JP3953673B2 - Membrane separator - Google Patents

Membrane separator Download PDF

Info

Publication number
JP3953673B2
JP3953673B2 JP04168499A JP4168499A JP3953673B2 JP 3953673 B2 JP3953673 B2 JP 3953673B2 JP 04168499 A JP04168499 A JP 04168499A JP 4168499 A JP4168499 A JP 4168499A JP 3953673 B2 JP3953673 B2 JP 3953673B2
Authority
JP
Japan
Prior art keywords
liquid
membrane
chamber
tubular membrane
partition plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04168499A
Other languages
Japanese (ja)
Other versions
JP2000237550A (en
JP2000237550A5 (en
Inventor
周和 村田
治雄 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP04168499A priority Critical patent/JP3953673B2/en
Publication of JP2000237550A publication Critical patent/JP2000237550A/en
Publication of JP2000237550A5 publication Critical patent/JP2000237550A5/ja
Application granted granted Critical
Publication of JP3953673B2 publication Critical patent/JP3953673B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、内圧型管状膜を膜分離手段とする膜分離装置に関し、更に詳細には、管状膜の薬液洗浄間隔を長くして、膜分離処理の処理効率を向上させることのできるクロスフロー方式の膜分離装置に関するものである。
なお、本発明においては、一般にチューブラー膜と呼ばれる管の内径が5〜25mm程度のもの、及び一般に中空糸膜と呼ばれる内径0.1〜5mm程度のものの両方を含めて、「管状膜」と総称する。
【0002】
【従来の技術】
一般水、発電所復水、工業用水等の被処理水、或いは工場廃液等の被処理液から同伴する懸濁物を除去して、濁度の低い処理水、或いは処理液を得る手段として、管状膜を膜分離手段とする膜分離装置が、従来から多用されている。
【0003】
ここで、図5及び図6を参照して、従来のクロスフロー方式の膜分離装置の構成を説明する。図5は従来のクロスフロー方式の膜分離装置の構成を示すフローシート、図6は従来の膜分離装置で使用されている内圧型管状膜モジュールの構成を示す縦断面図である。
従来のクロスフロー方式の膜分離装置10は、図5に示すように、被処理液に膜分離処理を施して濁度の低い処理液を流出すると共に被処理液の一部を濃縮液として流出する管状膜モジュール12を有する。
更に、膜分離装置10は、管状膜モジュール12によって膜分離処理する被処理液を収容する被処理液タンク14、被処理液タンク14から管状膜モジュール12に被処理液を被処理液管16を経由して送液する被処理液ポンプ18、管状膜モジュール12から処理液管20を経由して流出する処理液を収容する処理液タンク22、及び、管状膜モジュール12から濃縮液を被処理液タンク14に戻す濃縮液管24を有する。
【0004】
管状膜モジュール12は、図6に示すように、下部隔板26及び上部隔板28によって順序で区画され、下から上に重なる、配液室30、処理液室32、及び濃縮液集液室(以下、簡単に集液室と言う)34とを有する縦型容器36と、処理液室32内に配設された多数本の内圧型管状膜38とから構成されている。
管状膜38は、配液室30及び集液室34にそれぞれ連通するように下部隔板26及び上部隔板28に固定された下端部及び上端部を有し、処理液室34内を縦方向に延在する。管状膜38は、通常の濾過膜、精密濾過膜、限外濾過膜、ナノ濾過膜等で形成された中空糸膜、又はチューブラ膜である。
【0005】
下部隔板26及び上部隔板28は、通常、管状膜38の端部を離隔した配置で接着剤で固着してなる接着剤層として形成されている。
処理液室32は、管状膜38によって膜内と膜外とに区画されていて、上部には処理液管20に接続して処理液を流出させる処理液口39を有する。
管状膜モジュール12では、配液室30及び集液室34は、それぞれ、下部鏡板40、上部鏡板42により形成され、被処理液管16及び濃縮液管24に連通している。下部鏡板40及び上部鏡板42は、それぞれのフランジ44、46と、処理液室32を形成する胴部48のフランジ50、52とをフランジ結合することにより、胴部48に連結され、一体的な容器36を構成している。
【0006】
管状膜モジュール12では、被処理液を配液室30を介して管状膜38の膜内に導入し、クロスフロー方式で管状膜38により膜分離して処理液を処理液室32の上部の処理液口39から流出させ、処理液管20により処理液タンク22に収容する。また、同時に、管状膜38を透過することなく通過した被処理液を濃縮液として集液室34を経由し濃縮液管24により被処理液タンク14に戻す。
【0007】
本膜分離装置10では、上記濾過工程において管状膜38内を流れる被処理液の流速を速く、例えば管状膜38の出口、即ち集液室34の入口近傍で0.1〜1.0m/秒の範囲にすることにより、被処理液の水力学的剪断力により管状膜38の膜面に付着、堆積した懸濁物の大部分を剥離し、濃縮液と共に排出している。
【0008】
上述のような濾過工程を所定時間行った後、剥離せずに膜面に付着した縣濁物を除去するために管状膜38の逆洗を行う。管状膜38を逆洗するために、膜分離装置10では、逆洗液として処理液を使っている。そこで、被処理液管20に接続された逆洗液管54と、逆洗液管54を経由して処理液タンク22から処理液を管状膜モジュール12の処理液室32に送入する逆洗液ポンプ56と、被処理液管16から分岐した逆洗排液管58とを設けている。
逆洗時には、逆洗液として処理液を逆洗液ポンプ56により処理液タンク22から逆洗液管54及び処理液管20を経由して管状膜モジュール12に送液し、管状膜38を逆に透過させて管状膜38の内側面を洗浄しつつ配液室30、被処理液管16及び逆洗排液管58を経由して外部に排液する。
更に、上記濾過工程と逆洗工程とを繰り返して被処理液の濾過処理を長期間行うと、終には管状膜を逆洗しても、膜間差圧が所定値以下に低下しない、すなわち、濾過性能が回復しない状態となるので、このような場合は、酸、アルカリ、あるいは酸化剤等の薬品を用いて管状膜の薬液洗浄を行う。
【0009】
【発明が解決しようとする課題】
しかし、上述した従来の膜分離装置には、薬液洗浄後、管状膜の膜間差圧が、予期する以上に短期間の間に上昇し勝ちであって、そのために薬液洗浄を頻繁に行う必要があって、運転効率が低いという問題があった。
そこで、本発明の目的は、薬液洗浄の間隔を長くして、膜分離処理の処理効率を向上できるような構成を備えた膜分離装置を提供することである。
【0010】
【課題を解決するための手段】
本発明者は、従来の膜分離装置の膜間差圧が、予期する以上に短期間の間で上昇する原因を調べた結果、次のことが判った。
管状膜38を透過することなく通過した被処理液(以下、簡単にクロスフロー循環水と言う)は、集液室34に入ると、流速が、管状膜38内の流速の1/10〜1/100程度に低下する。その結果、クロスフロー循環水によって管状膜38の膜面から剥離され、同伴された懸濁物、特に比較的大きな粒径の懸濁物は、被処理液との比重差に基づいて、濃縮液に同伴して濃縮液管24に流入することなく、図7に示すように、集液室34内で沈降し、上部隔板28上に集積し、次いで堆積する。
懸濁物は、次第に上部隔板28上に集積し、上部隔板28上に堆積して行き、終には管状膜38内に落下して管状膜38の膜面に再び付着したり、更には管状膜38の上端部の開口を閉塞したりして、膜間差圧上昇の原因となる。この結果、短い頻度で薬液洗浄が必要になる。
【0011】
そこで、上部隔板28上に集積した懸濁物、或いは堆積した懸濁物を外部に抜き出すことが重要であると考え、抜き出し手段を設けた管状膜モジュールを試作し、実験の末、本発明を完成するに到った。
【0012】
上記目的を達成するために、本発明に係る膜分離装置は、横断する下部隔板及び上部隔板によって区画された配液室、処理液室及び濃縮液集液室を下部、中央及び上部に有する縦型容器を備え、縦型容器内には、配液室及び濃縮液集液室にそれぞれ連通するように下端部及び上端部で下部隔板及び上部隔板に固定され、処理液室内を縦方向に延在する内圧型管状膜を有する管状膜モジュールを備えて、被処理液を配液室に導入し、クロスフロー方式で膜分離して処理液を処理液室から流出させると共に濃縮液を濃縮液集液室から濃縮液管を介して流出させるようにした膜分離装置において、
濃縮液集液室の上部隔板近傍に臨む位置に取液口を有し、容器壁を貫通して外部に出る開閉弁付き導出管を前記濃縮液管とは別に有することを特徴としている。
【0013】
本発明で、導出管の本数には制約はなく、隔板の大きさに応じて導出管の本数を定める。導出管が1本の場合には、好適には、導出管の管径は、濃縮液を濃縮液集液室から流出させる濃縮液管の1/3〜1/1倍の範囲の管径である。導出管が複数本の場合には、導出管の合計断面積と濃縮液管の断面積とが、この関係にあるようにする。
取液口は、必ずしも、濃縮液集液室の容器壁に面一で設ける必要はなく、濃縮液集液室内に導出管を貫入させ、所望の位置に設けることができる。その際、導出管は濃縮液集液室の容器壁を貫通する必要はなく、上部隔板を貫通して処理液室を経て処理液室の容器壁から外部に出ても良い。また、1本の導出管が1個の取液口を有する必要もなく、1本の導出管に複数個の取液口を隔板上に分散して設けてもよい。
導出管及び開閉弁は、被処理液の圧力に耐えられる限り、その形状、材質、材料に制約はない。また、開閉弁は、懸濁物を流出させることを考慮して、好適には、ボール弁やバタフライ弁等の導出管の管径に対して比較的縮径しない開口面積を有するものを使用する。
【0014】
以上の構成により、本発明では、蓄積する懸濁物の沈降速度やクロスフロー循環水の流速に影響されることなく、導出管を経由して懸濁物を外部に排出することができる。
導出管を使った排液は、膜分離装置の連続運転中、1週間に1回程度、数十秒間を目安に定期的に又は随時に行えば、十分であって、被処理液の膜分離時に濃縮液を抜き出してもよく、また、逆洗時に逆洗排液を抜き出しても良い。
排液に必要な水量は、管状膜モジュールの大きさにもよるが、通常、数リットルである。排液は被処理液の圧力を使って行う。
【0015】
本発明に係る膜分離装置は、被処理液の性状に限らず適用でき、例えば河川水、井戸水、湖沼水などの産業用、水道用の原水のみならず、公共下水、工場排水等に適用でき、特に濁度が数度から数百度の範囲にわたる原水、又は被処理液に最適に適用できる。
【0016】
【発明の実施の形態】
以下に、添付図面を参照し、実施例を挙げて本発明の実施の形態を具体的かつ詳細に説明する。
実施形態例
本実施形態例は、本発明に係る膜分離装置の実施形態の一例であって、図1は本実施形態例の膜分離装置の構成を示すフローシート、図2(a)は本実施形態例の膜分離装置に設けた管状膜モジュールの構成を示す断面図、図2(b)は管状膜モジュールの上面図である。
本実施形態例の膜分離装置60は、図1に示すように、管状膜モジュール62の構成及びそれに付随する配管を除いて、従来の膜分離装置10と同じ構成を備えている。
【0017】
本実施形態例では、管状膜モジュール62は、図2(a)に示すように、集液室34に連通する導出管64を備えている。導出管64は、上部隔板28の近傍に臨む位置で濃縮液集液室(以下、簡単に集液室と言う)34を形成する上部鏡板42の容器壁に取液口66を有し、外部に開閉弁68を有する。導出管64の管径は、濃縮液管24の内径を50mmとすると、25mm〜50mmの範囲で良い。導出管64は、図2(b)に示すように、上部鏡板42に対して半径方向に延び、図1に示すように、所望の場所に排液できるようになっている。
【0018】
本実施形態例では、定期的に又は随時に、開閉弁68を開放すると、被処理液の圧力により集液室34の濃縮液が、図2(a)に示すように、上部隔板28上に集積し、或いは堆積している懸濁物を一挙に同伴して外部に排液される。
これにより、本実施形態例の膜分離装置60では、従来の膜分離装置10のように、上部隔板28上に堆積した懸濁物が、管状膜38内に落下して管状膜38の膜面に再び付着したり、更には管状膜38の上端部の開口を閉塞したりして、膜間差圧上昇の原因となるようなことは生じない。
【0019】
本実施形態例の膜濾過実験例
本実施形態例の膜分離装置の性能評価を行うために、管状膜モジュールとして、オルガノ(株)製の中空糸膜モジュール(商品名ORFINE)を用いて、膜分離装置62と同じ構成の実験装置を作製し、以下の条件で膜濾過の実験を行った。
被処理液 :河川表流水
被処理液の濁度 :5〜500度
濾過水の濁度 :0.0001〜0.0010度
(レーザー光式濁度計により測定)
膜濾過流束 :1.5m3 /m2 /日
濃縮液管内の濃縮液の流速 :0.1m/秒
逆洗から逆洗までの膜濾過時間:45分
逆洗時間 :60秒
逆洗流束 :5.8m3 /m2 /日
導出管からの排液頻度 :1回/1週間
導出管からの排液時間 :20秒
【0020】
実験中、管状膜モジュールの膜間差圧を計測したところ、図3のグラフ(1)に示す結果を得た。
そして、7カ月の後に、薬液洗浄が必要な80kPaの膜間差圧に達した。また、濾過水の回収率は、被処理水として導入した河川表流水の流量の91.40%であった。
【0021】
従来の膜分離装置の膜濾過実験例
本実施形態例の膜分離装置との比較を行うために、管状膜モジュールとして同じくオルガノ(株)製の中空糸膜モジュール(商品名ORFINE)を用いた従来の膜分離装置を使って、上述の実験条件と同じ条件で膜濾過実験を行い、実験中、管状膜モジュールの膜間差圧を計測したところ、図3のグラフ(2)に示す結果を得た。
そして、4.5カ月の後には、薬液洗浄が必要な80kPaの膜間差圧に達した。また、濾過水の回収率は、被処理水として導入した河川表流水の流量の91.41%であった。
【0022】
以上の実験例から判る通り、本実施形態例の膜分離装置60は、従来の膜分離装置10に比べて、薬液洗浄から薬液洗浄までの期間が大幅に長くなり、しかも濾過水の回収率がほぼ同じである。
従って、膜分離装置60を使うことにより、膜濾過処理の処理効率が著しく向上すると評価できる。
【0023】
上述の例では、被処理液の膜濾過時に定期的に又は随時に開閉弁68を開放して、導出管64から濃縮液を抜き出して懸濁物を排出しているが、被処理液の膜濾過時に限らず、逆洗時に開閉弁68を開放して導出管64から逆洗排液を抜き出し、同時に上部隔板28上の懸濁物を排出するようにしても良い。
【0024】
管状膜モジュールの改変例
本例は実施形態例に設けた管状膜モジュール62の改変例である。本例では、導出管70は、図4に示すように、上部鏡板42の容器壁を貫通して集液室34の内部に貫入し、複数個(図4では簡単に2個図示)の取液口72が上部隔板28の近傍位置に臨んでいる。尚、取液口72は、図2に示すように、下向きの開口でなく、上部隔板28に沿った横向きの開口を有するように導出管70を設けても良い。
また、図示しないが、管状膜38の配列に影響が生じない限り、導出管70が、上向きの開口を有する取液口72を備え、上部鏡板42の容器壁でなく、上部隔板28を貫通して処理液室32の容器壁から外部に出るようにしても良い。
【0025】
【発明の効果】
本発明の構成によれば、内圧型管状膜を有し、クロスフロー方式で膜分離する管状膜モジュールに、濃縮液集液室の隔板近傍に臨む位置に取液口を有し、容器壁を貫通して外部に出る開閉弁付き導出管を設けることにより、従来の膜分離装置に比べて、膜分離液の回収率が同じで、しかも薬液洗浄から薬液洗浄までの期間が大幅に長くなって膜分離処理の効率が著しく向上する膜分離装置を実現している。
【図面の簡単な説明】
【図1】実施形態例の膜分離装置の構成を示すフローシートである。
【図2】図2(a)は実施形態例の膜分離装置に設けた管状膜モジュールの構成を示す断面図、及び図2(b)は管状膜モジュールの上面図である。
【図3】運転期間と膜間差圧との関係を示すグラフである。
【図4】管状膜モジュールの改変例である。
【図5】従来の膜分離装置の構成を示すフローシートである。
【図6】従来の膜分離装置に設けた管状膜モジュールの構成を示す断面図である。
【図7】懸濁物が上部隔板上に堆積する様子を示す模式図である。
【符号の説明】
10 従来のクロスフロー方式の膜分離装置
12 管状膜モジュール
14 被処理液タンク
16 被処理液管
18 被処理液ポンプ
20 処理液管
22 処理液タンク
24 濃縮液管
26 下部隔板
28 上部隔板
30 配液室
32 処理液室
34 濃縮液集液室
36 縦型容器
38 内圧型管状膜
39 処理液口
40 上部鏡板
42 下部鏡板
44、46、50、52 フランジ
48 胴部
54 逆洗液管
56 逆洗液ポンプ
58 逆洗排液管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a membrane separation apparatus using an internal pressure type tubular membrane as a membrane separation means, and more specifically, a cross flow system capable of increasing the treatment efficiency of membrane separation treatment by increasing the chemical cleaning interval of the tubular membrane. The present invention relates to a membrane separation apparatus.
In the present invention, “tubular membrane” includes both a tube generally called a tubular membrane having an inner diameter of about 5 to 25 mm and a tube generally called a hollow fiber membrane having an inner diameter of about 0.1 to 5 mm. Collectively.
[0002]
[Prior art]
As a means for removing treated water such as general water, power plant condensate, industrial water, etc., or suspended liquid entrained from the liquid to be treated, such as factory waste liquid, to obtain treated water with low turbidity or treated liquid, Conventionally, a membrane separation apparatus using a tubular membrane as a membrane separation means has been widely used.
[0003]
Here, with reference to FIGS. 5 and 6, the configuration of a conventional cross-flow type membrane separation apparatus will be described. FIG. 5 is a flow sheet showing the configuration of a conventional cross-flow type membrane separation apparatus, and FIG. 6 is a longitudinal sectional view showing the configuration of an internal pressure type tubular membrane module used in the conventional membrane separation apparatus.
As shown in FIG. 5, the conventional cross-flow type membrane separation apparatus 10 performs a membrane separation process on the liquid to be treated to flow out a processing liquid having a low turbidity, and flows out a part of the liquid to be treated as a concentrated liquid. A tubular membrane module 12 is provided.
Further, the membrane separation apparatus 10 includes a liquid tank 14 to be processed for storing a liquid to be processed for membrane separation by the tubular membrane module 12, and a liquid to be processed 16 from the liquid tank 14 to be processed to the tubular membrane module 12. The liquid to be processed 18 that is fed via the liquid, the processing liquid tank 22 that stores the processing liquid that flows out from the tubular membrane module 12 via the processing liquid pipe 20, and the liquid to be processed that is concentrated from the tubular membrane module 12. It has a concentrate pipe 24 that returns to the tank 14.
[0004]
As shown in FIG. 6, the tubular membrane module 12 is partitioned in order by a lower partition plate 26 and an upper partition plate 28, and overlaps from the bottom to the top, a liquid distribution chamber 30, a treatment liquid chamber 32, and a concentrated liquid collection chamber. (Hereinafter simply referred to as a liquid collection chamber) 34 and a plurality of internal pressure tubular membranes 38 disposed in the treatment liquid chamber 32.
The tubular membrane 38 has a lower end portion and an upper end portion fixed to the lower partition plate 26 and the upper partition plate 28 so as to communicate with the liquid distribution chamber 30 and the liquid collection chamber 34, respectively, and the inside of the processing liquid chamber 34 is longitudinally directed. Extend to. The tubular membrane 38 is a hollow fiber membrane or a tubular membrane formed of a normal filtration membrane, a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane or the like.
[0005]
The lower partition plate 26 and the upper partition plate 28 are usually formed as an adhesive layer formed by adhering the end portions of the tubular membrane 38 with an adhesive.
The processing liquid chamber 32 is divided into an inner part and an outer part by a tubular film 38, and has a processing liquid port 39 through which the processing liquid flows out by connecting to the processing liquid pipe 20.
In the tubular membrane module 12, the liquid distribution chamber 30 and the liquid collection chamber 34 are formed by the lower end plate 40 and the upper end plate 42, respectively, and communicate with the liquid tube 16 to be processed and the concentrated liquid tube 24. The lower end plate 40 and the upper end plate 42 are connected to the body portion 48 by connecting the flanges 44 and 46 and the flanges 50 and 52 of the body portion 48 forming the processing liquid chamber 32 to be integrated. A container 36 is configured.
[0006]
In the tubular membrane module 12, the liquid to be treated is introduced into the membrane of the tubular membrane 38 through the liquid distribution chamber 30, and membrane separation is performed by the tubular membrane 38 by the crossflow method, so that the treatment liquid is treated in the upper portion of the treatment liquid chamber 32. The liquid is discharged from the liquid port 39 and is stored in the processing liquid tank 22 by the processing liquid pipe 20. At the same time, the liquid to be processed that has passed without passing through the tubular membrane 38 is returned as a concentrated liquid to the liquid tank 14 to be processed by the concentrated liquid pipe 24 via the liquid collection chamber 34.
[0007]
In the present membrane separation apparatus 10, the flow rate of the liquid to be processed flowing in the tubular membrane 38 in the filtration step is high, for example, 0.1 to 1.0 m / second at the outlet of the tubular membrane 38, that is, in the vicinity of the inlet of the liquid collection chamber 34. By setting it as the range, most of the suspension adhered and deposited on the membrane surface of the tubular membrane 38 is peeled off by the hydraulic shear force of the liquid to be treated, and discharged together with the concentrate.
[0008]
After the filtration process as described above is performed for a predetermined time, the tubular membrane 38 is back-washed in order to remove the suspended matter adhering to the membrane surface without peeling. In order to backwash the tubular membrane 38, the membrane separation apparatus 10 uses a treatment liquid as a backwash liquid. Therefore, the backwash liquid pipe 54 connected to the liquid pipe 20 to be treated, and the backwash that feeds the treatment liquid from the treatment liquid tank 22 to the treatment liquid chamber 32 of the tubular membrane module 12 via the backwash liquid pipe 54. A liquid pump 56 and a backwash drainage pipe 58 branched from the liquid pipe 16 to be treated are provided.
At the time of backwashing, the processing liquid as backwashing liquid is fed from the processing liquid tank 22 to the tubular membrane module 12 via the backwashing liquid pipe 54 and the processing liquid pipe 20 by the backwashing liquid pump 56, and the tubular film 38 is reversed. The liquid is discharged to the outside through the liquid distribution chamber 30, the liquid tube 16 to be treated, and the backwash drainage pipe 58 while washing the inner surface of the tubular membrane 38.
Furthermore, if the filtration process and the backwashing process are repeated for a long period of time to perform the filtration treatment of the liquid to be treated, even if the tubular membrane is finally backwashed, the transmembrane pressure difference does not decrease below a predetermined value, that is, Since the filtration performance does not recover, in such a case, chemical cleaning of the tubular membrane is performed using chemicals such as acid, alkali, or oxidizing agent.
[0009]
[Problems to be solved by the invention]
However, in the above-described conventional membrane separation apparatus, the transmembrane pressure difference of the tubular membrane tends to rise in a short time than expected after chemical cleaning, and therefore chemical cleaning is required frequently. There was a problem that the driving efficiency was low.
Therefore, an object of the present invention is to provide a membrane separation apparatus having a configuration that can increase the treatment efficiency of the membrane separation process by increasing the interval of chemical cleaning.
[0010]
[Means for Solving the Problems]
As a result of examining the cause that the transmembrane pressure difference of the conventional membrane separation apparatus rises in a shorter period than expected, the present inventor has found the following.
When the liquid to be treated (hereinafter simply referred to as cross flow circulating water) that has passed through the tubular membrane 38 enters the liquid collection chamber 34, the flow rate is 1/10 to 1 of the flow rate in the tubular membrane 38. / 100 or so. As a result, suspensions separated and entrained by the cross-flow circulating water from the membrane surface of the tubular membrane 38, particularly suspensions having a relatively large particle size, are concentrated liquids based on the specific gravity difference from the liquid to be treated. As shown in FIG. 7, the liquid settles in the liquid collection chamber 34, accumulates on the upper partition plate 28, and then deposits.
The suspension gradually accumulates on the upper diaphragm 28, accumulates on the upper diaphragm 28, eventually falls into the tubular membrane 38 and reattaches to the membrane surface of the tubular membrane 38, Closes the opening at the upper end of the tubular membrane 38, causing an increase in transmembrane pressure difference. As a result, chemical cleaning is required at a short frequency.
[0011]
Therefore, it is considered important to extract the suspension accumulated on the upper partition plate 28 or the accumulated suspension to the outside, and a tubular membrane module provided with an extraction means was prototyped. It came to complete.
[0012]
In order to achieve the above object, a membrane separation apparatus according to the present invention includes a liquid distribution chamber, a treatment liquid chamber, and a concentrated liquid collection chamber defined by a transverse lower partition plate and an upper partition plate in a lower portion, a central portion, and an upper portion. A vertical container having a lower end and an upper end fixed to a lower partition plate and an upper partition plate so as to communicate with a liquid distribution chamber and a concentrated liquid collection chamber, respectively. A tubular membrane module having an internal pressure type tubular membrane extending in the longitudinal direction is provided, the liquid to be treated is introduced into the liquid distribution chamber, the membrane is separated by a cross-flow method, and the processing liquid flows out of the processing liquid chamber and is concentrated. In a membrane separation device that causes the concentrated liquid collection chamber to flow out through the concentrated liquid tube ,
It has a liquid intake port at a position facing the vicinity of the upper partition plate of the concentrated liquid collection chamber, and has a discharge pipe with an on-off valve that penetrates the container wall and goes outside, separately from the concentrated liquid pipe .
[0013]
In the present invention, the number of outlet pipes is not limited, and the number of outlet pipes is determined according to the size of the partition plate. When the number of outlet pipes is one, the pipe diameter of the outlet pipe is preferably in the range of 1/3 to 1/1 times the diameter of the concentrated liquid pipe that causes the concentrated liquid to flow out of the concentrated liquid collection chamber. is there. When there are a plurality of outlet pipes, the total cross-sectional area of the outlet pipes and the cross-sectional area of the concentrated liquid pipe are in this relationship.
The liquid inlet is not necessarily provided flush with the container wall of the concentrated liquid collecting chamber, and the outlet pipe can be inserted into the concentrated liquid collecting chamber and provided at a desired position. At this time, the outlet pipe does not need to penetrate the container wall of the concentrated liquid collection chamber, and may pass through the upper partition plate and pass out of the container wall of the treatment liquid chamber through the treatment liquid chamber. Further, it is not necessary for one outlet pipe to have one liquid inlet, and a plurality of liquid inlets may be provided on one partition pipe in a distributed manner.
As long as the outlet pipe and the on-off valve can withstand the pressure of the liquid to be processed, the shape, material, and material are not limited. In consideration of the flow of the suspension, the on-off valve preferably has an opening area that does not relatively reduce the diameter of the outlet pipe, such as a ball valve or a butterfly valve. .
[0014]
With the above configuration, in the present invention, the suspension can be discharged to the outside through the outlet pipe without being affected by the sedimentation speed of the accumulated suspension and the flow velocity of the cross-flow circulating water.
It is sufficient for the drainage using the outlet tube to be performed periodically or as often as a guide for several tens of seconds once a week during continuous operation of the membrane separator. Sometimes the concentrate may be withdrawn, and the backwash drainage may be withdrawn during the backwash.
The amount of water required for drainage is usually several liters although it depends on the size of the tubular membrane module. Draining is performed using the pressure of the liquid to be treated.
[0015]
The membrane separation apparatus according to the present invention can be applied not only to the properties of the liquid to be treated, but also to, for example, raw water for industrial use and water supply such as river water, well water, lake water, etc. In particular, it can be optimally applied to raw water having a turbidity ranging from several degrees to several hundred degrees, or a liquid to be treated.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below specifically and in detail with reference to the accompanying drawings.
Embodiment Example This embodiment example is an example of an embodiment of a membrane separation apparatus according to the present invention. FIG. 1 is a flow sheet showing the configuration of the membrane separation apparatus of this embodiment example, FIG. FIG. 2A is a cross-sectional view showing the configuration of a tubular membrane module provided in the membrane separation apparatus of this embodiment, and FIG. 2B is a top view of the tubular membrane module.
As shown in FIG. 1, the membrane separation device 60 of the present embodiment has the same configuration as the conventional membrane separation device 10 except for the configuration of the tubular membrane module 62 and piping associated therewith.
[0017]
In the present embodiment example, the tubular membrane module 62 includes a lead-out pipe 64 communicating with the liquid collection chamber 34 as shown in FIG. The outlet pipe 64 has a liquid inlet 66 on the container wall of the upper end plate 42 that forms a concentrated liquid collection chamber (hereinafter simply referred to as a collection chamber) 34 at a position facing the vicinity of the upper partition plate 28. An open / close valve 68 is provided outside. The tube diameter of the outlet tube 64 may be in the range of 25 mm to 50 mm when the inner diameter of the concentrate tube 24 is 50 mm. As shown in FIG. 2B, the lead-out pipe 64 extends in the radial direction with respect to the upper end plate 42, and can be drained to a desired place as shown in FIG.
[0018]
In this embodiment, when the on-off valve 68 is opened periodically or at any time, the concentrated liquid in the liquid collection chamber 34 is applied to the upper partition plate 28 by the pressure of the liquid to be processed, as shown in FIG. The accumulated suspension or accumulated suspension is entrained at once and drained to the outside.
As a result, in the membrane separation device 60 of the present embodiment, the suspension deposited on the upper partition plate 28 falls into the tubular membrane 38 as in the conventional membrane separation device 10, and the membrane of the tubular membrane 38 is obtained. It does not occur that it adheres to the surface again or further closes the opening at the upper end of the tubular membrane 38 and causes an increase in the transmembrane pressure difference.
[0019]
Example of membrane filtration experiment of this embodiment In order to evaluate the performance of the membrane separator of this embodiment, a hollow fiber membrane module (trade name ORFINE) manufactured by Organo Corporation was used as a tubular membrane module. Using this, an experimental apparatus having the same configuration as that of the membrane separation apparatus 62 was produced, and an experiment of membrane filtration was performed under the following conditions.
Treatment liquid: River surface water treatment liquid turbidity: 5 to 500 degrees Filtration water turbidity: 0.0001 to 0.0010 degrees (measured with a laser turbidimeter)
Membrane filtration flux: 1.5 m 3 / m 2 / day Concentrate flow rate in the concentrate tube: 0.1 m / second Membrane filtration time from back washing to back washing: 45 minutes Back washing time: 60 seconds Back washing flow Bundle: 5.8 m 3 / m 2 / day of drainage frequency from the outlet tube: 1 time / one week of drainage time from the outlet tube: 20 seconds
During the experiment, when the transmembrane pressure difference of the tubular membrane module was measured, the result shown in the graph (1) of FIG. 3 was obtained.
After 7 months, the transmembrane pressure difference of 80 kPa, which required chemical cleaning, was reached. Moreover, the recovery rate of filtered water was 91.40% of the flow rate of river surface water introduced as treated water.
[0021]
Example of membrane filtration experiment of conventional membrane separation device In order to compare with the membrane separation device of this embodiment example, a hollow fiber membrane module (trade name ORFINE) manufactured by Organo Co., Ltd. is also used as a tubular membrane module. Using a conventional membrane separation apparatus using a membrane, a membrane filtration experiment was conducted under the same conditions as those described above, and the transmembrane pressure difference of the tubular membrane module was measured during the experiment. The graph (2) in FIG. The results shown are obtained.
After 4.5 months, the transmembrane pressure difference of 80 kPa, which required chemical cleaning, was reached. Moreover, the recovery rate of filtered water was 91.41% of the flow rate of river surface water introduced as treated water.
[0022]
As can be seen from the above experimental examples, the membrane separation device 60 of the present embodiment has a significantly longer period from the chemical solution cleaning to the chemical solution cleaning than the conventional membrane separation device 10, and the recovery rate of filtered water is high. It is almost the same.
Therefore, it can be evaluated that by using the membrane separation device 60, the processing efficiency of the membrane filtration process is remarkably improved.
[0023]
In the above-described example, the on-off valve 68 is opened periodically or at any time during membrane filtration of the liquid to be treated, and the concentrated liquid is extracted from the outlet pipe 64 to discharge the suspension. Not only at the time of filtration but also at the time of backwashing, the on-off valve 68 may be opened to draw backwashing drainage liquid from the outlet pipe 64, and at the same time, the suspension on the upper partition plate 28 may be drained.
[0024]
Modified example of tubular membrane module This example is a modified example of the tubular membrane module 62 provided in the embodiment. In this example, as shown in FIG. 4, the outlet pipe 70 penetrates the container wall of the upper end plate 42 and penetrates into the liquid collection chamber 34, and a plurality of (two are simply shown in FIG. 4) are taken. The liquid port 72 faces the vicinity of the upper partition plate 28. As shown in FIG. 2, the outlet 72 may be provided with the outlet pipe 70 so as to have a lateral opening along the upper partition plate 28 instead of a downward opening.
Although not shown, as long as the arrangement of the tubular membranes 38 is not affected, the outlet pipe 70 includes a liquid inlet 72 having an upward opening and penetrates the upper partition plate 28 instead of the container wall of the upper end plate 42. And you may make it come out from the container wall of the process liquid chamber 32 outside.
[0025]
【The invention's effect】
According to the configuration of the present invention, the tubular membrane module having an internal pressure type tubular membrane and membrane-separating by the crossflow method has a liquid intake port at a position facing the partition plate of the concentrated liquid collecting chamber, and the container wall By providing a lead-out tube with an on-off valve that passes through the outside, the recovery rate of the membrane separation liquid is the same as that of the conventional membrane separation device, and the period from chemical cleaning to chemical cleaning is significantly increased. Thus, a membrane separation apparatus that significantly improves the efficiency of the membrane separation treatment is realized.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing a configuration of a membrane separation apparatus according to an embodiment.
2A is a cross-sectional view showing a configuration of a tubular membrane module provided in the membrane separation apparatus of the embodiment, and FIG. 2B is a top view of the tubular membrane module.
FIG. 3 is a graph showing a relationship between an operation period and a transmembrane pressure difference.
FIG. 4 is a modified example of a tubular membrane module.
FIG. 5 is a flow sheet showing the configuration of a conventional membrane separation apparatus.
FIG. 6 is a cross-sectional view showing a configuration of a tubular membrane module provided in a conventional membrane separation apparatus.
FIG. 7 is a schematic diagram showing how the suspended matter is deposited on the upper diaphragm.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Conventional cross-flow type membrane separator 12 Tubular membrane module 14 Liquid tank 16 Process liquid pipe 18 Liquid pump 20 Process liquid pipe 22 Process liquid tank 24 Concentrated liquid pipe 26 Lower partition plate 28 Upper partition plate 30 Liquid distribution chamber 32 Treatment liquid chamber 34 Concentrated liquid collection chamber 36 Vertical container 38 Internal pressure tubular membrane 39 Treatment liquid port 40 Upper end plate 42 Lower end plate 44, 46, 50, 52 Flange 48 Body 54 Backwash pipe 56 Reverse Wash pump 58 Backwash drain

Claims (1)

横断する下部隔板及び上部隔板によって区画された配液室、処理液室及び濃縮液集液室を下部、中央及び上部に有する縦型容器を備え、縦型容器内には、配液室及び濃縮液集液室にそれぞれ連通するように下端部及び上端部で下部隔板及び上部隔板に固定され、処理液室内を縦方向に延在する内圧型管状膜を有する管状膜モジュールを備えて、被処理液を配液室に導入し、クロスフロー方式で膜分離して処理液を処理液室から流出させると共に濃縮液を濃縮液集液室から濃縮液管を介して流出させるようにした膜分離装置において、
濃縮液集液室の上部隔板近傍に臨む位置に取液口を有し、容器壁を貫通して外部に出る開閉弁付き導出管を前記濃縮液管とは別に有することを特徴とする膜分離装置。
A vertical container having a liquid distribution chamber, a processing liquid chamber and a concentrated liquid collecting chamber divided by a lower partition plate and an upper partition plate in the lower part, center and upper part is provided, and the liquid distribution chamber is provided in the vertical container. And a tubular membrane module having an internal pressure type tubular membrane that is fixed to the lower and upper partition plates at the lower end and the upper end so as to communicate with the concentrated liquid collection chamber and extends in the longitudinal direction in the processing solution chamber. Then, the liquid to be treated is introduced into the liquid distribution chamber, the membrane is separated by a cross flow method, the processing liquid is allowed to flow out of the processing liquid chamber, and the concentrated liquid is allowed to flow out of the concentrated liquid collecting chamber through the concentrated liquid pipe. In the membrane separation apparatus,
A membrane having a liquid intake port at a position facing the vicinity of the upper partition plate of the concentrated liquid collecting chamber, and having a discharge pipe with an on-off valve that passes through the container wall and goes outside, separately from the concentrated liquid pipe Separation device.
JP04168499A 1999-02-19 1999-02-19 Membrane separator Expired - Fee Related JP3953673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04168499A JP3953673B2 (en) 1999-02-19 1999-02-19 Membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04168499A JP3953673B2 (en) 1999-02-19 1999-02-19 Membrane separator

Publications (3)

Publication Number Publication Date
JP2000237550A JP2000237550A (en) 2000-09-05
JP2000237550A5 JP2000237550A5 (en) 2004-12-24
JP3953673B2 true JP3953673B2 (en) 2007-08-08

Family

ID=12615263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04168499A Expired - Fee Related JP3953673B2 (en) 1999-02-19 1999-02-19 Membrane separator

Country Status (1)

Country Link
JP (1) JP3953673B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166137A (en) * 2000-11-29 2002-06-11 Yuasa Corp Tubular filter membrane module for submerged membrane filtration system
JP2002166140A (en) * 2000-11-29 2002-06-11 Yuasa Corp Tubular filter membrane for submerged membrane filtration system
JP2002166138A (en) * 2000-11-29 2002-06-11 Yuasa Corp Tubular filter membrane module for submerged membrane filtration system
JP6567008B2 (en) * 2016-12-22 2019-08-28 株式会社クボタ Operation method of membrane module

Also Published As

Publication number Publication date
JP2000237550A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
US6190557B1 (en) Spiral wound type membrane element, running method and washing method thereof
JPH01500732A (en) Cleaning the filter
JPH07112185A (en) Waste water treating device and washing method therefor
IE913483A1 (en) Membrane separation system and methods of operating and¹cleaning such a system
JPH11156166A (en) Cleaning method for hollow fiber membrane module
JPH11128692A (en) Hollow fiber membrane module
WO2007083723A1 (en) Membrane filtration apparatus and its operating method
JP2007296500A (en) Membrane separation apparatus and membrane filtration method
JP3953673B2 (en) Membrane separator
CN206814759U (en) Prevent and treat pepper ralstonia solanacearum microbial bacterial agent production ultrafiltration membrane filter
JP5324117B2 (en) Water treatment facility having a diffuser and a membrane concentrator equipped with the diffuser
JPH06190251A (en) Method and apparatus for treatment of water containing turbid component
JP5238128B2 (en) Solid-liquid separation device for solid-liquid mixed processing liquid
JP2007209949A (en) Filtrate recovery device of solid-liquid mixed/processed liquid
JPH09131517A (en) Hollow fiber membrane module and method for using the same
JPH05168871A (en) Membrane separation device
JP2017176951A (en) Method for cleaning separation membrane module
JP2005065541A (en) Liquid filtration apparatus and method for producing clarified sugar solution
JP2010188250A (en) Water treatment method
JP2009233504A (en) Method of cleaning dipping-type membrane module and cleaner for dipping-type membrane module as well as dipping-type membrane filter using the same
JP2585879Y2 (en) Membrane separation device
KR20160146725A (en) Method for operating clarifying-film module
JP7213711B2 (en) Water treatment device and water treatment method
JP3601014B2 (en) Method and apparatus for concentrating raw water in submerged membrane filtration equipment
JP2015123436A (en) Water treatment method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees