the reverse osmosis membrane module and nano-filtering membrane module, for the surface roughness of the membrane used in a membrane element of the reverse osmosis membrane module or nano-filtering membrane module when unused, a membrane of difference between the highest point and lowest point in a straight line of arbitrary length of 1 μm on an even polymerization surface is 0.4 μm or less is used, and the membrane is regularly or irregularly back-pressure washed from the water permeation side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水処理装置およびその運転方法に関し、とくに、逆浸透膜モジュールまたはナノろ過膜モジュールを用いて原水を処理するようにした、水処理装置およびその運転方法に関する。   The present invention relates to a water treatment apparatus and an operation method thereof, and more particularly to a water treatment apparatus and an operation method thereof that treat raw water using a reverse osmosis membrane module or a nanofiltration membrane module.

従来、たとえば、海水の淡水化や、超純水、各種製造プロセス用水を得る方法として、逆浸透膜やナノろ過膜を透過水と濃縮水に分離する膜として用いたモジュール、たとえばスパイラル型膜エレメントを使用し、原水中からイオン成分や低分子成分を分離するようにした水処理装置が知られている。また、低分子ないし高分子成分を分離したり、低分子ないし高分子成分のうち、高分子成分のみを分離するようにした限外ろ過や、微粒子を分離するようにした精密ろ過においても、一部スパイラル型膜エレメントが用いられている。このスパイラル型膜エレメントは、たとえば、透過水スペーサの両面に分離膜を重ね合わせて三辺を接着することにより袋状膜を形成し、該袋状膜の開口端を透過水集水管に取り付け、網状の原水スペーサとともに、集水管の周りにスパイラル状に巻回して構成されている。巻回される袋状膜間に配設される原水スペーサにより原水経路が形成される。原水は、原水スペーサに沿って流れる間に、分離膜を透過して透過水スペーサを通して集水管に流入する透過水と、原水スペーサを通過する濃縮水とに分離される。このようなスパイラル型膜エレメントを備えた分離膜モジュールは、単体で用いられることもあり、水の回収率や処理量向上のために、並列に配置したり複数段に配置した形態で使用されることもある。   Conventionally, for example, as a method for obtaining seawater desalination, ultrapure water, and water for various production processes, a module, for example, a spiral membrane element, used as a membrane for separating a reverse osmosis membrane or a nanofiltration membrane into permeated water and concentrated water There is known a water treatment apparatus that separates ionic components and low molecular components from raw water. Also, it is possible to separate low molecular or high molecular components, ultrafiltration that separates only high molecular components from low molecular or high molecular components, and microfiltration that separates fine particles. Partial spiral membrane elements are used. This spiral membrane element is formed, for example, by forming a bag-like membrane by laminating separation membranes on both sides of a permeate spacer and adhering three sides, and attaching the open end of the bag-like membrane to a permeate water collecting pipe, Along with the net-like raw water spacer, it is wound around the water collecting pipe in a spiral shape. The raw water path is formed by the raw water spacers disposed between the wound bag-like membranes. While flowing along the raw water spacer, the raw water is separated into permeated water that passes through the separation membrane and flows into the water collecting pipe through the permeated water spacer, and concentrated water that passes through the raw water spacer. Separation membrane modules equipped with such a spiral membrane element may be used as a single unit, and are used in parallel or in multiple stages to improve water recovery and throughput. Sometimes.

このようなスパイラル型膜エレメントを備えた分離膜モジュールを用いて海水の淡水化や、超純水、各種製造プロセス用水を得る場合、通常、原水中の濁質などを除去する目的で前処理が行われている。この前処理を行うのは、スパイラル型膜エレメント、たとえば逆浸透膜スパイラル型エレメントでは、原水スペーサの厚みが、原水流路を確保しつつできる限り原水と逆浸透膜との接触面積を大きくとるため、通常1mm以下と薄く、濁質が原水流路にある原水スペーサに蓄積され、原水流路を閉塞しやすい構造となっているので、予め原水中の濁質を除去して濁質蓄積による通水差圧の上昇や透過水量、透過水質の低下を回避し、長時間にわたり安定した運転を行うことができるようにするためである。このような除濁目的で用いられる前処理装置は、たとえば、凝集沈殿処理、ろ過処理または膜処理などの各装置を含むものであり、これらの装置は、水処理システム全体の設置コストや運転コストを上昇させるとともに、大きな設置面積を必要とするなどの問題を有していた。   When using a separation membrane module equipped with such a spiral membrane element to obtain seawater desalination, ultrapure water, and water for various manufacturing processes, pretreatment is usually performed for the purpose of removing turbidity in raw water. Has been done. This pretreatment is performed in a spiral membrane element, for example, a reverse osmosis membrane spiral element, because the thickness of the raw water spacer increases the contact area between the raw water and the reverse osmosis membrane as much as possible while securing the raw water flow path. However, the turbidity is usually less than 1 mm and accumulated in the raw water spacer in the raw water flow path, and the raw water flow path is likely to be blocked. This is to avoid an increase in the water differential pressure, a decrease in the amount of permeated water, and a decrease in the quality of the permeated water, so that stable operation can be performed for a long time. Such a pretreatment device used for the purpose of turbidity includes, for example, each device such as a coagulation sedimentation treatment, a filtration treatment or a membrane treatment, and these devices are the installation cost and operation cost of the entire water treatment system. In addition, there is a problem that a large installation area is required.

ところで、スパイラル型膜エレメントに装着する逆浸透膜モジュールまたはナノろ過膜モジュールに対する前処理が省略もしくは簡略化できれば、濁質を含む原水を前処理なし、もしくは簡易な方法でスパイラル型膜エレメントに供給でき、システム全体の簡略化、設置面積の低減、低コスト化が可能となり、産業上の利用価値は極めて高いものとなる。しかし、濁質を含む原水を、直接スパイラル型膜エレメントに供給すると、原水流路の閉塞による通水差圧の上昇や、膜面に汚染物質が付着することによる透過水量の減少といった深刻な問題が発生してしまう。また近年、逆浸透膜やナノろ過膜の低圧化が進み、その素材としてポリアミド(PA)系が多く用いられている。PA膜は、低圧化が可能なものの、汚れに弱く、汚染物質が膜面に付着しやすい傾向がある。   By the way, if the pretreatment for the reverse osmosis membrane module or nanofiltration membrane module attached to the spiral membrane element can be omitted or simplified, the raw water containing turbidity can be supplied to the spiral membrane element without any pretreatment or by a simple method. The whole system can be simplified, the installation area can be reduced, and the cost can be reduced, and the industrial utility value is extremely high. However, if raw water containing turbidity is supplied directly to the spiral membrane element, serious problems such as an increase in the water flow differential pressure due to blockage of the raw water flow path and a decrease in the amount of permeate due to contaminants adhering to the membrane surface Will occur. In recent years, pressure reduction of reverse osmosis membranes and nanofiltration membranes has progressed, and polyamide (PA) type is often used as the material. Although the PA film can be reduced in pressure, it is weak against dirt and tends to adhere to the film surface with contaminants.

中空糸形態のUFやMFでは、定期的な逆圧洗浄により、透過水量の維持を図っている。しかし、スパイラル膜エレメントでは、その構造上、逆圧洗浄が困難である。スパイラル型のUFにおいて、一部逆圧洗浄が可能なエレメントが上市されているが、スパイラル型のROやNFでは、未だ逆圧洗浄を志向したエレメントは存在していない。   In hollow fiber UF and MF, the amount of permeated water is maintained by regular backwashing. However, backwashing with a spiral membrane element is difficult due to its structure. In spiral-type UF, elements that can be partially back-pressure cleaned are put on the market. However, in spiral-type RO and NF, there are no elements intended for back-pressure cleaning.

また、特許文献1には、原水側である1次側を入口側および出口側から交互にフラッシングする方法が示されている。しかし、この方法では、原水側の通水差圧上昇を抑制する効果はあるものの、透過水量の低下を抑制する効果は不十分であり、長期間の運転によって、透過水量の低下は避けられなかった。   Patent Document 1 discloses a method of alternately flushing the primary side that is the raw water side from the inlet side and the outlet side. However, this method has the effect of suppressing the increase in the water flow differential pressure on the raw water side, but the effect of suppressing the decrease in the permeate flow rate is insufficient, and a decrease in the permeate flow rate is unavoidable due to long-term operation. It was.

さらに、特許文献2には、懸濁性物質等を含む水へ凝集剤を添加し、膜分離装置に通水して、30〜120分間隔で膜を背圧洗浄する方法が示されている。しかしこの方法は、主にUF膜を志向した方法であるし、この方法を通常のスパイラル型膜エレメントに適用すると、凝集剤による凝集物が原水流路を閉塞させ、通水差圧を上昇させ、運転そのものを困難にしてしまう場合があった。
特開2004−141864号公報 特開平2−265628号公報
Furthermore, Patent Document 2 discloses a method in which a flocculant is added to water containing a suspending substance and the like, water is passed through a membrane separator, and the membrane is back-pressure washed at intervals of 30 to 120 minutes. . However, this method is mainly intended for UF membranes, and when this method is applied to a normal spiral membrane element, aggregates due to the flocculant block the raw water flow path and increase the water flow differential pressure. , Driving itself could be difficult.
JP 2004-141864 A JP-A-2-265628

本発明の課題は、逆浸透膜モジュールまたはナノ濾過膜モジュールを用いた水処理装置において、適切な運転条件および適切な膜を選択し、定期または不定期に透過側から逆圧洗浄を行うことにより、濁質を含む原水を通水した場合においても、透過運転時の透過水量の減少を防止でき、安定して長期運転可能な水処理装置およびその運転方法を提供することにある。   An object of the present invention is to select an appropriate operating condition and an appropriate membrane in a water treatment apparatus using a reverse osmosis membrane module or a nanofiltration membrane module, and perform back pressure washing from the permeation side regularly or irregularly. An object of the present invention is to provide a water treatment apparatus capable of preventing a decrease in the amount of permeated water during permeation operation even when raw water containing turbidity is passed, and a method for operating the same, which can be stably operated for a long time.

上記課題を解決するために、本発明に係る水処理装置の運転方法は、原水を逆浸透膜モジュールまたはナノろ過膜モジュールに供給して透過水と濃縮水とに分離する水処理装置の運転方法において、前記逆浸透膜モジュールまたはナノろ過膜モジュールの膜エレメントに使用されている膜の未使用時における表面粗さが、均一重合面における任意の長さ1μmの直線中の最頂点と最低点との差(高低差)が0.4μm以下である膜を使用し、定期または不定期に前記透過側から逆圧洗浄することを特徴とする方法からなる。このようなエレメントを選択することにより、効果的な逆圧洗浄ができ、透過水量の維持が可能となる。0.4μmを超えてしまうと、逆圧洗浄による透過水量の回復性が悪くなる。   In order to solve the above problems, the operation method of the water treatment apparatus according to the present invention is an operation method of a water treatment apparatus that supplies raw water to a reverse osmosis membrane module or a nanofiltration membrane module to separate permeated water and concentrated water. The surface roughness when the membrane used in the membrane element of the reverse osmosis membrane module or the nanofiltration membrane module is not used is the highest vertex and the lowest point in a straight line having an arbitrary length of 1 μm on the uniform polymerization surface, Using a film having a difference in height (height difference) of 0.4 μm or less, and performing back pressure washing from the permeation side regularly or irregularly. By selecting such an element, effective back pressure cleaning can be performed and the amount of permeated water can be maintained. If it exceeds 0.4 μm, the recoverability of the amount of permeated water by back pressure cleaning will deteriorate.

ここで言う「均一重合面」とは、通常の膜表面を指しており、例えば基材面の凹凸、部分的に重合が不完全である故の段差、物理的欠陥、などによって均一な表面とは言い難い面を除外した部分を指している。つまり、「均一重合面における任意の長さ1μmの直線中の最頂点と最低点との差」とは、基材面の凹凸等によって大きな段差が生じている部分を除いた膜表面における、膜表面の凹凸度合いを示している。例えば、ポリアミド系素材の逆浸透膜では、一般に「膜面のひだの高さ」といった表現が用いられる。本発明における上記膜には、ポリアミド膜のような複合膜はもちろん、セルロース系素材の膜のような非対称膜も含まれ、膜面が重合体(ポリマー)であればよい。   The term “uniformly polymerized surface” as used herein refers to a normal film surface. For example, the surface is uniform due to unevenness of the substrate surface, steps due to partial incomplete polymerization, physical defects, etc. Indicates the part excluding the difficult side. In other words, the “difference between the highest vertex and the lowest point in a straight line having an arbitrary length of 1 μm on the uniform polymerization surface” means the film surface on the film surface excluding a portion where a large level difference is caused by unevenness of the substrate surface. It shows the degree of unevenness on the surface. For example, in a reverse osmosis membrane made of a polyamide-based material, the expression “height of the folds on the membrane surface” is generally used. The membrane in the present invention includes not only a composite membrane such as a polyamide membrane but also an asymmetric membrane such as a membrane of a cellulose-based material, and the membrane surface may be a polymer.

上記膜の未使用時における表面粗さは、均一重合面における任意の長さ1μmの直線中の最頂点と最低点との差は0.4μm以下、好ましくは0.2μm以下、より好ましくは0.1μm以下である。これにより、逆圧洗浄によって、さらに効果的に透過水量を回復させることが可能となる。たとえばスパイラル型膜エレメントでは、膜のリーフ一枚は約1m四方と大きく、全体が均一に重合しているとは言えない。長さ1μm程度の微小区間を観察し、均一な重合面を測定するのがよい。測定には、走査電子顕微鏡(SEM)や原子間力顕微鏡(AFM)を使用することができる。   The surface roughness when the film is not used is such that the difference between the highest vertex and the lowest point in a straight line having an arbitrary length of 1 μm on the uniform polymerization surface is 0.4 μm or less, preferably 0.2 μm or less, more preferably 0 .1 μm or less. Thereby, it becomes possible to recover the amount of permeated water more effectively by back pressure cleaning. For example, in a spiral type membrane element, one leaf of the membrane is as large as about 1 m square, and it cannot be said that the whole is uniformly polymerized. It is better to observe a minute section with a length of about 1 μm and measure a uniform overlapping surface. For the measurement, a scanning electron microscope (SEM) or an atomic force microscope (AFM) can be used.

また、上記課題を解決するために、本発明に係るもう一つの水処理装置の運転方法は、原水を逆浸透膜モジュールまたはナノろ過膜モジュールに供給して透過水と濃縮水とに分離する水処理装置の運転方法において、前記逆浸透膜モジュールまたはナノろ過膜モジュールの膜エレメントに使用されている膜に、0.5MPaの供給圧で0.7m3/(m2・day)以上の透過流束を得られる膜を使用し、定期または不定期に前記透過側から逆圧洗浄することを特徴とするものからなる。このように低圧で比較的高い透過水量を得られる膜エレメントを使用することにより、逆圧洗浄時の逆洗水量を多く取れ、回復性がよくなる。0.5MPaの供給圧で0.7m3/(m2・day)以下になってしまうと、逆洗水量が少なく、逆圧洗浄による透過水量の回復性が悪くなるおそれがある。 In order to solve the above-mentioned problem, another method for operating a water treatment apparatus according to the present invention is a method of supplying raw water to a reverse osmosis membrane module or a nanofiltration membrane module and separating it into permeated water and concentrated water. In the operation method of the treatment apparatus, a permeate flow of 0.7 m 3 / (m 2 · day) or more at a supply pressure of 0.5 MPa is applied to the membrane used in the membrane element of the reverse osmosis membrane module or the nanofiltration membrane module. A membrane capable of obtaining a bundle is used, and back pressure cleaning is performed from the permeation side regularly or irregularly. By using a membrane element that can obtain a relatively high amount of permeated water at a low pressure in this way, a large amount of backwashing water can be obtained during backwashing, and the recoverability is improved. If it becomes 0.7 m 3 / (m 2 · day) or less at a supply pressure of 0.5 MPa, the amount of backwashing water is small, and there is a possibility that the recoverability of the amount of permeated water by backwashing may deteriorate.

上記逆圧洗浄時においては、透過運転時における逆浸透膜モジュールまたはナノろ過膜モジュールへの原水供給側に洗浄水を排出することが好ましい。つまり、透過運転時においてはモジュールへの原水の入口側が最も汚染され易いので、上記のような流路を形成すればモジュールへの原水の入口側に堆積した汚染物質を効率的に除去できる。   At the time of the reverse pressure cleaning, it is preferable to discharge the cleaning water to the raw water supply side to the reverse osmosis membrane module or the nanofiltration membrane module during the permeation operation. That is, since the inlet side of the raw water to the module is most easily contaminated during the permeation operation, the pollutants accumulated on the inlet side of the raw water to the module can be efficiently removed by forming the flow path as described above.

上記逆圧洗浄の際の圧力は、運転時の圧力の1〜99%(好ましくは10〜80%、さらに好ましくは20〜60%)の間に設定し、かつ0.5MPaを超えない値に設定することが望ましい。このように逆圧洗浄時に適切な圧力設定をすることにより、エレメントの破損を防ぎ、繰り返し逆圧洗浄が実施できる。運転時の圧力の1%未満では、圧力が低すぎて、水が流れず、逆洗そのものが行なえない。50%を超える、もしくは0.5MPaを超えてしまうと、膜の破損が生じるおそれがある。   The pressure at the time of the back pressure cleaning is set to 1 to 99% (preferably 10 to 80%, more preferably 20 to 60%) of the operating pressure, and does not exceed 0.5 MPa. It is desirable to set. Thus, by setting an appropriate pressure at the time of back pressure cleaning, the element can be prevented from being damaged and repeated back pressure cleaning can be performed. If it is less than 1% of the operating pressure, the pressure is too low, water does not flow, and backwashing itself cannot be performed. If it exceeds 50% or exceeds 0.5 MPa, the membrane may be damaged.

上記逆圧洗浄の洗浄間隔は、定期の場合には10分〜24時間に1回実施することを特徴とする、ことが好ましい。これにより、適切な洗浄間隔を設定し、安定した運転を可能とする。10分未満だと、あまりにも頻繁すぎて、水回収率の低下および膜寿命の短縮を引き起こすおそれがある。一方、24時間を超えると、透過水量の回復性が徐々に悪くなるおそれがある。   In the case of a regular period, the back pressure cleaning interval is preferably performed once every 10 minutes to 24 hours. Thereby, an appropriate cleaning interval is set, and stable operation is possible. If it is less than 10 minutes, it is too frequent and may cause a reduction in water recovery rate and a shortened membrane life. On the other hand, if it exceeds 24 hours, the recoverability of the amount of permeated water may gradually deteriorate.

上記逆圧洗浄の洗浄間隔は、不定期の場合には前回洗浄直後の透過水量よりも1〜20%減少した時点の、あらかじめ設定した減少割合となった時点で実施することが好ましい。これにより、適切な洗浄間隔を設定し、安定した運転を可能とする。1%未満だと、あまりにも頻繁すぎて、水回収率の低下および膜寿命の短縮を引き起こすおそれがある。一方、20%を超えると、透過水量の回復性が徐々に悪くなるおそれがある。   In the case of irregular intervals, it is preferable to carry out the back pressure cleaning at the time when the reduction rate is set in advance, which is 1 to 20% lower than the amount of permeated water immediately after the previous cleaning. Thereby, an appropriate cleaning interval is set, and stable operation is possible. If it is less than 1%, it is too frequent and may cause a decrease in water recovery rate and shortening of membrane life. On the other hand, if it exceeds 20%, the recoverability of the permeated water amount may be gradually deteriorated.

上記逆圧洗浄の洗浄時間は、15〜120秒間に設定することが好ましい。適切な設定により、効果的な逆圧洗浄が行なえる。15秒未満だと洗浄が不十分であり、透過水量の回復が不十分になるおそれがある。一方、120秒を超えると、水回収率の低下および膜寿命の短縮を引き起こすおそれがある。   It is preferable to set the cleaning time for the back pressure cleaning to 15 to 120 seconds. Effective back pressure cleaning can be performed with appropriate settings. If it is less than 15 seconds, the washing is insufficient, and the permeated water amount may not be recovered sufficiently. On the other hand, if it exceeds 120 seconds, the water recovery rate may be reduced and the membrane life may be shortened.

上記逆圧洗浄の洗浄水としては、透過水を用いることが好ましい。透過水を用いることで、効果的な逆圧洗浄が行なえる。   It is preferable to use permeated water as the washing water for the back pressure washing. By using permeated water, effective back pressure cleaning can be performed.

上記逆浸透膜またはナノろ過膜としては、平膜、中空糸膜、管状膜等を用いることができるが、スパイラル型膜エレメントを用いれば、より安価なシステムを提供できることができるので、好ましい。   As the reverse osmosis membrane or nanofiltration membrane, a flat membrane, a hollow fiber membrane, a tubular membrane or the like can be used. However, use of a spiral membrane element is preferable because a cheaper system can be provided.

上記原水としてはFI値(Fouling Index)が4以上の原水を用いることができる。通常スパイラル型膜エレメントでは、FI値の上限を低く設定し、原水条件を制限しているが、本発明によれば、FI値4以上の原水であっても、直接逆浸透ろ過、またはナノろ過して処理可能である。本願において「直接」とは、予め原水に凝集剤を添加したり、あるいは水処理装置の系内に原水を導入するための前処理としてのろ過等をせずに、被処理水をそのまま水処理装置の系内に導入し逆浸透ろ過、またはナノろ過することを意味する。ただし、0.5mm以上の粗大粒子が混入すると、エレメントの物理的な破損のおそれがあるので、粗大粒子は予め除去することが好ましい。粗大粒子は簡単なストレーナ等で除去できる。原水としては、通常除濁が必要とされる水であれば特に制限されないが、例えば地下水、井戸水、河川水、湖沼水、雨水、工業用水、水道水、下排水処理水等が例示される。なお、FI値はSDI値と呼ばれることもある。   As the raw water, raw water having an FI value (Fouling Index) of 4 or more can be used. Normally, in the spiral membrane element, the upper limit of the FI value is set low and the raw water conditions are limited. However, according to the present invention, even if the raw water has an FI value of 4 or more, direct reverse osmosis filtration or nanofiltration is performed. Can be processed. In the present application, “directly” means that the water to be treated is treated as it is without adding a flocculant to the raw water in advance or performing filtration as a pretreatment for introducing the raw water into the system of the water treatment apparatus. Introducing into the system of the device means reverse osmosis filtration or nanofiltration. However, if coarse particles of 0.5 mm or more are mixed, there is a risk of physical damage to the element, so it is preferable to remove the coarse particles in advance. Coarse particles can be removed with a simple strainer or the like. The raw water is not particularly limited as long as it normally requires turbidity, and examples thereof include groundwater, well water, river water, lake water, rain water, industrial water, tap water, and treated sewage water. The FI value is sometimes called an SDI value.

また、上記原水には、スケール防止剤、ファウリング防止剤などの分散剤を添加してもよい。これにより、原水スペーサ、膜面両方への濁質蓄積をより抑制することができ、逆圧洗浄による回復性がさらによくなる。使用する分散剤としては、特に制限されないが、例えばARGO SCIENTIFIC社製のHypersperse MSI300やHypersperse MDC200などが挙げられる。   Moreover, you may add dispersing agents, such as a scale inhibitor and a fouling inhibitor, to the said raw | natural water. Thereby, accumulation of turbidity on both the raw water spacer and the membrane surface can be further suppressed, and the recoverability by back pressure cleaning is further improved. The dispersing agent to be used is not particularly limited, and examples thereof include Hypersperse MSI300 and Hypersperse MDC200 manufactured by ARGO SCIENTIFIC.

上記課題を解決するために、本発明に係る水処理装置は、原水を逆浸透膜モジュールまたはナノろ過膜モジュールに供給して透過水と濃縮水とに分離する水処理装置の運転において、前記逆浸透膜モジュールまたはナノろ過膜モジュールの膜エレメントに使用されている膜の未使用時における表面粗さが、均一重合面における任意の長さ1μmの直線中の最頂点と最低点との差が0.4μm以下である膜を使用し、定期または不定期に前記透過側から逆圧洗浄する手段を有することを特徴とするものからなる。このようなエレメントを選択することにより、効果的な逆圧洗浄ができ、透過水量の維持が可能となる。0.4μmを超えてしまうと、逆圧洗浄による透過水量の回復性が悪くなる。   In order to solve the above-described problems, the water treatment device according to the present invention supplies the raw water to the reverse osmosis membrane module or the nanofiltration membrane module, and in the operation of the water treatment device that separates the permeated water and the concentrated water, When the membrane used in the membrane element of the osmosis membrane module or the nanofiltration membrane module is not used, the difference between the highest vertex and the lowest point in the straight line with an arbitrary length of 1 μm on the uniform polymerization surface is 0. It is characterized by using a membrane having a thickness of 4 μm or less and having means for back-pressure cleaning from the permeation side at regular or irregular intervals. By selecting such an element, effective back pressure cleaning can be performed and the amount of permeated water can be maintained. If it exceeds 0.4 μm, the recoverability of the amount of permeated water by back pressure cleaning will deteriorate.

上記膜の未使用時における表面粗さは、均一重合面における任意の長さ1μmの直線中の最頂点と最低点との差は0.4μm以下、好ましくは0.2μm以下、より好ましくは0.1μm以下である。これにより、逆圧洗浄によって、さらに効果的に透過水量を回復させることが可能となる。たとえばスパイラル型膜エレメントでは、膜のリーフ一枚は約1m四方と大きく、全体が均一に重合しているとは言えない。長さ1μm程度の微小区間を観察し、均一な重合面を測定するのがよい。測定には、走査電子顕微鏡(SEM)や原子間力顕微鏡(AFM)を使用することができる。   The surface roughness when the film is not used is such that the difference between the highest vertex and the lowest point in a straight line having an arbitrary length of 1 μm on the uniform polymerization surface is 0.4 μm or less, preferably 0.2 μm or less, more preferably 0. .1 μm or less. Thereby, it becomes possible to recover the amount of permeated water more effectively by back pressure cleaning. For example, in a spiral type membrane element, one leaf of the membrane is as large as about 1 m square, and it cannot be said that the whole is uniformly polymerized. It is better to observe a minute section with a length of about 1 μm and measure a uniform overlapping surface. For the measurement, a scanning electron microscope (SEM) or an atomic force microscope (AFM) can be used.

また、上記課題を解決するために、本発明に係るもう一つの水処理装置は、原水を逆浸透膜モジュールまたはナノろ過膜モジュールに供給して透過水と濃縮水とに分離する水処理装置の運転において、前記逆浸透膜モジュールまたはナノろ過膜モジュールの膜エレメントに使用されている膜に0.5MPaの供給圧で0.7m3/(m2・day)以上の透過流束を得られる膜を使用し、定期または不定期に前記透過側から逆圧洗浄する手段を有することを特徴とするものからなる。このように低圧で比較的高い透過水量を得られる膜エレメントを使用することにより、逆圧洗浄時の逆洗水量を多く取れ、回復性がよくなる。0.5MPaの供給圧で0.7m3/(m2・day)以下になってしまうと、逆洗水量が少なく、逆圧洗浄による透過水量の回復性が悪くなるおそれがある。 In order to solve the above-mentioned problem, another water treatment device according to the present invention is a water treatment device for supplying raw water to a reverse osmosis membrane module or a nanofiltration membrane module and separating it into permeated water and concentrated water. In operation, a membrane capable of obtaining a permeation flux of 0.7 m 3 / (m 2 · day) or more at a supply pressure of 0.5 MPa to the membrane used in the membrane element of the reverse osmosis membrane module or nanofiltration membrane module And having means for back-pressure cleaning from the permeation side at regular or irregular intervals. By using a membrane element that can obtain a relatively high amount of permeated water at a low pressure in this way, a large amount of backwashing water can be obtained during backwashing, and the recoverability is improved. If it becomes 0.7 m 3 / (m 2 · day) or less at a supply pressure of 0.5 MPa, the amount of backwashing water is small, and there is a possibility that the recoverability of the amount of permeated water by backwashing may deteriorate.

上記逆圧洗浄時においては、透過運転時における逆浸透膜モジュールまたはナノろ過膜モジュールへの原水供給側に洗浄水を排出することが好ましい。つまり、透過運転時においてはモジュールへの原水の入口側が最も汚染され易いので、上記のような流路を形成すればモジュールへの原水の入口側に堆積した汚染物質を効率的に除去できる。   At the time of the reverse pressure cleaning, it is preferable to discharge the cleaning water to the raw water supply side to the reverse osmosis membrane module or the nanofiltration membrane module during the permeation operation. That is, since the inlet side of the raw water to the module is most easily contaminated during the permeation operation, the pollutants accumulated on the inlet side of the raw water to the module can be efficiently removed by forming the flow path as described above.

上記逆圧洗浄の際の圧力は、運転時の圧力の1〜99%(好ましくは10〜80%、さらに好ましくは20〜60%)の間に設定し、かつ0.5MPaを超えない値に設定することが望ましい。このように逆圧洗浄時に適切な圧力設定をすることにより、エレメントの破損を防ぎ、繰り返し逆圧洗浄が実施できる。運転時の圧力の1%未満では、圧力が低すぎて、水が流れず、逆洗そのものが行なえない。50%を超える、もしくは0.5MPaを超えてしまうと、膜の破損が生じるおそれがある。   The pressure at the time of the back pressure cleaning is set to 1 to 99% (preferably 10 to 80%, more preferably 20 to 60%) of the operating pressure, and does not exceed 0.5 MPa. It is desirable to set. Thus, by setting an appropriate pressure at the time of back pressure cleaning, the element can be prevented from being damaged and repeated back pressure cleaning can be performed. If it is less than 1% of the operating pressure, the pressure is too low, water does not flow, and backwashing itself cannot be performed. If it exceeds 50% or exceeds 0.5 MPa, the membrane may be damaged.

上記逆圧洗浄の洗浄間隔は、定期の場合には10分〜24時間に1回実施することを特徴とする、ことが好ましい。これにより、適切な洗浄間隔を設定し、安定した運転を可能とする。10分未満だと、あまりにも頻繁すぎて、水回収率の低下および膜寿命の短縮を引き起こすおそれがある。一方、24時間を超えると、透過水量の回復性が徐々に悪くなるおそれがある。   In the case of a regular period, the back pressure cleaning interval is preferably performed once every 10 minutes to 24 hours. Thereby, an appropriate cleaning interval is set, and stable operation is possible. If it is less than 10 minutes, it is too frequent and may cause a reduction in water recovery rate and a shortened membrane life. On the other hand, if it exceeds 24 hours, the recoverability of the amount of permeated water may gradually deteriorate.

上記逆圧洗浄の洗浄間隔は、不定期の場合には前回洗浄直後の透過水量よりも1〜20%減少した時点の、あらかじめ設定した減少割合となった時点で実施することが好ましい。これにより、適切な洗浄間隔を設定し、安定した運転を可能とする。1%未満だと、あまりにも頻繁すぎて、水回収率の低下および膜寿命の短縮を引き起こすおそれがある。一方、20%を超えると、透過水量の回復性が徐々に悪くなるおそれがある。   In the case of irregular intervals, it is preferable to carry out the back pressure cleaning at the time when the reduction rate is set in advance, which is 1 to 20% lower than the amount of permeated water immediately after the previous cleaning. Thereby, an appropriate cleaning interval is set, and stable operation is possible. If it is less than 1%, it is too frequent and may cause a decrease in water recovery rate and shortening of membrane life. On the other hand, if it exceeds 20%, the recoverability of the permeated water amount may be gradually deteriorated.

上記逆圧洗浄の洗浄時間は、15〜120秒間に設定することが好ましい。適切な設定により、効果的な逆圧洗浄が行なえる。15秒未満だと洗浄が不十分であり、透過水量の回復が不十分になるおそれがある。一方、120秒を超えると、水回収率の低下および膜寿命の短縮を引き起こすおそれがある。   It is preferable to set the cleaning time for the back pressure cleaning to 15 to 120 seconds. Effective back pressure cleaning can be performed with appropriate settings. If it is less than 15 seconds, the washing is insufficient, and the permeated water amount may not be recovered sufficiently. On the other hand, if it exceeds 120 seconds, the water recovery rate may be reduced and the membrane life may be shortened.

上記逆圧洗浄の洗浄水としては、透過水を用いることが好ましい。透過水を用いることで、効果的な逆圧洗浄が行なえる。   It is preferable to use permeated water as the washing water for the back pressure washing. By using permeated water, effective back pressure cleaning can be performed.

上記逆浸透膜またはナノろ過膜としては、平膜、中空糸膜、管状膜等を用いることができるが、スパイラル型膜エレメントを用いれば、より安価なシステムを提供できることができるので、好ましい。   As the reverse osmosis membrane or nanofiltration membrane, a flat membrane, a hollow fiber membrane, a tubular membrane or the like can be used. However, use of a spiral membrane element is preferable because a cheaper system can be provided.

上記原水としてはFI値(Fouling Index)が4以上の原水を用いることができる。通常スパイラル型膜エレメントでは、FI値の上限を低く設定し、原水条件を制限しているが、本発明によれば、FI値4以上の原水であっても、直接逆浸透ろ過、またはナノろ過して処理可能である。ただし、0.5mm以上の粗大粒子が混入すると、エレメントの物理的な破損のおそれがあるので、粗大粒子は予め除去することが好ましい。粗大粒子は簡単なストレーナ等で除去できる。原水としては、通常除濁が必要とされる水であれば特に制限されないが、例えば地下水、井戸水、河川水、湖沼水、雨水、工業用水、水道水、下排水処理水等が例示される。   As the raw water, raw water having an FI value (Fouling Index) of 4 or more can be used. Normally, in the spiral membrane element, the upper limit of the FI value is set low and the raw water conditions are limited. However, according to the present invention, even when the raw water has an FI value of 4 or more, direct reverse osmosis filtration or nanofiltration is performed. Can be processed. However, if coarse particles of 0.5 mm or more are mixed, there is a risk of physical damage to the element, so it is preferable to remove the coarse particles in advance. Coarse particles can be removed with a simple strainer or the like. The raw water is not particularly limited as long as it normally requires turbidity, and examples thereof include groundwater, well water, river water, lake water, rain water, industrial water, tap water, and treated sewage water.

また、上記原水には、スケール防止剤、ファウリング防止剤などの分散剤を添加してもよい。これにより、原水スペーサ、膜面両方への濁質蓄積をより抑制することができ、逆圧洗浄による回復性がさらによくなる。使用する分散剤としては、特に制限されないが、例えばARGO SCIENTIFIC社製のHypersperse MSI300やHypersperse MDC200などが挙げられる。   Moreover, you may add dispersing agents, such as a scale inhibitor and a fouling inhibitor, to the said raw | natural water. Thereby, accumulation of turbidity on both the raw water spacer and the membrane surface can be further suppressed, and the recoverability by back pressure cleaning is further improved. The dispersing agent to be used is not particularly limited, and examples thereof include Hypersperse MSI300 and Hypersperse MDC200 manufactured by ARGO SCIENTIFIC.

上記本発明に係る水処理装置およびその運転方法においては、透過運転時のおける経時的な透過水量の低下を抑制でき、装置の長期間安定した運転が可能となる。   In the water treatment apparatus and the operation method thereof according to the present invention, it is possible to suppress a decrease in the amount of permeated water over time during the permeation operation, and the apparatus can be stably operated for a long period of time.

以下に本発明の望ましい実施の形態を、図面を参照して説明する。なお、以降説明する実施の形態は、発明の一例を示すものであり、発明の内容を制限するものではない。
図1を参照して、本発明の実施の形態における分離膜モジュールの運転方法を説明する。なお、図1では、説明に不要な圧力計、流量計、弁等は一部省略している。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. The embodiment described below shows an example of the invention and does not limit the content of the invention.
With reference to FIG. 1, a method of operating the separation membrane module in the embodiment of the present invention will be described. In FIG. 1, some pressure gauges, flow meters, valves, and the like that are not necessary for explanation are omitted.

図1において、1は原水ポンプ、2は分離膜モジュール、3は逆圧洗浄ポンプ、4は透過水貯留タンク、10〜26は配管、50〜55は弁を示している。   In FIG. 1, 1 is a raw water pump, 2 is a separation membrane module, 3 is a back pressure washing pump, 4 is a permeated water storage tank, 10 to 26 are piping, and 50 to 55 are valves.

通常の運転時(工程A)には、弁50、53は開、弁52は所定の圧力・流量になるよう調節して開、その他の弁は閉とする。原水を配管10からポンプ1へ供給し、昇圧して、配管11→配管12→配管13を経て分離膜モジュール2へ送られる。モジュール内で濃縮水と透過水に分離し、濃縮水は配管20→配管21→配管22と流れ、ブローもしくは2段目の分離膜装置等へ送られる。透過水は配管14→配管15→配管16を経て、透過水貯留タンク4に貯留して、そのまま利用されたり、後段のサブシステムへ送られたりする。   During normal operation (step A), the valves 50 and 53 are opened, the valve 52 is adjusted to a predetermined pressure and flow rate, and the other valves are closed. Raw water is supplied from the pipe 10 to the pump 1, boosted, and sent to the separation membrane module 2 through the pipe 11 → the pipe 12 → the pipe 13. The concentrated water and permeated water are separated in the module, and the concentrated water flows from pipe 20 to pipe 21 to pipe 22 and is blown or sent to a second-stage separation membrane device or the like. The permeated water is stored in the permeated water storage tank 4 via the pipe 14 → the pipe 15 → the pipe 16 and is used as it is or is sent to a subsystem in the subsequent stage.

通常の運転時には、定期的にフラッシングを行なうのがよい。フラッシングによって、透過水量・阻止率の低下を抑制する効果は低いが、原水流路の目詰まりを緩和する効果が期待できる。フラッシングの間隔は、10分〜24時間に1回程度がよく、フラッシング時間は30秒〜120秒程度がよい。フラッシング時には、工程Aにおいて、弁51を全開とし、モジュールの1次側に流れる流量を一気に増やす。   During normal operation, it is recommended to perform flushing periodically. Although the effect of suppressing the decrease in the permeated water amount / rejection rate by the flushing is low, the effect of alleviating clogging of the raw water channel can be expected. The flushing interval is preferably about once every 10 minutes to 24 hours, and the flushing time is preferably about 30 seconds to 120 seconds. At the time of flushing, in step A, the valve 51 is fully opened, and the flow rate flowing to the primary side of the module is increased at a stroke.

所定時間が経過したら、ポンプ1を停止し、逆圧洗浄工程(工程B−1)に入る。弁51、54は開、その他の弁は閉とする。逆圧洗浄用の水(透過水)を、配管19よりポンプ3へ供給し、配管18→配管17→配管14を経て分離膜モジュール2の透過側(2次側)へ送られる。この水は、2次側から1次側(原水側)へ膜を透過し、膜に付着した汚染物質を剥ぎ取り、配管20→配管23→配管24と流れ、ブローされる。   If predetermined time passes, the pump 1 will be stopped and it will enter into a back pressure washing | cleaning process (process B-1). The valves 51 and 54 are open, and the other valves are closed. Back pressure washing water (permeated water) is supplied from the pipe 19 to the pump 3 and sent to the permeation side (secondary side) of the separation membrane module 2 via the pipe 18 → the pipe 17 → the pipe 14. This water permeates through the membrane from the secondary side to the primary side (raw water side), strips off the contaminants attached to the membrane, flows through the pipe 20 → pipe 23 → pipe 24, and is blown.

そして、所定の洗浄時間経過後、工程Aに戻り、以降これを繰り返す。   Then, after a predetermined cleaning time has elapsed, the process returns to step A, and this is repeated thereafter.

ただし、工程B−1の逆圧洗浄工程を長期間に渡り繰り返すと、原水流路が経時的に閉塞する場合がある。したがって、工程B−1の代わりに、下記に示す工程B−2を実施してもよい。すなわち、工程B−2は、弁54、55は開、その他の弁は閉とする。逆圧洗浄用の水(透過水)を、19よりポンプ3へ供給し、配管18→配管17→配管14を経て分離膜モジュール2の透過側(2次側)へ送られる。この水は、2次側から1次側(原水供給側)へ膜を透過し、膜に付着した汚染物質を剥ぎ取り、配管13→配管25→配管26と流れ、ブローされる。   However, when the back pressure washing process of process B-1 is repeated over a long period of time, the raw water flow path may be blocked over time. Therefore, step B-2 shown below may be performed instead of step B-1. That is, in step B-2, the valves 54 and 55 are opened, and the other valves are closed. Water for reverse pressure cleaning (permeated water) is supplied from 19 to the pump 3 and sent to the permeation side (secondary side) of the separation membrane module 2 via the pipe 18 → the pipe 17 → the pipe 14. This water permeates through the membrane from the secondary side to the primary side (raw water supply side), strips off contaminants adhering to the membrane, flows through the pipe 13 → the pipe 25 → the pipe 26, and is blown.

工程B−1と工程B−2との違いは、逆圧洗浄時における、水の出口にある。運転中は、原水の入口側(原水供給側)が最も汚染されやすいため、工程B−2によれば、運転時と逆の流れを作ることによって、原水流路の汚染物質をモジュールから履き出すことができる。   The difference between the process B-1 and the process B-2 is the water outlet at the time of back pressure cleaning. During operation, the raw water inlet side (raw water supply side) is most likely to be contaminated, so according to Step B-2, the pollutant in the raw water flow path is taken out from the module by creating a flow opposite to that during operation. be able to.

上記の操作は、シーケンサーおよび自動弁を用いて、自動制御にて行なうとよい。   The above operation may be performed by automatic control using a sequencer and an automatic valve.

上記の例は、モジュールが一つの場合を示したが、並列または直列に複数のモジュールを使用した装置に適用してもよい。   The above example shows the case where there is one module, but the present invention may be applied to an apparatus using a plurality of modules in parallel or in series.

次に実施例を挙げて本発明をさらに具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated further more concretely, this is only an illustration and does not restrict | limit this invention.

実施例1
濁度1度、導電率20mS/mの工業用水を、図1に示すフローの装置で処理し、上記方法(工程A〜工程B−2)によって、下記運転条件にて2000時間の耐久運転を行った。分離膜モジュールには、任意の長さ1μmの直線中の最頂点と最低点の高低差が0.05μmであり、0.5MPaの供給圧で1.2m3/(m2・day)の透過流束が得られるスパイラル型ナノろ過膜エレメント(8インチ)を使用した。分離膜モジュールの性能評価は、運転初期及び2000時間における通水差圧、透過水量、及び阻止率を測定することで行った。
Example 1
Industrial water having a turbidity of 1 degree and an electrical conductivity of 20 mS / m is treated with the flow apparatus shown in FIG. 1, and the above-described method (process A to process B-2) is used for 2000 hours of durable operation under the following operating conditions. went. The separation membrane module has a height difference of 0.05 μm between the highest vertex and the lowest point in a straight line with an arbitrary length of 1 μm, and a permeability of 1.2 m 3 / (m 2 · day) at a supply pressure of 0.5 MPa. A spiral nanofiltration membrane element (8 inches) that can provide a flux was used. The performance evaluation of the separation membrane module was performed by measuring the water flow differential pressure, the permeated water amount, and the rejection rate at the initial stage of operation and 2000 hours.

(運転条件)
工程Aにおける運転条件は、操作圧力0.3MPa、濃縮水量2.7m3/hr、水温25℃、原水pH=7である。工程A30分毎に、60秒間の逆圧洗浄(工程B−2)を行った。逆圧洗浄時の圧力は、0.2MPaとした。また、10分間に1回、モジュールのフラッシングを行なった。フラッシング時の濃縮水量は、運転時の約3倍程度である。
(Operating conditions)
The operating conditions in step A are an operating pressure of 0.3 MPa, a concentrated water amount of 2.7 m 3 / hr, a water temperature of 25 ° C., and raw water pH = 7. Step A A 30-second back pressure cleaning (step B-2) was performed every 30 minutes. The pressure at the time of back pressure washing was 0.2 MPa. The module was flushed once every 10 minutes. The amount of concentrated water during flushing is about three times that during operation.

実施例2
濁度1度、導電率20mS/mの工業用水を、図1に示すフローの装置で処理し、上記方法(工程A〜工程B−2)によって、下記運転条件にて2000時間の耐久運転を行った。分離膜モジュールには、高低差が0.2μmであり、0.5MPaの供給圧で0.5m3/(m2・day)の透過流束が得られるスパイラル型ナノろ過膜エレメント(8インチ)を使用した。分離膜モジュールの性能評価は、運転初期及び2000時間における通水差圧、透過水量、及び阻止率を測定することで行った。
Example 2
Industrial water having a turbidity of 1 degree and an electrical conductivity of 20 mS / m is treated with the flow apparatus shown in FIG. 1, and the above-described method (process A to process B-2) is used for 2000 hours of durable operation under the following operating conditions. went. The separation membrane module has a height difference of 0.2 μm and a spiral nanofiltration membrane element (8 inches) that can obtain a permeation flux of 0.5 m 3 / (m 2 · day) at a supply pressure of 0.5 MPa. It was used. The performance evaluation of the separation membrane module was performed by measuring the water flow differential pressure, the permeated water amount, and the rejection rate at the initial stage of operation and 2000 hours.

(運転条件)
工程Aにおける運転条件は、操作圧力0.75MPa、濃縮水量2.7m3/hr、水温25℃、原水pH=7である。工程A30分毎に、60秒間の逆圧洗浄(工程B−2)を行った。逆圧洗浄時の圧力は、0.3MPaとした。また、10分間に1回、モジュールのフラッシングを行なった。フラッシング時の濃縮水量は、運転時の約3倍程度である。
(Operating conditions)
The operating conditions in step A are an operating pressure of 0.75 MPa, a concentrated water amount of 2.7 m 3 / hr, a water temperature of 25 ° C., and raw water pH = 7. Step A A 30-second back pressure cleaning (step B-2) was performed every 30 minutes. The pressure during back pressure washing was 0.3 MPa. The module was flushed once every 10 minutes. The amount of concentrated water during flushing is about three times that during operation.

実施例3
濁度1度、導電率20mS/mの工業用水を、図1に示すフローの装置で処理し、上記方法(工程A〜工程B−2)によって、下記運転条件にて2000時間の耐久運転を行った。分離膜モジュールには、高低差が0.4μmであり、0.5MPaの供給圧で0.5m3/(m2・day)の透過流束が得られるスパイラル型逆浸透膜エレメント(8インチ)を使用した。分離膜モジュールの性能評価は、運転初期及び2000時間における通水差圧、透過水量、及び阻止率を測定することで行った。
Example 3
Industrial water with a turbidity of 1 degree and conductivity of 20 mS / m is treated with the apparatus of the flow shown in FIG. 1, and the above method (Step A to Step B-2) is used for 2000 hours of durability operation under the following operating conditions. went. The separation membrane module has a height difference of 0.4 μm and a spiral type reverse osmosis membrane element (8 inches) that can obtain a permeation flux of 0.5 m 3 / (m 2 · day) at a supply pressure of 0.5 MPa. It was used. The performance evaluation of the separation membrane module was performed by measuring the water flow differential pressure, the permeated water amount, and the rejection rate at the initial stage of operation and 2000 hours.

(運転条件)
工程Aにおける運転条件は、操作圧力0.75MPa、濃縮水量2.7m3/hr、水温25℃、原水pH=7である。工程A30分毎に、60秒間の逆圧洗浄(工程B−2)を行った。逆圧洗浄時の圧力は、0.3MPaとした。また、10分間に1回、モジュールのフラッシングを行なった。フラッシング時の濃縮水量は、運転時の約3倍程度である。
(Operating conditions)
The operating conditions in step A are an operating pressure of 0.75 MPa, a concentrated water amount of 2.7 m 3 / hr, a water temperature of 25 ° C., and raw water pH = 7. Step A A 30-second back pressure cleaning (step B-2) was performed every 30 minutes. The pressure during back pressure washing was 0.3 MPa. The module was flushed once every 10 minutes. The amount of concentrated water during flushing is about three times that during operation.

実施例4
濁度1度、導電率20mS/mの工業用水を、図1に示すフローの装置で処理し、上記方法(工程A〜工程B−2)によって、下記運転条件にて2000時間の耐久運転を行った。分離膜モジュールには、高低差が0.5μmであり、0.5MPaの供給圧で0.8m3/(m2・day)の透過流束が得られるスパイラル型逆浸透膜エレメント(8インチ)を使用した。分離膜モジュールの性能評価は、運転初期及び2000時間における通水差圧、透過水量、及び阻止率を測定することで行った。
Example 4
Industrial water having a turbidity of 1 degree and an electrical conductivity of 20 mS / m is treated with the flow apparatus shown in FIG. 1, and the above-described method (process A to process B-2) is used for 2000 hours of durable operation under the following operating conditions. went. The separation membrane module has a height difference of 0.5 μm, and a spiral reverse osmosis membrane element (8 inches) that can obtain a permeation flux of 0.8 m 3 / (m 2 · day) at a supply pressure of 0.5 MPa. It was used. The performance evaluation of the separation membrane module was performed by measuring the water flow differential pressure, the permeated water amount, and the rejection rate at the initial stage of operation and 2000 hours.

(運転条件)
工程Aにおける運転条件は、操作圧力0.5MPa、濃縮水量3.4m3/hr、水温25℃、原水pH=7である。工程A30分毎に、60秒間の逆圧洗浄(工程B−2)を行った。逆圧洗浄時の圧力は、0.3MPaとした。また、10分間に1回、モジュールのフラッシングを行なった。フラッシング時の濃縮水量は、運転時の約3倍程度である。
(Operating conditions)
The operating conditions in step A are an operating pressure of 0.5 MPa, an amount of concentrated water of 3.4 m 3 / hr, a water temperature of 25 ° C., and raw water pH = 7. Step A A 30-second back pressure cleaning (step B-2) was performed every 30 minutes. The pressure during back pressure washing was 0.3 MPa. The module was flushed once every 10 minutes. The amount of concentrated water during flushing is about three times that during operation.

比較例1
実施例1と同様の条件に設定し工程Aのみを実施し、通水差圧、透過水量、および阻止率を測定した。
Comparative Example 1
The same conditions as in Example 1 were set, and only Step A was performed, and the water flow differential pressure, the permeated water amount, and the rejection rate were measured.

(運転条件)
工程Aにおける運転条件は、操作圧力0.3MPa、濃縮水量2.7m3/hr、水温25℃、原水pH=7である。また、10分間に1回、モジュールのフラッシングを行なった。フラッシング時の濃縮水量は、運転時の約3倍程度である。
(Operating conditions)
The operating conditions in step A are an operating pressure of 0.3 MPa, a concentrated water amount of 2.7 m 3 / hr, a water temperature of 25 ° C., and raw water pH = 7. The module was flushed once every 10 minutes. The amount of concentrated water during flushing is about three times that during operation.

比較例2
濁度1度、導電率20mS/mの工業用水を、図1に示すフローの装置で処理し、上記方法(工程A〜工程B−2)によって、下記運転条件にて2000時間の耐久運転を行った。分離膜モジュールには、高低差が0.5μmであり、0.5MPaの供給圧で0.5m3/(m2・day)の透過流束が得られるスパイラル型ナノろ過膜エレメント(8インチ)を使用した。分離膜モジュールの性能評価は、運転初期及び2000時間における通水差圧、透過水量、及び阻止率を測定することで行った。
Comparative Example 2
Industrial water having a turbidity of 1 degree and an electrical conductivity of 20 mS / m is treated with the flow apparatus shown in FIG. 1, and the above-described method (process A to process B-2) is used for 2000 hours of durable operation under the following operating conditions. went. The separation membrane module has a height difference of 0.5 μm, and a spiral nanofiltration membrane element (8 inches) that can obtain a permeation flux of 0.5 m 3 / (m 2 · day) at a supply pressure of 0.5 MPa. It was used. The performance evaluation of the separation membrane module was performed by measuring the water flow differential pressure, the permeated water amount, and the rejection rate at the initial stage of operation and 2000 hours.

(運転条件)
工程Aにおける運転条件は、操作圧力0.75MPa、濃縮水量2.7m3/hr、水温25℃、原水pH=7である。工程A30分毎に、60秒間の逆圧洗浄(工程B−2)を行った。逆圧洗浄時の圧力は、0.3MPaとした。また、10分間に1回、モジュールのフラッシングを行なった。フラッシング時の濃縮水量は、運転時の約3倍程度である。
(Operating conditions)
The operating conditions in step A are an operating pressure of 0.75 MPa, a concentrated water amount of 2.7 m 3 / hr, a water temperature of 25 ° C., and raw water pH = 7. Step A A 30-second back pressure cleaning (step B-2) was performed every 30 minutes. The pressure during back pressure washing was 0.3 MPa. The module was flushed once every 10 minutes. The amount of concentrated water during flushing is about three times that during operation.

比較例3
濁度1度、導電率20mS/mの工業用水を、図1に示すフローの装置で処理し、上記方法(工程A〜工程B−2)によって、下記運転条件にて2000時間の耐久運転を行った。分離膜モジュールには、高低差が0.6μmであり、0.5MPaの供給圧で0.5m3/(m2・day)の透過流束が得られるスパイラル型逆浸透膜エレメント(8インチ)を使用した。分離膜モジュールの性能評価は、運転初期及び2000時間における通水差圧、透過水量、及び阻止率を測定することで行った。
Comparative Example 3
Industrial water having a turbidity of 1 degree and an electrical conductivity of 20 mS / m is treated with the flow apparatus shown in FIG. 1, and the above-described method (process A to process B-2) is used for 2000 hours of durable operation under the following operating conditions. went. The separation membrane module has a height difference of 0.6 μm and a spiral type reverse osmosis membrane element (8 inches) that can obtain a permeation flux of 0.5 m 3 / (m 2 · day) at a supply pressure of 0.5 MPa. It was used. The performance evaluation of the separation membrane module was performed by measuring the water flow differential pressure, the permeated water amount, and the rejection rate at the initial stage of operation and 2000 hours.

(運転条件)
工程Aにおける運転条件は、操作圧力0.75MPa、濃縮水量2.7m3/hr、水温25℃、原水pH=7である。工程A30分毎に、60秒間の逆圧洗浄(工程B−2)を行った。逆圧洗浄時の圧力は、0.3MPaとした。また、10分間に1回、モジュールのフラッシングを行なった。フラッシング時の濃縮水量は、運転時の約3倍程度である。
(Operating conditions)
The operating conditions in step A are an operating pressure of 0.75 MPa, a concentrated water amount of 2.7 m 3 / hr, a water temperature of 25 ° C., and raw water pH = 7. Step A A 30-second back pressure cleaning (step B-2) was performed every 30 minutes. The pressure during back pressure washing was 0.3 MPa. The module was flushed once every 10 minutes. The amount of concentrated water during flushing is about three times that during operation.

上記の結果を以下の表1にまとめた。   The above results are summarized in Table 1 below.

Figure 2006130496
Figure 2006130496

逆圧洗浄を実施しない比較例1では、800hr程度までに大幅な性能低下が起こり、運転の継続が困難であった。また、高低差が比較的大きい膜を用いた比較例2では、逆圧洗浄による回復が不十分であった。高低差が比較的大きく、透過流束が比較的低い膜を用いた比較例3でも、逆圧洗浄による回復が不十分であった。 一方、本発明の方法を用いた実施例1〜4では、良好な処理が可能であった。   In Comparative Example 1 in which no back pressure cleaning was performed, a significant performance degradation occurred by about 800 hr, and it was difficult to continue the operation. Further, in Comparative Example 2 using a membrane having a relatively large difference in height, recovery by back pressure cleaning was insufficient. Even in Comparative Example 3 using a membrane having a relatively large height difference and a relatively low permeation flux, recovery by back pressure washing was insufficient. On the other hand, in Examples 1 to 4 using the method of the present invention, good treatment was possible.

本発明に係る水処理装置およびその運転方法は、逆浸透膜モジュールまたはナノ濾過膜モジュールを用いて原水を処理するようにしたあらゆる水処理装置に適用可能であり、とくに、純水製造装置等に好適なものである。   The water treatment apparatus and the operation method thereof according to the present invention can be applied to any water treatment apparatus that treats raw water using a reverse osmosis membrane module or a nanofiltration membrane module. Is preferred.

本発明の一実施態様に係る水処理装置の概略機器系統図である。It is a schematic equipment system diagram of the water treatment equipment concerning one embodiment of the present invention.

符号の説明Explanation of symbols

1 原水ポンプ
2 分離膜モジュール
3 逆圧洗浄ポンプ
4 逆圧洗浄ポンプ
10〜26 配管
50〜55 弁
DESCRIPTION OF SYMBOLS 1 Raw water pump 2 Separation membrane module 3 Back pressure washing pump 4 Back pressure washing pump 10-26 Piping 50-55 Valve

Claims (22)

原水を逆浸透膜モジュールまたはナノろ過膜モジュールに供給して透過水と濃縮水とに分離する水処理装置の運転方法において、前記逆浸透膜モジュールまたはナノろ過膜モジュールの膜エレメントに使用されている膜の未使用時における表面粗さが、均一重合面における任意の長さ1μmの直線中の最頂点と最低点との差が0.4μm以下である膜を使用し、定期または不定期に前記透過側から逆圧洗浄することを特徴とする水処理装置の運転方法。   In a method for operating a water treatment apparatus that supplies raw water to a reverse osmosis membrane module or a nanofiltration membrane module and separates it into permeated water and concentrated water, it is used for the membrane element of the reverse osmosis membrane module or nanofiltration membrane module The surface roughness when the film is not used is a film whose difference between the highest vertex and the lowest point in a straight line having an arbitrary length of 1 μm on the uniform polymerization surface is 0.4 μm or less, and is periodically or irregularly. A method for operating a water treatment apparatus, wherein back pressure washing is performed from the permeate side. 原水を逆浸透膜モジュールまたはナノろ過膜モジュールに供給して透過水と濃縮水とに分離する水処理装置の運転方法において、前記逆浸透膜モジュールまたはナノろ過膜モジュールの膜エレメントに使用されている膜に、0.5MPaの供給圧で0.7m3/(m2・day)以上の透過流束を得られる膜を使用し、定期または不定期に前記透過側から逆圧洗浄することを特徴とする水処理装置の運転方法。 In a method for operating a water treatment apparatus that supplies raw water to a reverse osmosis membrane module or a nanofiltration membrane module and separates it into permeated water and concentrated water, it is used for the membrane element of the reverse osmosis membrane module or nanofiltration membrane module A membrane capable of obtaining a permeation flux of 0.7 m 3 / (m 2 · day) or more at a supply pressure of 0.5 MPa is used as the membrane, and back pressure washing is performed from the permeation side regularly or irregularly. The operation method of the water treatment equipment. 前記逆圧洗浄時に、透過運転時における逆浸透膜モジュールまたはナノろ過膜モジュールへの原水供給側に洗浄水を排出する、請求項1または2の水処理装置の運転方法。   The operation method of the water treatment apparatus according to claim 1 or 2, wherein the washing water is discharged to the raw water supply side to the reverse osmosis membrane module or the nanofiltration membrane module during the permeation operation during the back pressure washing. 前記逆圧洗浄時の圧力を、透過運転時の圧力の1〜99%の間に設定し、かつ、0.5MPaを超えない値に設定する、請求項1ないし3のいずれかに記載の水処理装置の運転方法。   The water according to any one of claims 1 to 3, wherein the pressure at the time of back pressure washing is set to 1 to 99% of the pressure at the time of permeation operation and is set to a value not exceeding 0.5 MPa. Operation method of the processing apparatus. 前記定期に行われる逆圧洗浄時の洗浄間隔が、10分〜24時間に1回である、請求項1ないし4のいずれかに記載の水処理装置の運転方法。   The operation method of the water treatment apparatus according to any one of claims 1 to 4, wherein a cleaning interval at the time of the counter pressure cleaning performed regularly is once every 10 minutes to 24 hours. 前記不定期に行われる逆圧洗浄を、前回洗浄直後の透過水量よりも1〜20%減少した時点の、予め設定された減少割合になった時点で行う、請求項1ないし4のいずれかに記載の水処理装置の運転方法。   The back pressure washing performed irregularly is performed at a time point when a reduction rate set in advance is reached when the permeated water amount immediately after the previous washing is reduced by 1 to 20%. The operation method of the water treatment apparatus as described. 前記逆圧洗浄の洗浄時間が15〜120秒間である、請求項1ないし6のいずれかに記載の水処理装置の運転方法。   The operation method of the water treatment apparatus according to any one of claims 1 to 6, wherein a cleaning time of the back pressure cleaning is 15 to 120 seconds. 前記逆圧洗浄の洗浄水に前記透過水を用いる、請求項1ないし7のいずれかに記載の水処理装置の運転方法。   The operation method of the water treatment apparatus according to any one of claims 1 to 7, wherein the permeated water is used as the washing water for the back pressure washing. 前記逆浸透膜モジュールまたはナノろ過膜モジュールとしてスパイラル型膜エレメントを用いる、請求項1ないし8のいずれかに記載の水処理装置の運転方法。   The operation method of the water treatment apparatus according to any one of claims 1 to 8, wherein a spiral membrane element is used as the reverse osmosis membrane module or the nanofiltration membrane module. 前記原水としてFI値が4以上の原水を用いる、請求項1ないし9のいずれかに記載の水処理装置の運転方法。   The method for operating a water treatment apparatus according to claim 1, wherein raw water having an FI value of 4 or more is used as the raw water. 前記原水を直接膜ろ過する、請求項10の水処理装置の運転方法。   The operation method of the water treatment apparatus according to claim 10, wherein the raw water is directly subjected to membrane filtration. 原水を逆浸透膜モジュールまたはナノろ過膜モジュールに供給して透過水と濃縮水とに分離する水処理装置の運転において、前記逆浸透膜モジュールまたはナノろ過膜モジュールの膜エレメントに使用されている膜の未使用時における表面粗さが、均一重合面における任意の長さ1μmの直線中の最頂点と最低点との差が0.4μm以下である膜を使用し、定期または不定期に前記透過側から逆圧洗浄する手段を有することを特徴とする水処理装置。   Membranes used for membrane elements of the reverse osmosis membrane module or nanofiltration membrane module in the operation of a water treatment device that supplies raw water to the reverse osmosis membrane module or nanofiltration membrane module and separates it into permeated water and concentrated water When the film is not used, a film having a surface roughness of 0.4 μm or less between the highest vertex and the lowest point in a straight line with an arbitrary length of 1 μm on a uniform polymerization surface is used, and the above-mentioned transmission is performed regularly or irregularly. A water treatment apparatus comprising means for back pressure washing from the side. 原水を逆浸透膜モジュールまたはナノろ過膜モジュールに供給して透過水と濃縮水とに分離する水処理装置の運転において、前記逆浸透膜モジュールまたはナノろ過膜モジュールの膜エレメントに使用されている膜に0.5MPaの供給圧で0.7m3/(m2・day)以上の透過流束を得られる膜を使用し、定期または不定期に前記透過側から逆圧洗浄する手段を有することを特徴とする水処理装置。 Membrane used for the membrane element of the reverse osmosis membrane module or nanofiltration membrane module in the operation of a water treatment device that supplies raw water to the reverse osmosis membrane module or nanofiltration membrane module and separates it into permeated water and concentrated water Using a membrane capable of obtaining a permeation flux of 0.7 m 3 / (m 2 · day) or more at a supply pressure of 0.5 MPa, and having means for back-pressure washing from the permeation side at regular or irregular intervals. A water treatment device characterized. 前記逆圧洗浄時に、透過運転時における逆浸透膜モジュールまたはナノろ過膜モジュールへの原水供給側に洗浄水を排出する手段を有する、請求項12または13の水処理装置。   The water treatment device according to claim 12 or 13, further comprising means for discharging the wash water to the raw water supply side to the reverse osmosis membrane module or the nanofiltration membrane module during the permeation operation during the reverse pressure washing. 前記逆圧洗浄時の圧力を、透過運転時の圧力の1〜99%の間に設定し、かつ、0.5MPaを超えない値に設定されている、請求項12ないし14のいずれかに記載の水処理装置。   The pressure at the time of the back pressure washing is set to 1 to 99% of the pressure at the time of the permeation operation, and is set to a value not exceeding 0.5 MPa. Water treatment equipment. 前記定期に行われる逆圧洗浄時の洗浄間隔が、10分〜24時間に1回に設定されている、請求項12ないし15のいずれかに記載の水処理装置。   The water treatment device according to any one of claims 12 to 15, wherein a cleaning interval at the time of the counter pressure cleaning performed periodically is set to once every 10 minutes to 24 hours. 前記不定期に行われる逆圧洗浄が、前回洗浄直後の透過水量よりも1〜20%減少した時点の、予め設定された減少割合となった時点で行われる、請求項12ないし15のいずれかに記載の水処理装置。   The back pressure washing performed irregularly is performed at a time point when a reduction rate set in advance is reached when the permeated water amount immediately after the previous cleaning is reduced by 1 to 20%. The water treatment apparatus as described in. 前記逆圧洗浄の洗浄時間が15〜120秒間に設定されている、請求項12ないし17のいずれかに記載の水処理装置。   The water treatment apparatus according to any one of claims 12 to 17, wherein a cleaning time for the back pressure cleaning is set to 15 to 120 seconds. 前記逆圧洗浄の洗浄水に前記透過水がもちいられる、請求項12ないし18のいずれかに記載の水処理装置。   The water treatment apparatus according to any one of claims 12 to 18, wherein the permeated water is used as the washing water for the back pressure washing. 前記逆浸透膜モジュールまたはナノろ過膜モジュールがスパイラル型膜エレメントからなる、請求項12ないし19のいずれかに記載の水処理装置。   The water treatment apparatus according to any one of claims 12 to 19, wherein the reverse osmosis membrane module or the nanofiltration membrane module comprises a spiral membrane element. 前記原水がFI値が4以上の原水からなる、請求項12ないし20のいずれかに記載の水処理装置。   The water treatment apparatus according to any one of claims 12 to 20, wherein the raw water is made of raw water having an FI value of 4 or more. 前記原水を直接膜ろ過する、請求項21の水処理装置。   The water treatment apparatus according to claim 21, wherein the raw water is directly membrane-filtered.
JP2005204509A 2004-10-05 2005-07-13 Water treatment device and its operating method Pending JP2006130496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005204509A JP2006130496A (en) 2004-10-05 2005-07-13 Water treatment device and its operating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004292193 2004-10-05
JP2005204509A JP2006130496A (en) 2004-10-05 2005-07-13 Water treatment device and its operating method

Publications (1)

Publication Number Publication Date
JP2006130496A true JP2006130496A (en) 2006-05-25

Family

ID=36724498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005204509A Pending JP2006130496A (en) 2004-10-05 2005-07-13 Water treatment device and its operating method

Country Status (1)

Country Link
JP (1) JP2006130496A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102716668A (en) * 2012-06-13 2012-10-10 丰信精细化工(上海)有限公司 Method for fast taking out membrane element of reverse osmosis system
KR20170042560A (en) * 2014-08-19 2017-04-19 쿠리타 고교 가부시키가이샤 Reverse osmosis membrane device and method for operating same
CN109467241A (en) * 2018-10-29 2019-03-15 深圳骏泽环保有限公司 The board wastewater treatment process of copper ion zero-emission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271647A (en) * 1996-01-24 1997-10-21 Nitto Denko Corp Highly permeable composite reverse osmosis membrane and reverse osmosis membrane module using the same
JPH09299947A (en) * 1996-05-20 1997-11-25 Nitto Denko Corp Reverse osmotic membrane spiral element and treating system using the same
JP2000271456A (en) * 1999-01-22 2000-10-03 Nitto Denko Corp Spiral type membrane element and method for operating and washing spiral type membrane module
JP2001179058A (en) * 1999-12-24 2001-07-03 Nitto Denko Corp Spiral type membrane element and method for operating spiral type membrane module and spiral type membrane module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271647A (en) * 1996-01-24 1997-10-21 Nitto Denko Corp Highly permeable composite reverse osmosis membrane and reverse osmosis membrane module using the same
JPH09299947A (en) * 1996-05-20 1997-11-25 Nitto Denko Corp Reverse osmotic membrane spiral element and treating system using the same
JP2000271456A (en) * 1999-01-22 2000-10-03 Nitto Denko Corp Spiral type membrane element and method for operating and washing spiral type membrane module
JP2001179058A (en) * 1999-12-24 2001-07-03 Nitto Denko Corp Spiral type membrane element and method for operating spiral type membrane module and spiral type membrane module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102716668A (en) * 2012-06-13 2012-10-10 丰信精细化工(上海)有限公司 Method for fast taking out membrane element of reverse osmosis system
KR20170042560A (en) * 2014-08-19 2017-04-19 쿠리타 고교 가부시키가이샤 Reverse osmosis membrane device and method for operating same
KR102235424B1 (en) 2014-08-19 2021-04-01 쿠리타 고교 가부시키가이샤 Reverse osmosis membrane device and method for operating same
CN109467241A (en) * 2018-10-29 2019-03-15 深圳骏泽环保有限公司 The board wastewater treatment process of copper ion zero-emission

Similar Documents

Publication Publication Date Title
KR101193902B1 (en) Water-purifying system and method using membrane filtration for manufacturing purified water
JP4251879B2 (en) Operation method of separation membrane module
JP4225471B2 (en) Operation method of multistage separation membrane module
JP2007296500A (en) Membrane separation apparatus and membrane filtration method
KR101050418B1 (en) Intelligent High Efficiency Membrane Maintenance Cleaning System and Method
JP2004089763A (en) Spiral membrane element, separation membrane module, separation membrane apparatus, and water treatment method using the same
JP5588099B2 (en) Membrane filtration treatment method and membrane filtration treatment equipment
WO2004022206A1 (en) Separation membrane module and method of operating separation membrane module
WO2016027302A1 (en) Reverse osmosis membrane device and method for operating same
JP2006130496A (en) Water treatment device and its operating method
JP3859151B2 (en) Separation membrane module, separation membrane device, and operation method of separation membrane device
JP2006255708A (en) Method for backwashing of hollow fiber membrane and hollow fiber membrane water treatment apparatus
JP6036808B2 (en) Fresh water generation method
JPH11169851A (en) Water filter and its operation
JP4079082B2 (en) Backwashing method for membrane filtration water treatment equipment
JP2005046762A (en) Water treatment method and water treatment apparatus
EP3056258B1 (en) Chemical cleaning method for membrane systems
JP2006043655A (en) Water treating apparatus and operation method therefor
JP2006218341A (en) Method and apparatus for treating water
JP2008289958A (en) Membrane filtration system
JP5434752B2 (en) Filtration device and operation method thereof
JP2005046801A (en) Water treatment method and apparatus therefor
JPH0631270A (en) Film cleaning process for water and operation of the device
KR20150012649A (en) Membrane Process Operating Method
KR20140107979A (en) The Cleaning Method of Pressurized Membrane Module by using Dual-Backwash Process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100702

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125