JPH06190251A - Method and apparatus for treatment of water containing turbid component - Google Patents

Method and apparatus for treatment of water containing turbid component

Info

Publication number
JPH06190251A
JPH06190251A JP34790592A JP34790592A JPH06190251A JP H06190251 A JPH06190251 A JP H06190251A JP 34790592 A JP34790592 A JP 34790592A JP 34790592 A JP34790592 A JP 34790592A JP H06190251 A JPH06190251 A JP H06190251A
Authority
JP
Japan
Prior art keywords
water
membrane
tubular
filtration
filtration membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34790592A
Other languages
Japanese (ja)
Other versions
JP2911327B2 (en
Inventor
Katsuo Takada
尅男 高田
Shigeaki Nishizawa
栄朗 西沢
Satoshi Yo
敏 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP34790592A priority Critical patent/JP2911327B2/en
Publication of JPH06190251A publication Critical patent/JPH06190251A/en
Application granted granted Critical
Publication of JP2911327B2 publication Critical patent/JP2911327B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To efficiently reduce the volume of turbid components and to discard these turbid components by using water contg. the turbid components as original water and removing the turbid components by filtration. CONSTITUTION:Waste water contg. the flocs largely agglomerated by addition of a high-molecular flocculaant in a flocculation chamber 7 is sent through a water feed line 92 by a membrane water feed pump 91 from a pump pit 9 of the flocculation chamber 7 into a filter membrane device 11. The filter membrane device 11 has a tubular internal pressure type precision filter membrane 11a and is so provided that the waste water is passed in the pipe and is then circulated by the cross flow to return the waste water from a circulating return line 12 to the pump pit 9 of the flocculation chamber 7. The SS components (turbid components) in the waste liquid passed by the cross flow is filtered by the filter membrane 11a and the permeated water passed to the outer side of the membrane 11a is taken out as treated water 16 from a permeated water line 14 through a back washing water holding tank 15. As a result, the clean permeated water is obtd. and the turbid components are efficiently reduced in the volume and are discarded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、濁質成分を含む水を原
水として、その濁質成分を濾過により除去してきれいな
透過水を得る水の処理方法、及び濁質成分を効率よく減
容化して廃棄できる処理方法、ならびにこれらの方法に
用いる装置に関する。
FIELD OF THE INVENTION The present invention relates to a method for treating water containing turbidity components as raw water to remove the turbidity components by filtration to obtain clean permeated water, and to efficiently reduce the turbidity components. The present invention relates to a treatment method that can be converted into a waste and a device used for these methods.

【0002】[0002]

【従来の技術】一般に「SS(Suspended Solidの略)」
と呼ばれる濁質成分を含む原水からその濁質成分を除去
して水をきれいにする処理は広く行なわれており、この
ような方法として従来一般的なのは、原水に凝集剤を添
加して水中の微細な濁質成分を凝集させてフロック化
し、これを凝集沈澱層で固液分離後、上澄水を濾過器で
濾過することで清澄な濾過水を得、他方、凝集沈澱層で
沈殿したフロックを汚泥濃縮槽で濃縮して汚泥として回
収し、更に適当な脱水処理を行なって減容化した後、廃
棄物とする方法が知られている。
2. Description of the Related Art Generally, "SS (Suspended Solid)"
It is widely practiced to remove water from raw water containing turbidity components to clean the water.The conventional method is to add a coagulant to the raw water to remove fine particles in the water. The turbid components are aggregated to form flocs, which are subjected to solid-liquid separation in the flocculation sedimentation layer, and the supernatant water is filtered with a filter to obtain clear filtered water, while the flocs precipitated in the flocculation sedimentation layer are sludge. There is known a method in which the sludge is concentrated in a concentrating tank, recovered as sludge, further subjected to an appropriate dehydration treatment to reduce the volume, and then treated as waste.

【0003】このような方法のうちで近時においては、
濾過手段として優れた濾過性能を有し、また設置容積も
僅少とできる濾過膜方式、特に中空糸型濾過膜等を内圧
式で用いる方法が注目されている。
Of these methods, recently,
Attention has been focused on a filtration membrane method that has excellent filtration performance as a filtration means and can be installed in a small volume, and in particular, a method of using a hollow fiber type filtration membrane or the like as an internal pressure type.

【0004】図12はこのような濾過膜を用いた水処理
装置の一例のフロー概要を示したものである。この図に
おいて、201は原水が流入される凝集槽であり、原水
に対し凝集剤を添加してこれに含まれる濁質成分を粗大
にフロック化する。このフロックを含む水は、ポンプピ
ット202に流入しポンプ203で中空糸型濾過膜を有
する濾過器204の管内にクロスフロー形式で通水さ
れ、膜を透過した透過水は系外に排出され(または次段
の適当な処理装置に送水され)、非濾過側の水は上記ポ
ンプピット202に戻される。
FIG. 12 shows an outline of the flow of an example of a water treatment device using such a filtration membrane. In this figure, 201 is a coagulation tank into which raw water is introduced, and a flocculant is added to the raw water to coarsely flocculate turbid components contained therein. The water containing the flocs flows into the pump pit 202 and is passed by the pump 203 into the pipe of the filter 204 having the hollow fiber type filtration membrane in a cross-flow format, and the permeated water that has passed through the membrane is discharged to the outside of the system ( Alternatively, the water is sent to an appropriate treatment device in the next stage), and the water on the non-filtration side is returned to the pump pit 202.

【0005】このようにしてポンプピット202と濾過
器204で形成する循環系内を流れる水の中のフロック
濃度は、次第に高くなる。そしてポンプピット202が
濾過器204に循環水を送る送水ラインの途中から、上
記によってフロックが濃縮された水を適当な時期,適当
な量で濃縮槽205に抜き出し、静置して所定時間経過
した時点で該濃縮槽205の下部から沈降分離した堆積
フロック(以下「汚泥」という)を脱水機206に抜き
出し、脱水処理して減容した廃棄物とされる。一方、こ
のような濾過操作を継続すると濾過膜の膜面に濁質成分
が付着し、得られる透過水の流量が次第に低下してくる
ので、ある程度透過水量が低下した時点で膜管内への原
水の供給を続行しながら、膜の外側(透過水側)から内
側に逆洗水を流して膜面に付着している濁質を洗い流す
という洗浄操作を行い、洗浄終了後、逆洗水の供給を停
止して再び上述のような濾過を行う。
In this way, the floc concentration in the water flowing in the circulation system formed by the pump pit 202 and the filter 204 gradually increases. Then, from the middle of the water supply line where the pump pit 202 sends the circulating water to the filter 204, the water in which the flocs are concentrated by the above is withdrawn into the concentration tank 205 at an appropriate time and in an appropriate amount, and left standing for a predetermined time. The accumulated flocs (hereinafter referred to as “sludge”) that have settled and separated from the lower part of the concentration tank 205 at this point are extracted into a dehydrator 206, dehydrated and treated as waste. On the other hand, if such a filtration operation is continued, suspended components will adhere to the membrane surface of the filtration membrane, and the flow rate of the permeated water obtained will gradually decrease. While continuing the supply of water, the washing operation is performed by flushing backwash water from the outside (permeate side) of the membrane to wash away suspended matter adhering to the membrane surface. And stop and repeat the filtration as described above.

【0006】このような構成の廃水処理装置において用
いられている濾過器は、中空糸型濾過膜を内圧式で用
い、膜管内に流した廃水の一部を該濾過膜を通過させる
ことなくポンプピット202に戻すクロスフロー方式と
して運転される。またこの際、高透過水量を得るという
目的から、例えば濾過膜の膜面(分離膜面)に廃水中の
濁質成分を極力付着させず、高透過水量が得られるよう
に廃水を高流速で流す方法や、上述のような逆洗を頻繁
に行うことによって濁質成分が膜面にあまり付着しない
ようにする運用方法が採用される。このため、逆洗排水
中の汚泥濃度は一般に低い。
The filter used in the waste water treatment apparatus having such a structure uses a hollow fiber type filtration membrane of an internal pressure type, and a part of the waste water flowing in the membrane tube is pumped without passing through the filtration membrane. It is operated as a cross-flow method of returning to the pit 202. At this time, for the purpose of obtaining a high permeated water, for example, the turbidity component of the wastewater is not attached to the membrane surface (separation membrane surface) of the filtration membrane as much as possible, and the wastewater is supplied at a high flow rate so that a high permeated water amount can be obtained. A flushing method or an operation method in which the above-mentioned backwashing is frequently performed to prevent the turbid component from adhering to the membrane surface so much is adopted. Therefore, the concentration of sludge in backwash wastewater is generally low.

【0007】[0007]

【発明が解決しようとする課題】上述の図12で示され
る水処理法は要するに、濾過膜に濁質成分が付着して透
過速度が下がるのをできるだけ抑制し、濁質成分を含む
廃水をクロスフローで流して透過側にできるだけ多くの
透過水を得ながら、非濾過(透過)側の循環水の濁質成
分の濃度をなるべく高くし、原水の供給量及び透過水の
流量とのバランスをとりながらこの循環系から比較的高
濃度の濁質成分含有の水を得ようとするものである。な
お、循環系通水中の濁質成分濃度を高くするのは、系か
ら抜いた汚泥の濃縮・脱水・減容化の負担を軽減するた
めである。
The above-mentioned water treatment method shown in FIG. 12 is essentially to suppress as much as possible the decrease of the permeation component due to the adherence of the turbidity component on the filtration membrane, and the waste water containing the turbidity component is crossed. Flow through the flow to obtain as much permeate as possible on the permeate side, while increasing the concentration of suspended matter in the circulating water on the non-filtration (permeate) side as much as possible to balance the supply amount of raw water and the flow rate of permeate. However, it is intended to obtain water containing a relatively high concentration of turbidity components from this circulation system. The reason for increasing the concentration of suspended matter in the circulating water in the circulation system is to reduce the burden of concentrating, dehydrating, and reducing the volume of sludge extracted from the system.

【0008】しかしこの方法によると、濾過膜に繰返し
循環する通水中の濁質成分が原水のSS濃度より高濃度
化するので、その分、濾過膜表面に濁質成分が付着堆積
し易くなり、膜面への濁質成分の付着を出来るだけ抑制
しながら運転するという目的からすれば必ずしも有利な
方法ではない。
[0008] However, according to this method, the suspended matter component in the circulating water repeatedly circulated in the filtration membrane becomes higher in concentration than the SS concentration of the raw water, so that the suspended matter component is likely to adhere and deposit on the surface of the filtration membrane. This is not necessarily an advantageous method for the purpose of operating while suppressing the adherence of turbid components to the membrane surface as much as possible.

【0009】つまり、従来方式は、膜面に濁質を付着さ
せないように、非常に高い膜面流速(通常3m/sec
以上)で通水し、例えば、循環流速対透過流速の比は通
常10以上、高い場合には30以上であり、エネルギー
の面からも非常に無駄な処理を行っている。さらに、設
備面においてもポンプや配管など付属設備も大きい欠点
がある。
That is, the conventional method has an extremely high flow velocity on the membrane surface (usually 3 m / sec) so as not to attach turbidity to the membrane surface.
As described above), the ratio of the circulation flow rate to the permeation flow rate is usually 10 or more, and when it is high, it is 30 or more, which is a very wasteful process in terms of energy. Furthermore, in terms of equipment, there is a major drawback in that auxiliary equipment such as pumps and piping are also large.

【0010】さらに、従来の膜処理による固液分離は、
濾過膜表面に濁質成分の付着堆積をできるだけ抑制する
ため循環系の濁質濃度をあまり高くすることができず、
系外に排出する汚泥濃度はせいぜい10000〜200
00mg/lにとどまっている。このためこの濃度では
直接脱水機による脱水は、含水率や脱水助剤の使用量等
から有利な方法とは言えず、さらに汚泥を濃縮するため
の濃縮槽が必要となる。
Further, the solid-liquid separation by the conventional membrane treatment is
The suspended matter concentration in the circulation system cannot be increased so much as to suppress the deposition of suspended matter on the surface of the filtration membrane as much as possible.
The concentration of sludge discharged to the outside of the system is at most 10,000-200
It remains at 00 mg / l. Therefore, at this concentration, dehydration by a direct dehydrator cannot be said to be an advantageous method from the viewpoint of the water content and the amount of dehydration aid used, and a concentration tank for further concentrating sludge is required.

【0011】更に、水中の濁質成分が比較的低濃度であ
る場合は、膜面に付着する堆積物の量は少ないので、エ
ネルギー効率で考えればクロスフロー方式よりも全量濾
過方式の通水による濾過を行なう方が好ましいと考えら
れるが、従来ではクロスフロー方式の通水が常識であっ
たため、全量濾過方式の水処理法はあまり一般的ではな
い。
Further, when the turbidity component in the water has a relatively low concentration, the amount of deposits adhering to the membrane surface is small, so in terms of energy efficiency, the water flow of the total filtration method is more effective than the crossflow method. Although it is considered preferable to carry out filtration, since water flow of cross-flow method has been common knowledge in the past, the water treatment method of total-volume filtration method is not so common.

【0012】本発明者は、以上のような従来技術の現状
に鑑み、多くの利点を有する膜濾過方式を有効に利用で
きる処理方法、及びこれに用いることができる新規な水
処理装置について鋭意検討を重ねた。
In view of the current state of the art as described above, the present inventor diligently studied a treatment method that can effectively utilize a membrane filtration system having many advantages, and a novel water treatment apparatus that can be used for the treatment method. Layered.

【0013】この検討の過程で本発明者は、「膜面への
濁質成分の付着をできるだけ抑制しながら運転する」と
いう従来法の考え方にとらわれることなく、濾過操作の
過程で現われる現象を詳細に検討したところ、極めて注
目すべき点のあることが知見された。すなわち、濾過膜
表面に付着堆積した濁質成分は、比較的弱い力で破壊さ
れてしまうような緩い結合状態ではあるが筒状の構造を
呈し、高い沈降性を示すという性質をもつことが注目さ
れたのである。ここでこの高沈降性の筒状汚泥を、その
筒形状を実質的に破壊することなく取り出すことができ
れば、従来法の様々な問題点をいずれも解決できること
に気が付いた。
In the course of this examination, the present inventor has detailed the phenomenon appearing in the process of filtration operation without being restricted by the concept of the conventional method of "operating while suppressing the adherence of turbid components to the membrane surface as much as possible". As a result of the investigation, it was found that there are some points to be noted. In other words, it should be noted that the turbidity component deposited and deposited on the surface of the filtration membrane has a cylindrical structure with a loosely bound state in which it is destroyed by a relatively weak force, and has the property of exhibiting high sedimentation properties. It was done. Here, I realized that if the highly sludge-forming tubular sludge could be taken out without substantially destroying the tubular shape, all the various problems of the conventional method could be solved.

【0014】以上のような観点から本発明はなされたも
のであり、その目的は、原水中に含まれる濁質成分を、
槽の下部に速やかに沈降して原水との分離が容易な状態
として取り出すことのできる新規な水処理方法及び装置
を提供するところにある。
The present invention has been made from the above viewpoints, and an object thereof is to remove turbid components contained in raw water.
It is an object of the present invention to provide a novel water treatment method and apparatus that can be quickly settled in the lower part of a tank and taken out in a state where it can be easily separated from raw water.

【0015】また本発明の別の目的は、上記のような速
やかな沈降性を有する筒状の構造性を有する汚泥を、こ
れが沈降した槽の下部から大量の水を伴うことなく外部
に抜き出すようにして、従来の汚泥分離のための濃縮槽
を不要とでき、また、抜き出した汚泥を直ちに脱水処理
することで、設備容積の縮小化が図れる新規な水処理方
法及び装置を提供するところにある。
Another object of the present invention is to extract the sludge having the cylindrical structure having the rapid settling property as described above from the lower part of the tank in which it settled to the outside without a large amount of water. In addition, a conventional concentration tank for sludge separation can be dispensed with, and a new water treatment method and device can be provided which can reduce the facility volume by immediately dehydrating the extracted sludge. .

【0016】また本発明の更に別の目的は、原水の濁質
成分含有量に応じて、例えば濁質成分含有量が少ない場
合にはエネルギー効率に優れた全量濾過方式を採用で
き、また高濁質成分含有の原水の場合には、低循環水量
で処理するため従来法と同等の透過水量を容量の小さな
ポンプで得ることができる省エネルギー化した新規な水
処理方法及び装置を提供するところにある。
Still another object of the present invention is that, depending on the turbidity component content of the raw water, for example, when the turbidity component content is small, a total filtration method excellent in energy efficiency can be adopted, and high turbidity is achieved. In the case of raw water containing quality components, since it is treated with a low amount of circulating water, a new energy-saving water treatment method and device capable of obtaining the same amount of permeated water as the conventional method with a small capacity pump is provided. .

【0017】また本発明の他の目的は、自動化が容易で
ある新規な水処理方法及び装置を提供するところにあ
る。
Another object of the present invention is to provide a novel water treatment method and apparatus which can be easily automated.

【0018】[0018]

【課題を解決するための手段及び作用】上記目的を達成
するために本発明者は、上記特許請求の範囲の各請求項
に記載した発明を完成した。
In order to achieve the above object, the present inventor has completed the invention described in each of the claims.

【0019】本発明の特徴の一つは、管状濾過膜の管内
に濁質成分を含む原水を流してこの原水中に含まれる濁
質成分を該膜の内周面に堆積させながら膜の径方向外側
に透過水を流出させる濾過操作と、この濾過操作を中断
して管状濾過膜の内周面に付着堆積した濁質成分を該膜
内周面から除去する洗浄操作とに特徴があり、最も代表
的な特徴は、管状濾過膜の内周面に筒状に付着堆積した
濁質成分の筒状体を実質的にその筒状の構造を破壊する
ことなく膜面から剥離させるように、該膜の径方向外側
から内側に逆洗水を流す剥離操作と、これによって剥離
した濁質成分の筒状体を、該管状濾過膜の軸方向の水流
で管内から軸方向に押出す押出し操作とを順次に行なう
ところにある。
One of the features of the present invention is that the raw water containing the turbidity component is caused to flow in the tube of the tubular filtration membrane, and the turbidity component contained in the raw water is deposited on the inner peripheral surface of the membrane while the diameter of the membrane is being increased. Characterized by a filtering operation that causes permeated water to flow out to the outside in the direction, and a washing operation that interrupts this filtering operation to remove the suspended components adhered and deposited on the inner peripheral surface of the tubular filtration membrane from the inner peripheral surface of the membrane, The most typical feature is that the tubular body of the turbid component adhered and deposited in a tubular shape on the inner peripheral surface of the tubular filtration membrane is separated from the membrane surface without substantially destroying the tubular structure, A peeling operation in which backwash water is flown from the outer side to the inner side in the radial direction of the membrane, and an extruding operation in which a tubular body of suspended components separated by this is extruded from the inside of the tube in the axial direction by the water flow in the axial direction of the tubular filtration membrane. There is a place to do and sequentially.

【0020】つまり、通水操作を行うと、濾過膜内面に
は図10に示すように次第に汚泥が付着し、例えばSS
濃度500mg/lの廃水を1〜2時間通水した場合、
通水終了時には汚泥層が約1〜2mm程度の厚さとな
る。そして汚泥層が厚くなるにしたがって透過水量も減
少し、例えば通水初期に約300リットル/m2 ・hで
あったものが、通水終了時には100リットル/m2
h程度まで減少する。したがって一般的には透過水量が
初期通水量の1/2〜1/3程度に減少した時点で、上
述した本発明の逆洗により付着した汚泥を除去する操作
を行う。
That is, when a water-passing operation is performed, sludge gradually adheres to the inner surface of the filtration membrane as shown in FIG.
When waste water with a concentration of 500 mg / l is passed for 1-2 hours,
At the end of water flow, the sludge layer has a thickness of about 1 to 2 mm. The amount of permeated water also decreases as the sludge layer becomes thicker. For example, what was about 300 liters / m 2 · h at the beginning of water passage was 100 liters / m 2 · h at the end of water passage.
It decreases to about h. Therefore, generally, when the amount of permeated water decreases to about 1/2 to 1/3 of the initial amount of water passed, the operation of removing the sludge adhered by the above-described backwashing of the present invention is performed.

【0021】上述のような剥離操作と押出し操作を順次
に行なうことで、図11に示すように、濾過膜内面に付
着堆積した筒状汚泥が実質的に破壊されることなく濾過
膜から押出される。
By sequentially performing the above-described peeling operation and extrusion operation, as shown in FIG. 11, the tubular sludge adhered and deposited on the inner surface of the filtration membrane is extruded from the filtration membrane without being substantially destroyed. It

【0022】剥離操作と押出し操作を順次に行なうの
は、筒状体を膜面から剥離させる剥離操作を先行させる
ことで、該筒状体の軸方向への押出しが円滑となるよう
にするためである。押出し水は透過水または原水を使用
してもよい。
The peeling operation and the extruding operation are performed in order so that the extruding operation for exfoliating the tubular body from the film surface precedes so that the extruding of the tubular body in the axial direction becomes smooth. Is. Permeate water or raw water may be used as the extrusion water.

【0023】本発明の方法において、濾過膜の内面に付
着した濁質成分の筒状体を実質的に破壊することなく膜
面から剥離させるために行なう剥離操作は、濾過膜の外
側から例えば透過水を濾過とは反対方向に流す操作を言
うが、従来法において行なわれている高流速での逆洗と
は全く性質が異なるものである。すなわち従来法は、濾
過操作を中断することなく、濾過膜の管内に原水を流し
続けたまま膜の外側から内側に逆洗水を流すようにして
いたので、全体としては弱い結合状態で筒状体を呈して
付着している付着体積物を原水の流れによって破壊して
しまい、そのため汚泥は微細化され沈降性の悪い汚泥と
なる。筒状体の実質的な破壊を招かずに剥離を行なわせ
るためには、上述の如く、一旦、濾過操作を中断し、そ
の後逆洗水を流して剥離操作を行い、次いでこの逆洗水
の流入を停止して、剥離した筒状汚泥の押出し操作を行
うことが重要である。
In the method of the present invention, the peeling operation for peeling the cylindrical body of the turbid component adhered to the inner surface of the filtration membrane from the membrane surface without substantially destroying it is performed, for example, from the outside of the filtration membrane. This is an operation in which water is caused to flow in the direction opposite to that of filtration, but has completely different properties from the backwashing at a high flow rate, which is carried out in the conventional method. That is, in the conventional method, the backwash water is made to flow from the outer side to the inner side of the membrane while the raw water is kept flowing in the tube of the filtration membrane without interrupting the filtration operation. The adhered volume that is presenting as a body is destroyed by the flow of raw water, so that the sludge becomes finer and has poor sedimentation properties. In order to perform the peeling without substantially destroying the tubular body, as described above, the filtration operation is once interrupted, the backwash water is then flowed to perform the peeling operation, and then the backwash water is removed. It is important to stop the inflow and to extrude the exfoliated tubular sludge.

【0024】また逆洗の後段の操作である筒状体を膜の
端部から軸方向に押出すための押出し水の通水も、剥離
した筒状体を実質的に破壊することなく行なう必要があ
り、一般的には0.5〜2m/sec、好ましくは0.
5〜1.0m/sec程度の流速で流すことがよい。押
出し水には透過水,原水のいずれを用いてもよい。
In the latter stage of backwashing, the extruded water for axially extruding the tubular body from the end portion of the membrane must also be passed through without substantially destroying the peeled tubular body. Is generally 0.5 to 2 m / sec, preferably 0.
It is preferable to flow at a flow rate of about 5 to 1.0 m / sec. Either permeated water or raw water may be used as the extruded water.

【0025】本発明方法によって、実質的に破壊される
ことなく管状濾過膜から押出された濁質成分の筒状体
は、後述する実施例において確認されるように、殆どの
場合、中空筒状(マカロニ状)の形状を呈しているが、
機械的な力を加えると比較的容易に破壊してしまう程度
の弱い結合状態でその構造を形造っていることが分か
る。ここで「実質的に破壊することなく」とは、筒状体
が破壊されて付着堆積前のフロック状態に復してしまう
割合をできるだけ少なく操作することをいうが、フロッ
ク状態に戻る割合が50%以上では本発明の効果が十分
でないので、一般的にはその割合が20%以下、好まし
くは10%以下であることがよい。
The tubular body of the turbid component extruded from the tubular filtration membrane without being substantially destroyed by the method of the present invention is, in most cases, a hollow tubular body, as will be confirmed in the examples described later. It has a (macaroni-like) shape,
It can be seen that the structure is formed in a weakly bonded state in which it is relatively easily broken when a mechanical force is applied. Here, “without substantially destroying” means operating as little as possible the rate at which the tubular body is destroyed and returns to the floc state before attachment and deposition, but the rate of returning to the floc state is 50. %, The effect of the present invention is not sufficient. Therefore, the ratio is generally 20% or less, preferably 10% or less.

【0026】本発明方法は、原水の濁質成分が高濁度
(一般的にはSS≒1000mg/l以上)である場合
には、管状濾過膜に対して原水を、膜面流速を0.1〜
1m/sec、好ましくは0.2〜0.5m/secと
いう従来より低流速でクロスフローで流す方式が好まし
く採用され、他方、原水の濁質成分が低濁度(一般的に
はSS≒1000mg/l以下)である場合には、管状
濾過膜に対して全量濾過方式が好ましい。
According to the method of the present invention, when the turbidity component of the raw water has a high turbidity (generally SS≈1000 mg / l or more), the raw water is fed to the tubular filtration membrane, and the membrane surface velocity is set to 0. 1 to
1 m / sec, preferably 0.2 to 0.5 m / sec, a method of flowing in a cross flow at a lower flow rate than the conventional one is preferably adopted, while the turbid component of raw water has a low turbidity (generally SS ≈ 1000 mg / L) or less), the total filtration method is preferable for the tubular filtration membrane.

【0027】なお上記の膜面流速とは、濾過されずに管
状濾過膜外に流出する非透過水(通常、これが循環水と
なる)の流量を、管状濾過膜の開口断面積で除したもの
である。したがって、全量濾過方式の場合は膜面流速が
ゼロということである。
The above-mentioned membrane surface flow velocity is obtained by dividing the flow rate of non-permeate water (usually this becomes circulating water) flowing out of the tubular filtration membrane without being filtered by the opening cross-sectional area of the tubular filtration membrane. Is. Therefore, in the case of the total filtration method, the membrane surface flow velocity is zero.

【0028】本発明においては、循環水量を多くするこ
とによって、管状濾過膜に対する膜面流速を速く(通常
3m/sec以上)し、膜面への濁質成分の付着をでき
るだけ抑制しながら運転するという従来の考え方にとら
われることなく、むしろ膜面に濁質成分を積極的に付着
させるようにするので、たとえクロスフロー方式で濾過
を行う場合でも、循環水量は従来の場合よりも大幅に少
なくて良く、よって管状濾過膜に原水を供給するための
ポンプの容量も小さく出来るなどの種々の利点も得られ
る。
In the present invention, by increasing the amount of circulating water, the flow velocity on the membrane surface with respect to the tubular filtration membrane is increased (usually 3 m / sec or more), and the operation is performed while suppressing the adherence of turbid components to the membrane surface as much as possible. Instead of being confined to the conventional way of thinking, the turbidity component is made to actively adhere to the membrane surface, so even when performing filtration by the cross flow method, the circulating water volume is significantly smaller than in the conventional case. Therefore, various advantages such as a small capacity of the pump for supplying raw water to the tubular filtration membrane can be obtained.

【0029】上記の方法を実施するために用いる本発明
の装置の特徴は、濁質成分を含む原水が管内を軸方向に
流れるように設けられた管状濾過膜と、この管状濾過膜
の管内に上記原水を流して膜周面から膜の径方向外側へ
の透過水の流出と濁質成分の濾過を行なわせる原水通水
手段と、膜内周面に付着堆積した濁質成分の筒状体を膜
面から剥離させるために該管状濾過膜の径方向外側から
内側に逆洗水を流す逆洗水通水手段と、膜面から剥離し
た濁質成分の筒状体を該管状濾過膜の軸方向に流水で押
出す押出し水通水手段と、上記原水通水手段による通水
を間欠的に中断し、逆洗水通水手段及び押出し水通水手
段による通水を順次に行わせる通水制御手段とを備えて
いるというところにある。
The apparatus of the present invention used for carrying out the above-mentioned method is characterized by a tubular filtration membrane provided so that raw water containing turbid components flows in the tube in an axial direction, and a tubular filtration membrane in the tubular filtration membrane. Raw water flow means for flowing the above-mentioned raw water to flow out permeated water from the membrane peripheral surface to the outside in the radial direction of the membrane and filtration of suspended matter, and a cylindrical body of suspended matter adhered and deposited on the inner peripheral surface of the membrane. Backwash water flow means for flowing backwash water from the outside to the inside in the radial direction of the tubular filtration membrane to separate it from the membrane surface, and the tubular body of the suspended component peeled from the membrane surface of the tubular filtration membrane. The extruding water passage means for extruding with running water in the axial direction and the passage through the raw water passage means are intermittently interrupted, and the backwash water passage means and the extruding water passage means are sequentially passed. It is equipped with water control means.

【0030】本発明において用いられる管状濾過膜は、
特にその名称に制限されるものではないが、一般的には
いわゆる中空糸型、チューブラー型の形状のものを用い
ることができ、また膜の種類としては、精密濾過膜、限
外濾過膜等を用いることができる。なお使用する濾過膜
の内径としては2〜10mm、好ましくは4〜6mm程
度のものを用いることがよい。管状濾過膜の長さは特に
限定されるものではないが、通常0.5〜3m程度、好
ましくは0.5〜1m程度のものが用いられる。
The tubular filtration membrane used in the present invention is
Although the name is not particularly limited, generally so-called hollow fiber type or tubular type can be used, and the type of membrane includes microfiltration membrane, ultrafiltration membrane, etc. Can be used. The inner diameter of the filtration membrane used is 2 to 10 mm, preferably 4 to 6 mm. The length of the tubular filtration membrane is not particularly limited, but is usually about 0.5 to 3 m, preferably about 0.5 to 1 m.

【0031】また本発明の方法,装置は、比較的高濃度
の濁質成分を含む原水を対象として実施することができ
るので、工場廃水や発電所廃水の処理設備の他、種々の
廃水処理の用途に適用でき、また廃水処理に限られず
に、工業用水、上水等の濁質成分を除去する用途にも適
用することができる。
Since the method and apparatus of the present invention can be applied to raw water containing a relatively high concentration of turbidity components, it can be used for various types of wastewater treatment in addition to treatment facilities for factory wastewater and power plant wastewater. It is applicable not only to wastewater treatment but also to removal of turbid components such as industrial water and tap water.

【0032】本発明装置は、特に、管状濾過膜から押し
出した濁質成分からなる筒状体を底部に沈降させる槽を
有すると共に、沈降した濁質成分の筒状体をこの槽の下
部から外部に抜き出す手段を設けた構造の装置として、
より好ましくは管状濾過膜を濾過塔内に縦型に設置し、
押出し水通水手段をこの管状濾過膜の膜内面から剥離し
た濁質成分の筒状体を下方に押出すように通水させる装
置として実施される。特に管状濾過膜を濾過塔内に縦型
に設置して押出し水を下降流で流す方式によれば、この
濾過塔自体を筒状体の沈降を行なわせる槽として利用で
きるため装置の設置容積をより削減できる。
In particular, the apparatus of the present invention has a tank for allowing the bottom of the tubular body made of the turbid component extruded from the tubular filtration membrane to be settled at the bottom, and the tubular body of the settled turbid component is externally supplied from the bottom of the tank. As a device with a structure provided with a means for extracting to
More preferably, the tubular filtration membrane is installed vertically in the filtration tower,
The extruded water flow means is used as a device for passing water so that the tubular body of the turbid component separated from the inner surface of the tubular filtration membrane is pushed downward. In particular, according to the method in which the tubular filtration membrane is installed vertically in the filtration tower and the extruded water is caused to flow in a downward flow, the filtration tower itself can be used as a tank for causing the sedimentation of the tubular body, so that the installation volume of the device is increased. Can be further reduced.

【0033】これらの装置によれば、高い沈降性を有す
る筒状体が、速やかに槽の下部に沈降し、これを槽外部
に抜き出す手段により迅速に排出出来るからである。
According to these devices, the cylindrical body having a high sedimentation property rapidly settles in the lower part of the tank and can be quickly discharged by the means for drawing it out of the tank.

【0034】そしてこのような装置において、槽の外部
に抜き出した筒状体を、従来のような濃縮槽等の濃縮手
段を介することなく直接脱水手段に送って脱水処理を行
なうことができ、一層の設備容積の削減が実現できる。
Further, in such an apparatus, the tubular body extracted to the outside of the tank can be directly sent to the dehydrating means without performing the concentrating means such as the conventional concentrating tank to perform the dehydrating treatment. It is possible to reduce the equipment volume.

【0035】本発明の装置は、濾過膜に対して原水をク
ロスフローで流す方式の装置だけでなく、濾過操作時に
濾過膜面に濁質成分が付着堆積することを抑制するとい
う従来方式の運用は全く意図されていないので、濾過膜
に対して全量濾過方式で原水を流す方式でも有効にこれ
を適用することができる。この全量濾過方式で原水を流
す方式の場合には、例えば両端開放型の濾過膜の一端側
を通常は原水が流れないように閉じ、洗浄時にはこの一
端側から押出し水を流すように流路を切換える押出し水
通水手段を設けることができる。
The apparatus of the present invention is not limited to the apparatus of the type in which the raw water is flowed through the filtration membrane in a cross-flow, but the operation of the conventional method of suppressing the deposition of turbid components on the surface of the filtration membrane during the filtration operation. Since it is not intended at all, it can be effectively applied to a system in which raw water is made to flow through a filtration membrane by a total volume filtration system. In the case of a method of flowing raw water by this total volume filtration method, for example, one end side of a filter membrane of open both ends is normally closed so that raw water does not flow, and a flow passage is formed so that extruded water flows from this one end side during cleaning. Extrusion water flow means for switching can be provided.

【0036】[0036]

【実施例】【Example】

実施例1 図1において、4は反応槽であり、廃水貯槽からポンプ
(いずれも図示せず)で送られた廃水が流入ライン1よ
り流入される。この反応槽4には、凝集剤2(硫酸アル
ミニウム,ポリ塩化アルミニウム等のアルミニウム塩,
塩化第2鉄等の鉄塩)が添加され、また酸(塩酸,硫酸
等)及びアルカリ(水酸化ナトリウム等)のpH調整剤
3が注入されて、廃水中のSS分を凝集させてフロック
が生成される。5は撹拌装置である。
Example 1 In FIG. 1, 4 is a reaction tank, and wastewater sent from a wastewater storage tank by a pump (neither is shown) flows in from an inflow line 1. In this reaction tank 4, a coagulant 2 (aluminum sulfate, aluminum salt such as polyaluminum chloride,
Iron salt such as ferric chloride) is added, and a pH adjusting agent 3 of acid (hydrochloric acid, sulfuric acid, etc.) and alkali (sodium hydroxide, etc.) is injected to flocculate SS components in the waste water to cause flocs. Is generated. 5 is a stirrer.

【0037】凝集剤の添加でフロックが生成された廃水
は凝集槽7に送られ、ここで更に高分子凝集剤6が添加
されてフロックの粗大化が行なわれる。8は撹拌装置で
ある。また本例におけるこの凝集槽7は、後述する循環
系によって管状濾過膜から送られる逆洗水中に含まれる
筒状の固形物(管状濾過膜の内面に付着堆積して筒状と
なった濁質成分)を沈降分離するための槽を兼ねてお
り、そのためにその底部がコーン形状(逆錐形状)に設
けられている。
The wastewater in which flocs are generated by the addition of the flocculant is sent to the flocculation tank 7, where the polymer flocculant 6 is further added to coarsen the flocs. 8 is a stirrer. The coagulation tank 7 in this example is a cylindrical solid substance contained in the backwash water sent from the tubular filtration membrane by the circulation system described later (a turbid substance that has adhered and accumulated on the inner surface of the tubular filtration membrane to form a tubular suspended matter). It also serves as a tank for settling and separating (components), and for that reason, its bottom is provided in a cone shape (inverted cone shape).

【0038】この凝集槽7において粗大化したフロック
を含む廃水は、凝集槽7のポンプピット9から膜送水ポ
ンプ91により送水ライン92を通して濾過膜装置11
に送られる。なお、膜送水ポンプ91により送水ライン
92で濾過膜装置11に送られる廃水の一部は、圧力調
整とポンプピット9へのSS分沈積防止のために、リタ
ーン配管ライン10により凝集槽7のポンプピット9に
戻される。
The waste water containing flocs coarsened in the coagulation tank 7 is filtered from the pump pit 9 of the coagulation tank 7 by the membrane water supply pump 91 through the water supply line 92 to the filtration membrane device 11
Sent to. In addition, a part of the wastewater sent to the filtration membrane device 11 through the water supply line 92 by the membrane water supply pump 91 is pumped by the return piping line 10 to the coagulation tank 7 in order to adjust the pressure and prevent the deposition of SS in the pump pit 9. Returned to pit 9.

【0039】本例の濾過膜装置11は、管状の内圧型精
密濾過膜11aを備えていて、廃水を管内部に通した後
循環戻しライン12から上記の凝集槽7のポンプピット
9に戻すクロスフローで循環するように設けられてお
り、クロスフローで流される廃水中のSS成分は、濾過
膜の膜面で濾過され、膜の外側に通った透過水は透過水
ライン14から逆洗水保有槽15を経て、処理水16と
して取り出される。またこの濾過膜装置11は、例えば
図4に示す如く、下端に原水入口301を、上端に非透
過水出口302を、また側壁に透過水出口303をそれ
ぞれ有する容器304内に、内径数mm程度の管状濾過
膜11aを多数本配設すると共に、これら管状濾過膜1
1aの上端部および下端部を支持部材305,306に
よって液密的に支持し、原水を原水入口301から容器
304内に供給し、支持部材306の下方の室Aから管
状濾過膜11aの内部を通して支持部材305の上方の
室Bに流しながら上下支持部材の中間の室Cに濾過膜を
透過した透過水を得、得られた透過水を透過水出口30
3から容器304外に流出させる形式のものが採用され
るが、特にこの構造に限定されるものではない。
The filtration membrane device 11 of this embodiment is provided with a tubular internal pressure type microfiltration membrane 11a, and a waste water is passed through the inside of the pipe and then is returned from the circulation return line 12 to the pump pit 9 of the coagulation tank 7 described above. The SS component in the waste water that is flowed in a cross flow is filtered by the membrane surface of the filtration membrane, and the permeate that has passed to the outside of the membrane is retained as backwash water from the permeate line 14. It is taken out as treated water 16 through the tank 15. Further, for example, as shown in FIG. 4, this filtration membrane device 11 has a raw water inlet 301 at a lower end, a non-permeate outlet 302 at an upper end, and a permeate outlet 303 at a side wall in a container 304, each having an inner diameter of about several mm. A large number of the tubular filtration membranes 11a of FIG.
The upper and lower ends of 1a are supported in a liquid-tight manner by supporting members 305 and 306, raw water is supplied into the container 304 through the raw water inlet 301, and the chamber A below the supporting member 306 passes through the inside of the tubular filtration membrane 11a. The permeated water that has permeated the filtration membrane is obtained in the chamber C between the upper and lower support members while flowing into the chamber B above the support member 305, and the permeated water obtained is used as the permeate outlet 30.
Although a type in which the fluid flows from the container 3 to the outside of the container 304 is adopted, the structure is not particularly limited to this.

【0040】以上の構成は、クロスフロー方式による濾
過操作を行なうための構成を示し、このために各配管ラ
インに介設された自動弁101,102,103,10
4は開路されている。
The above structure shows a structure for performing a filtering operation by the cross flow system, and for this purpose, the automatic valves 101, 102, 103, 10 provided in the respective piping lines.
4 is open circuit.

【0041】なお、全量濾過方式で濾過操作を行う場合
は、自動弁101,102,103を開路とし、104
を閉路とすればよい。
When performing the filtration operation by the total volume filtration method, the automatic valves 101, 102 and 103 are opened, and
Should be closed.

【0042】次ぎに、上述のような濾過操作を行った後
に行う洗浄操作について図2及び図3を用いて説明す
る。
Next, the washing operation performed after performing the above-described filtration operation will be described with reference to FIGS. 2 and 3.

【0043】18は逆洗水送水用の空気貯槽であり、上
記濾過操作を中断した後、図示しない制御装置からの指
令によって、常閉型の自動弁108を開路すると共に圧
力空気を逆洗水保有槽15に送ることで逆洗水保有槽内
に貯留されている透過水を、逆洗水入口ライン17、開
路された常閉型の自動弁105を通し、濾過膜装置11
の管状濾過膜11aに対してその管の外側から内側に逆
洗水として逆洗通水させる。通水された逆洗水は、循環
戻しライン12に常閉型の自動弁107を介して接続さ
れている逆洗水排出ライン13を介して凝集槽7に送ら
れる。以上の配管,自動弁等の構成は洗浄工程における
筒状付着堆積物を濾過膜内面から剥離するための操作を
行なうためのものである。なおこの工程においては上記
濾過操作において開路されている各自動弁101,10
2,103,104は閉路される(図2参照)。
Reference numeral 18 denotes an air storage tank for sending backwash water. After the filtration operation is interrupted, a normally closed automatic valve 108 is opened and pressure air is backwashed by a command from a controller (not shown). The permeated water stored in the backwash water holding tank by being sent to the holding tank 15 is passed through the backwash water inlet line 17 and the normally closed automatic valve 105 opened, and the filtration membrane device 11
The tubular filtration membrane 11a is backwashed with water from the outside to the inside of the tube. The backwash water that has been passed is sent to the flocculation tank 7 through a backwash water discharge line 13 that is connected to the circulation return line 12 through a normally closed automatic valve 107. The above-mentioned configuration of the piping, the automatic valve, and the like is for performing the operation for separating the cylindrical deposits from the inner surface of the filtration membrane in the cleaning process. In this step, each of the automatic valves 101, 10 opened in the filtration operation is
2, 103 and 104 are closed (see FIG. 2).

【0044】次ぎに、上記剥離工程において剥離された
筒状汚泥を管状濾過膜の端部から軸方向に押出す押出し
操作のための構成を述べると、上記逆洗水送水用の空気
貯槽18からの圧力空気により、逆洗水保有槽15内の
透過水は、開路された常閉型の自動弁106から濾過膜
装置11の管状濾過膜の内部に通水され、上記の剥離操
作で剥離された筒状の付着堆積物を循環戻しライン12
側に押出し、更に自動弁107,逆洗水排出ライン13
を介して凝集槽7に送るように設けられている(図3参
照)。なお図3の押出し水は原水を使用してもよい。
Next, the structure for the extruding operation of axially extruding the tubular sludge exfoliated in the exfoliation step from the end of the tubular filtration membrane will be described. From the air storage tank 18 for the backwash water supply, The permeated water in the backwash water holding tank 15 is passed through the normally closed automatic valve 106, which is opened, to the inside of the tubular filtration membrane of the filtration membrane device 11, and is peeled by the above peeling operation. Circulation return line 12
Side, and further, automatic valve 107, backwash water discharge line 13
It is provided so as to be sent to the flocculation tank 7 via the (see FIG. 3). Raw water may be used as the extruded water in FIG.

【0045】凝集槽7に送られた逆洗水中に含まれる筒
状の付着堆積物(汚泥)は、凝集槽7内において速やか
に沈降し、該槽の底部に沈殿する。
The cylindrical deposits (sludge) contained in the backwash water sent to the coagulation tank 7 quickly settle in the coagulation tank 7 and settle at the bottom of the tank.

【0046】以上の各自動弁の開閉の切換え及び各ポン
プの作動の切換えは、次ぎのように行なわれる。すなわ
ち本例では、濾過膜装置から透過水を流出させる透過水
ライン14に設けた透過水量検出器31により、透過水
量の変動情報を図示しない制御装置に送り、制御装置に
おいて、予め逆洗開始条件として定めた閾値と、この検
出された透過水量の値とを比較することにより、検出さ
れた透過水量があらかじめ定めた閾値を下回った場合に
所定の逆洗工程を開始させるように設けられている。な
お逆洗工程の手順は、各自動弁の開閉切換えと、逆洗水
送水用の空気貯槽18から空気を送り出す作動の時間を
タイマー等を利用して時間管理する制御プログラムによ
り自動化して行なうことができる。
The switching of the opening and closing of each automatic valve and the switching of the operation of each pump are performed as follows. That is, in this example, the permeated water amount detector 31 provided in the permeated water line 14 that causes the permeated water to flow out from the filtration membrane device sends variation information of the permeated water amount to a control device (not shown), and the back washing start condition is previously set in the control device. By comparing the value of the amount of permeated water detected with the threshold value defined as, it is provided to start a predetermined backwash step when the amount of permeated water detected falls below a predetermined threshold value. . The procedure of the backwash process should be performed automatically by a control program that controls the opening and closing of each automatic valve and the time for sending air from the air tank 18 for sending the backwash water by using a timer or the like. You can

【0047】次ぎに凝集槽7の底部に沈降した筒状の汚
泥を抜出し、脱水処理する構成について述べる。
Next, the construction for extracting the cylindrical sludge settling at the bottom of the flocculation tank 7 and dehydrating it will be described.

【0048】20は、上記凝集槽7の底部に接続された
汚泥排出ラインであり、本例では途中に介設された常閉
型の自動弁109を定期的に開路することにより、凝集
槽7内の水位と、次段の汚泥貯留槽21内の水位の差に
よって引抜く。なお引抜きは汚泥引抜きポンプにより行
なってもよい。
Reference numeral 20 denotes a sludge discharge line connected to the bottom of the flocculation tank 7. In this example, the normally closed automatic valve 109 provided in the middle of the sludge discharge line is periodically opened to open the flocculation tank 7. It is drawn out by the difference between the water level inside and the water level in the next stage sludge storage tank 21. The sludge withdrawal pump may be used for the withdrawal.

【0049】汚泥貯留槽21に引抜かれた汚泥は、この
槽内で撹拌機22により均一に撹拌され、汚泥供給ポン
プ23により脱水機25に送られて、脱水後ケーキ26
として搬出される。なお脱水前に必要に応じて脱水助剤
24を添加してもよい。脱水機25から排出される脱水
濾液27は、脱水濾液槽28に溜め、濾液送水ポンプ2
9によって濾液送水ライン30を介して反応槽4または
図示しない廃水貯槽に送られる。
The sludge drawn into the sludge storage tank 21 is uniformly stirred in this tank by the agitator 22 and sent to the dehydrator 25 by the sludge supply pump 23, and the dewatered cake 26
Be shipped as. If necessary, a dehydration aid 24 may be added before the dehydration. The dehydrated filtrate 27 discharged from the dehydrator 25 is stored in a dehydrated filtrate tank 28, and the filtrate water supply pump 2
9 is sent to the reaction tank 4 or a waste water storage tank (not shown) through the filtrate water supply line 30.

【0050】実施例2 図5に示した本実施例は、図1の凝集槽7を、前半部の
固形物分離部71と後半部の凝集部72に独立させた構
成としている他は、実施例1と同様の構成をなしてい
る。
Embodiment 2 This embodiment shown in FIG. 5 is carried out except that the flocculation tank 7 of FIG. 1 is made independent of the solids separating section 71 in the first half and the flocculation section 72 in the latter half. The configuration is the same as in Example 1.

【0051】本例の場合には、コーン形状とする底部を
固形分分離部71に局限できるので、槽の造築が容易と
なる。
In the case of this example, since the bottom portion having the cone shape can be limited to the solid content separating portion 71, the construction of the tank becomes easy.

【0052】実施例3 図6に示した本実施例は、濾過膜装置111を構成する
濾過塔111aの底部111eをコーン形状に形成し、
縦型設置濾過膜111dの内部に付着堆積した筒状汚泥
の洗浄工程における押出しを下方に押出すようにした装
置の例を示している。
Embodiment 3 In this embodiment shown in FIG. 6, the bottom 111e of the filtration tower 111a constituting the filtration membrane device 111 is formed in a cone shape,
The example of the apparatus which pushed out the extrusion in the washing | cleaning process of the cylindrical sludge adhered and accumulated inside the vertical installation filtration membrane 111d is shown.

【0053】本例においては、上記の筒状汚泥の押出し
方向を下方とするために、押出し水を濾過塔111aの
上部の室111bから濾過膜内部を通って下部の室11
1cに下降流で流し、一方、濾過塔内の余分な水は逆洗
水戻りライン112で凝集槽7のポンプピット9に戻る
ように設けられている。またこのような構成により、筒
状汚泥は凝集槽7ではなく濾過膜装置111の底部に沈
降することになるため、汚泥引抜きのためのライン2
0、定期的に開路される常閉型の自動弁109、汚泥供
給槽21等はこの濾過膜装置111の底部に接続されて
いる。
In this example, in order to make the extruding direction of the tubular sludge downward, the extruded water is passed from the upper chamber 111b of the filtration tower 111a through the inside of the filtration membrane to the lower chamber 11 of the filtration tower 111a.
It is provided so as to flow downward to 1c, while excess water in the filtration tower is returned to the pump pit 9 of the coagulation tank 7 through the backwash water return line 112. Further, with such a configuration, the tubular sludge will settle at the bottom of the filtration membrane device 111, not at the coagulation tank 7, so that the sludge drawing line 2
0, the normally closed automatic valve 109 that is opened periodically, the sludge supply tank 21 and the like are connected to the bottom of the filtration membrane device 111.

【0054】他の構成は、クロスフローで循環水を流す
実施例1と同様の構成が採用されている。
The other structure is the same as that of the first embodiment in which the circulating water is flowed by the cross flow.

【0055】図7はこの例における濾過膜装置111の
部分拡大図であり、通常は送水ライン92から自動弁1
01−濾過塔111aの下部室111c−濾過膜111
d−上部室111b−循環戻りライン12に廃水が流れ
て、濁質成分は濾過膜内面で濾過され、透過水は自動弁
102から透過水ライン14に流れるという濾過工程が
行なわれる。この際、自動弁106,107,109は
閉じている。
FIG. 7 is a partially enlarged view of the filtration membrane device 111 in this example, which normally includes the automatic valve 1 from the water supply line 92.
01-lower chamber 111c of filtration tower 111a-filtration membrane 111
The waste water flows to the d-upper chamber 111b-circulation return line 12, the suspended matter is filtered on the inner surface of the filtration membrane, and the permeated water flows from the automatic valve 102 to the permeated water line 14 to perform a filtration step. At this time, the automatic valves 106, 107, 109 are closed.

【0056】次ぎに、洗浄工程においては、まず上記自
動弁101,104が閉路され、また自動弁102,1
07が開路されて逆洗水保有槽(図示せず)からの逆洗
水が透過水ライン14を介して送られ、濾過膜の外側か
ら内側に流されて筒状汚泥の剥離が行なわれる。
Next, in the cleaning process, first, the automatic valves 101 and 104 are closed and the automatic valves 102 and 1 are closed.
07 is opened and the backwash water from the backwash water holding tank (not shown) is sent through the permeate line 14 to flow from the outer side to the inner side of the filtration membrane to separate the tubular sludge.

【0057】これに続いて次ぎに、自動弁102を閉
じ、自動弁106を開いて逆洗水を濾過塔の上部室11
1bから下降流で濾過膜内部に流し、剥離された筒状汚
泥を下部室111cに押出す。押出された筒状汚泥は速
やかに沈降して濾過塔111aの底部に沈積し、一方、
濾過塔111a内の余分な水は逆洗水戻りライン112
を介し塔外に排出される。
Following this, next, the automatic valve 102 is closed and the automatic valve 106 is opened to remove the backwash water from the upper chamber 11 of the filtration tower.
The tubular sludge that has flowed down from 1b into the filtration membrane and has been peeled off is extruded into the lower chamber 111c. The extruded tubular sludge quickly settles and deposits on the bottom of the filtration tower 111a, while
Excess water in the filtration tower 111a is backwashed water return line 112.
It is discharged to the outside of the tower via.

【0058】実施例4 本例は特に図示していないが、例えば図7の循環戻りラ
イン12の途中に設けた自動弁104を常閉することに
より、濾過膜装置111を全量濾過方式で運用する場合
のものである。その他の構成、及び洗浄工程における各
自動弁等の開閉切換えは上記実施例3と同様に行なわれ
る。
Embodiment 4 Although this embodiment is not particularly shown, for example, the filtration membrane device 111 is operated by the total filtration method by normally closing the automatic valve 104 provided in the middle of the circulation return line 12 of FIG. This is the case. Other configurations and switching of opening and closing of each automatic valve and the like in the cleaning process are performed in the same manner as in the third embodiment.

【0059】本例によれば、原水中に含まれる濁質成分
濃度が比較的低い場合の全量濾過方式の運用を容易に行
なうことができる。
According to this example, it is possible to easily operate the total filtration method when the concentration of the turbidity components contained in the raw water is relatively low.

【0060】試験例1 上記図1の装置を使用してクロスフロー方式により、下
記の条件で本発明方法による水処理操作を行なった。
Test Example 1 A water treatment operation according to the method of the present invention was carried out under the following conditions by a cross flow system using the apparatus shown in FIG.

【0061】条件 濾過膜装置: 日東電工(株)製内圧型管状精密濾過膜
(内径5.5mm) 原水: 火力発電所廃水、SS濃度 4760m
g/l 濾過操作条件: 膜入口圧力 約1.6kg/cm2
膜面流速約0.2m/sec(循環水量/透過水量比
(循環比)=5) 洗浄操作条件: 剥離操作・・・・逆洗水圧力 約1.6kg/cm2 時間 5秒 押出操作・・・・押出水流入速度 0.5m/sec 押出水量 約400ml 上記濾過条件で30分間濾過操作を行い、その後濾過操
作を停止して上記洗浄操作を行う工程を1サイクルと
し、このようなサイクルを5サイクル繰り返したとこ
ろ、各サイクルの洗浄操作において管状濾過膜の内部か
ら固形物濃度5.5〜5.7%の筒状汚泥が排出され、
凝集槽の底部に速やかに沈降した。
Conditions Filtration membrane device: Nitto Denko KK internal pressure type tubular microfiltration membrane (inner diameter 5.5 mm) Raw water: Thermal power plant waste water, SS concentration 4760 m
g / l Filtration operation conditions: Membrane inlet pressure of about 1.6 kg / cm 2 ,
Membrane surface flow rate about 0.2 m / sec (circulation water amount / permeate amount ratio (circulation ratio) = 5) Cleaning operation conditions: stripping operation ... Backwash water pressure about 1.6 kg / cm 2 hours 5 seconds Extrusion operation・ ・ ・ Extrusion water inflow rate 0.5 m / sec Extrusion water amount about 400 ml Filtration operation is performed for 30 minutes under the above-mentioned filtration conditions, and then the filtration operation is stopped to perform the washing operation as one cycle. When 5 cycles were repeated, tubular sludge with a solid concentration of 5.5 to 5.7% was discharged from the inside of the tubular filtration membrane in the washing operation of each cycle.
It quickly settled to the bottom of the flocculation tank.

【0062】因みに、凝集槽の底部から取り出した筒状
汚泥を含有する洗浄排水を高さ30cm、容量1リット
ルのメスシリンダに入れ、時間と共に汚泥が沈降する様
子を調べたところ、1分以内に筒状汚泥の全量がメスシ
リンダの底部に沈降した。
By the way, the washing wastewater containing the tubular sludge taken out from the bottom of the coagulation tank was put into a graduated cylinder having a height of 30 cm and a capacity of 1 liter, and it was examined within 1 minute that the sludge settled with time. All of the tubular sludge settled on the bottom of the graduated cylinder.

【0063】なお、本試験の濾過操作における濾過時間
と透過水量との関係を図8に示した。
The relationship between the filtration time and the amount of permeated water in the filtration operation of this test is shown in FIG.

【0064】試験例2 試験例1と同じ装置を使用して、クロスフロー方式によ
り本発明方法による水処理を行い、原水SS濃度が変化
した場合に、得られる筒状汚泥の固形物濃度がどのよう
に変化するかを調べた。
Test Example 2 When the same apparatus as in Test Example 1 was used to perform water treatment by the method of the present invention by the cross flow method and the SS concentration of the raw water changed, what was the solid concentration of the obtained tubular sludge? To see if it changes.

【0065】濾過操作条件および洗浄操作条件は下記の
如くである。
The filtering operation conditions and the washing operation conditions are as follows.

【0066】原水: 発電所廃水 濾過操作条件: 膜入口圧力 約1.6kg/cm2
膜面流速約0.2m/sec(循環比 5) 洗浄操作条件: 剥離操作・・・・逆洗水圧力 約1.6kg/cm2 時間 5〜10秒 押出操作・・・・押出水流入速度 0.5m/sec 押出水量 約400ml 結果を下記表1に示した。
Raw water: Wastewater from power plant Filtration operating conditions: Membrane inlet pressure of about 1.6 kg / cm 2 ,
Membrane surface flow rate about 0.2 m / sec (circulation ratio 5) Washing operation condition: Peeling operation ... Backwash water pressure about 1.6 kg / cm 2 hours 5-10 seconds Extrusion operation ... Extrusion water inflow speed 0.5 m / sec Extruded water amount about 400 ml The results are shown in Table 1 below.

【0067】[0067]

【表1】 [Table 1]

【0068】この表1の結果から分かるように、初期の
SS濃度に関係なく逆洗によって得られた筒状汚泥の固
形物濃度はほぼ一定であり、またその沈降性も極めて良
好であった。
As can be seen from the results of Table 1, the solid content of the tubular sludge obtained by backwashing was almost constant regardless of the initial SS concentration, and its sedimentation property was also very good.

【0069】試験例3 図1の装置を使用し、濾過操作の時に循環戻しライン1
2に付設されている自動弁104を閉じて全量濾過方式
により本発明の水処理操作を行った。
Test Example 3 Using the apparatus of FIG. 1, a circulation return line 1 was used during the filtration operation.
The automatic valve 104 attached to No. 2 was closed, and the water treatment operation of the present invention was performed by the total volume filtration method.

【0070】試験条件は下記の如くである。なお、使用
した濾過膜装置は試験例1の場合と同じである。
The test conditions are as follows. The filtration membrane device used was the same as in Test Example 1.

【0071】 原水: 発電所廃水、SS濃度 797mg/l 濾過操作条件: 膜入口圧力 約1.6kg/cm2 洗浄操作条件: 剥離操作・・・・逆洗水圧力 約1.6kg/cm2 押出操作・・・・押出水流入速度 0.5m/sec 上記条件による濾過操作と洗浄操作とを2サイクル行っ
たところ、いずれのサイクルにおいても洗浄操作によっ
て固形物濃度が約5.5%の沈降性の良い筒状汚泥が得
られた。
Raw water: Wastewater from power plant, SS concentration 797 mg / l Filtration operating condition: Membrane inlet pressure about 1.6 kg / cm 2 Washing operating condition: Stripping operation ... Backwashing water pressure about 1.6 kg / cm 2 extrusion Operation ... Extruded water inflow rate 0.5 m / sec When filtration operation and washing operation under the above conditions were performed for 2 cycles, sedimentation property of solid content of about 5.5% by washing operation in any cycle A good tubular sludge was obtained.

【0072】なお、この時の濾過時間と透過水量との関
係を図9に示した。
The relationship between the filtration time and the amount of permeated water at this time is shown in FIG.

【0073】[0073]

【発明の効果】以上述べたように、本発明によれば以下
のような種々の効果を得ることができる。
As described above, according to the present invention, the following various effects can be obtained.

【0074】 管状濾過膜の内面に付着堆積した筒状
体の濁質成分をその筒形状を実質的に破壊することなく
該濾過膜管内から押出して、弱い結合力によるとはいえ
筒状の構造をもった沈降性の高い汚泥として槽の下部に
速やかに沈降することができ、原水との分離が容易に行
なえる。
The turbidity component of the tubular body adhered and deposited on the inner surface of the tubular filtration membrane is extruded from the inside of the filtration membrane tube without substantially destroying the tubular shape, and the tubular structure is formed although the binding force is weak. As sludge with high sedimentation property, it can settle down to the bottom of the tank quickly and can be easily separated from raw water.

【0075】 これにより、従来の浮遊性フロックが
高濃度に含まれた循環水を系外に抜き出していたのに比
べ、筒状の構造をもつ沈降性の高い汚泥を、大量の水を
伴うことなく外部に抜き出すことができ、従来のような
汚泥濃縮のための濃縮槽が不要になって設備の設置容積
縮小化ができる他、抜き出した汚泥を直ちに脱水手段に
送って脱水処理することが可能となり、処理の迅速化も
図ることができる。
As a result, compared with the conventional case where the floating flocs extract the circulating water containing a high concentration out of the system, a large amount of water is added to the sludge having a cylindrical structure and having a high sedimentation property. Without the need for a conventional concentration tank for sludge concentration, the installation volume of equipment can be reduced, and the extracted sludge can be immediately sent to dehydration means for dehydration processing. Therefore, the processing can be speeded up.

【0076】 また濁質成分を膜面に積極的に付着堆
積させながら濾過操作を行なうので、濁質成分が低濃度
な原水であっても、従来のような長時間の循環濃縮を行
なうことなく、短時間の濾過操作で高濃度でかつ沈降性
の高い汚泥を得ることができる。したがって原水の濁質
成分の含有量によらず本発明を適用できる。特に本発明
は、濁質成分の含有量が少ない場合には全量濾過方式の
運転を行なうこともできるため、濁質成分の含有量に合
わせてエネルギー効率に優れた装置を提供できる。
Further, since the filtration operation is performed while positively adhering and depositing the turbidity component on the membrane surface, even if the raw water has a low concentration of the turbidity component, there is no need to perform circulation concentration for a long time as in the conventional case. A sludge having a high concentration and a high sedimentation property can be obtained by a short-time filtration operation. Therefore, the present invention can be applied regardless of the content of the turbid component of the raw water. Particularly, in the present invention, when the content of the turbid component is small, it is possible to carry out the operation of the total amount filtration system, so that it is possible to provide the device excellent in energy efficiency according to the content of the turbid component.

【0077】 濁質濃度の高い(SS≒1000mg
/l以上)原水をクロスフロー方式で処理する場合、循
環流量を従来法に比べて少なくでき、濾過膜に対する循
環水の流速を低く設定できるので、循環水を流すポンプ
の容量は小さくてすみ、さらに、濁質濃度の低い(SS
≒1000mg/l以下)場合は、循環流を必要としな
いためさらにポンプ容量を小さくできるので消費される
運転エネルギーも少なくできる。
High turbidity concentration (SS≈1000 mg
(/ L or more) When treating raw water with the cross-flow method, the circulation flow rate can be reduced compared to the conventional method, and the flow rate of the circulation water to the filtration membrane can be set low, so the capacity of the pump for circulating water can be small, Furthermore, the turbidity concentration is low (SS
≅1000 mg / l or less), a circulating flow is not required and the pump capacity can be further reduced, so that the operating energy consumed can be reduced.

【0078】 濾過操作及び、剥離操作,押出し操作
からなる逆洗操作の時間は通常、濁質成分の濃度に関係
して変化するが、各操作のための通水制御を、例えば透
過水量の減少程度を目安にして単純に行なうことができ
るので、自動化を容易に実現できる。
The time of the backwashing operation including the filtering operation, the peeling operation, and the extrusion operation usually changes in relation to the concentration of the turbid component, but the water flow control for each operation is performed by, for example, reducing the amount of permeated water. Since it can be simply performed with the degree as a guide, automation can be easily realized.

【0079】 以上のような種々の利点から、設置容
積が小さく、自動化運転にも適している濾過膜方式の水
処理装置の特徴を、本発明によってより一層効果的に発
揮させることができ、工業的な実施に際しての効果は極
めて大きいものがある。
Due to the various advantages as described above, the features of the filtration membrane type water treatment apparatus having a small installation volume and suitable for automated operation can be more effectively exerted by the present invention. The effect of practical implementation is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の水処理装置の構成をフローで示した
図であり、図中の太線は濾過操作時の水の流れを示して
いる。
FIG. 1 is a diagram showing a flow of a configuration of a water treatment device of Example 1, and a thick line in the diagram shows a flow of water during a filtering operation.

【図2】実施例1の洗浄工程における筒状汚泥の剥離操
作を行なう際の水の流れを示している。
FIG. 2 shows a flow of water when a tubular sludge peeling operation is performed in a cleaning process of Example 1.

【図3】実施例1の洗浄工程における筒状汚泥の押出し
操作を行なう際の水の流れを示している。
FIG. 3 shows a flow of water when a tubular sludge is extruded in the washing process of Example 1.

【図4】実施例1の水処理装置に用いる膜濾過装置の模
式断面図である。
FIG. 4 is a schematic cross-sectional view of a membrane filtration device used in the water treatment device of Example 1.

【図5】実施例2の水処理装置の構成の一部をフローで
示した図である。
FIG. 5 is a flowchart showing a part of the configuration of the water treatment device according to the second embodiment.

【図6】実施例3の水処理装置の構成の一部をフローで
示した図である。
FIG. 6 is a flowchart showing a part of the configuration of a water treatment device according to a third embodiment.

【図7】実施例3の濾過膜装置の構成を拡大して示した
図である。
FIG. 7 is an enlarged view showing the configuration of the filtration membrane device of the third embodiment.

【図8】試験例1における濾過時間と透過水量との関係
を示した図である。
FIG. 8 is a diagram showing a relationship between a filtration time and a permeated water amount in Test Example 1.

【図9】試験例3における濾過時間と透過水量との関係
を示した図である。
FIG. 9 is a diagram showing a relationship between a filtration time and a permeated water amount in Test Example 3.

【図10】管状濾過膜にクロスフロー方式及び全量濾過
方式で廃水を流した場合にその内面に汚泥が付着する状
態を説明するための図である。
FIG. 10 is a diagram for explaining a state in which sludge adheres to an inner surface of a tubular filtration membrane when wastewater is caused to flow by a cross flow method and a total volume filtration method.

【図11】管状濾過膜の内面に付着堆積した筒状汚泥を
剥離し、軸方向端部から押出す操作を説明するための図
である。
FIG. 11 is a diagram for explaining an operation of peeling off tubular sludge that has adhered and accumulated on the inner surface of the tubular filtration membrane and extruding it from the end portion in the axial direction.

【図12】従来の膜濾過装置を使用して行なわれる水処
理法を説明するためのフロー図である。
FIG. 12 is a flow chart for explaining a water treatment method performed using a conventional membrane filtration device.

【符号の説明】[Explanation of symbols]

4:反応槽、7:凝集槽、11:濾過膜装置、12:循
環戻りライン、14:透過水ライン、17:逆洗水入口
ライン、20:汚泥引抜きライン、92:送水ライン。
4: Reaction tank, 7: Coagulation tank, 11: Filtration membrane device, 12: Circulation return line, 14: Permeate water line, 17: Backwash water inlet line, 20: Sludge drawing line, 92: Water supply line.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 管状濾過膜の管内に濁質成分を含む原水
を流して、この原水中に含まれる濁質成分を該膜の内周
面に堆積させながら膜の径方向外側に透過水を流出させ
る濾過操作と、この濾過操作を中断して、管状濾過膜の
内周面に付着堆積した濁質成分を該膜内周面から除去す
る洗浄操作と、を行う処理方法であって、 上記洗浄操作は、管状濾過膜の内周面に筒状に付着堆積
した濁質成分からなる筒状体を、その筒形状を実質的に
破壊することなく膜面から剥離させるように該膜の径方
向の外側から内側に逆洗水を流す剥離操作と、この剥離
操作により膜面から剥離された濁質成分の筒状体を、該
管状濾過膜の軸方向に水を流して管端部から押出す押出
し操作と、を行うことを特徴とする濁質成分を含む水の
処理方法。
1. A raw water containing a turbidity component is caused to flow through a tube of a tubular filtration membrane, and while the turbidity component contained in the raw water is deposited on the inner peripheral surface of the membrane, permeated water is passed to the outside in the radial direction of the membrane. A treatment method for performing a filtering operation for flowing out, and a washing operation for interrupting this filtering operation to remove the suspended components adhering and deposited on the inner peripheral surface of the tubular filtration membrane from the inner peripheral surface of the membrane, wherein: The washing operation is performed so that the tubular body made of a suspended component adhered and deposited in a tubular shape on the inner peripheral surface of the tubular filtration membrane is separated from the membrane surface without substantially destroying the tubular shape. The peeling operation of flowing backwash water from the outer side to the inner side of the tube, and the tubular body of the suspended component peeled from the membrane surface by this peeling operation is performed by flowing water in the axial direction of the tubular filtration membrane from the pipe end. A method for treating water containing a turbid component, which comprises performing an extrusion operation.
【請求項2】 請求項1における濾過操作が、濁質成分
を高濁度に含む原水を管状濾過膜に対してクロスフロー
方式で流すものであることを特徴とする濁質成分を含む
水の処理方法。
2. The water containing a turbid component is characterized in that the filtration operation in claim 1 is a process in which raw water containing a turbid component at a high turbidity is flowed through a tubular filtration membrane in a cross-flow method. Processing method.
【請求項3】 請求項1における濾過操作が、濁質成分
を低濁度に含む原水を管状濾過膜に対して全量濾過方式
で流すものであることを特徴とする濁質成分を含む水の
処理方法。
3. The filtration operation according to claim 1, wherein raw water containing a turbidity component at a low turbidity is passed through a tubular filtration membrane by a total volume filtration method. Processing method.
【請求項4】 請求項1ないし3のいずれかにおいて、
管状濾過膜の膜内周面に付着堆積した濁質成分からなる
筒状体を除去する洗浄操作のうち、該筒状体を管状濾過
膜の管端部から軸方向に押出す操作が、縦型に設置した
管状濾過膜の管内に押出し水を下降流で流して、該筒状
体を下方に押出すものであることを特徴とする濁質成分
を含む水の処理方法。
4. The method according to any one of claims 1 to 3,
Among the washing operations for removing the tubular body composed of the suspended component adhered and deposited on the inner surface of the tubular filtration membrane, the operation of axially pushing the tubular body from the tube end portion of the tubular filtration membrane is A method for treating water containing turbidity components, characterized in that extruded water is caused to flow downward in a tube of a tubular filtration membrane installed in a mold to extrude the tubular body downward.
【請求項5】 濁質成分を含む原水が管内を軸方向に流
れるように設けられた管状濾過膜と、この管状濾過膜の
管内に上記原水を流して膜周面から膜の径方向外側への
透過水の流出と濁質成分の濾過を行なわせる原水通水手
段と、膜内周面に付着堆積した濁質成分の筒状体を膜面
から剥離させるために該管状濾過膜の径方向外側から内
側に逆洗水を流す剥離水通水手段と、膜面から剥離した
濁質成分の筒状体を該管状濾過膜の軸方向に流水で押出
す押出し水通水手段と、上記原水通水手段による通水を
間欠的に中断し、剥離水通水手段及び押出し水通水手段
による通水を順次に行わせる通水制御手段と、を備えた
ことを特徴とする濁質成分を含む水の処理装置。
5. A tubular filtration membrane provided so that raw water containing a turbid component flows axially in the tube, and the raw water is caused to flow in the tube of the tubular filtration membrane from the peripheral surface of the membrane to the outside in the radial direction of the membrane. Raw water passage means for performing the outflow of permeated water and the filtration of turbidity components, and the radial direction of the tubular filtration membrane in order to separate the cylindrical body of turbidity components deposited and deposited on the inner peripheral surface of the membrane from the membrane surface. Exfoliating water flow means for flowing backwash water from the outside to the inside, and extruded water flow means for extruding the cylindrical body of suspended matter separated from the membrane surface with running water in the axial direction of the tubular filtration membrane, and the raw water. A turbidity component characterized by comprising: a water flow control means for intermittently interrupting the water flow by the water flow means, and carrying out the water flow by the peeling water water flow means and the extrusion water water flow means in order. Including water treatment equipment.
【請求項6】 請求項5において、管状濾過膜から押し
出した濁質成分からなる筒状体を底部に沈降させる槽を
有すると共に、沈降した濁質成分の筒状体をこの槽の下
部から外部に抜き出す手段を設けたことを特徴とする濁
質成分を含む水の処理装置。
6. The method according to claim 5, further comprising a tank for settling a tubular body made of a turbid component extruded from the tubular filtration membrane at the bottom, and the tubular body of the settled turbid component is externally supplied from a lower portion of the tank. A treatment device for water containing turbidity components, characterized in that it is provided with a means for extracting the water.
【請求項7】 請求項5において、管内に原水が流通さ
れる管状濾過膜を、濾過塔内に縦型に設置し、押出し水
通水手段は、剥離した濁質成分の筒状体を管状濾過膜の
管内から下方に押出すように下降流で押出し水を通水す
るように設け、濾過塔の下部には、管状濾過膜から下方
に押出されて沈降した濁質成分の筒状体を該濾過塔の外
部に抜き出す手段を設けたことを特徴とする濁質成分を
含む水の処理装置。
7. The tubular filtration membrane according to claim 5, wherein a tubular filtration membrane through which raw water is circulated is installed vertically in the filtration tower, and the extruded water flow means is a tubular body of the exfoliated suspended component. It was installed so that the extruded water would pass through in a downward flow so that it would be extruded downward from the inside of the filter membrane tube, and at the bottom of the filtration tower, a tubular body of turbid components extruded downward from the tubular filtration membrane and settled out. A treatment device for water containing turbidity components, characterized in that means for extracting the water to the outside of the filtration tower is provided.
【請求項8】 請求項6又は7において、沈降した濁質
成分の筒状体を槽または濾過塔の外部に抜き出す手段で
抜き出された該筒状体を、濃縮手段を介することなく直
接脱水手段に送るように設けたことを特徴とする濁質成
分を含む水の処理装置。
8. The dehydrated tubular body according to claim 6 or 7, which is extracted by a means for extracting the sedimented tubular body of turbidity components to the outside of a tank or a filtration tower without using a concentrating means. A treatment device for water containing suspended matter, characterized by being provided so as to be sent to a means.
JP34790592A 1992-12-28 1992-12-28 Method and apparatus for treating water containing turbid components Expired - Fee Related JP2911327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34790592A JP2911327B2 (en) 1992-12-28 1992-12-28 Method and apparatus for treating water containing turbid components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34790592A JP2911327B2 (en) 1992-12-28 1992-12-28 Method and apparatus for treating water containing turbid components

Publications (2)

Publication Number Publication Date
JPH06190251A true JPH06190251A (en) 1994-07-12
JP2911327B2 JP2911327B2 (en) 1999-06-23

Family

ID=18393404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34790592A Expired - Fee Related JP2911327B2 (en) 1992-12-28 1992-12-28 Method and apparatus for treating water containing turbid components

Country Status (1)

Country Link
JP (1) JP2911327B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157434A (en) * 1997-08-26 1999-03-02 Nkk Corp Drain treatment device and drain treating method and clean water treatment installation
JP2002011333A (en) * 2000-06-29 2002-01-15 Kuraray Co Ltd Method and apparatus for washing hollow fiber membrane module
JP2002301339A (en) * 2001-04-06 2002-10-15 Daicel Chem Ind Ltd Membrane filtration operation method
JP2003103279A (en) * 2001-09-28 2003-04-08 Yuasa Corp Septic tank
JP2007111576A (en) * 2005-10-18 2007-05-10 Ngk Insulators Ltd Back-washing method of membrane module
KR100819541B1 (en) * 2006-11-28 2008-04-07 (주)라텍환경기술 Equipment and method of thickening sludge and precipitation sludge useing pipe membrane cross flow
JP2010260047A (en) * 2009-04-28 2010-11-18 Daewoo E&C Co Ltd Apparatus for and method of purifying water using pressurized precise filter used after pretreating with coagulation-inclined plate settling pond and void control type fiber filter to improve the recovery rate and method thereof
JP2013052340A (en) * 2011-09-02 2013-03-21 Sekisui Chem Co Ltd Water treating method
JP2013052339A (en) * 2011-09-02 2013-03-21 Sekisui Chem Co Ltd Water treating method
JP2013052338A (en) * 2011-09-02 2013-03-21 Sekisui Chem Co Ltd Water treating device and water treating method
JP2015217335A (en) * 2014-05-16 2015-12-07 積水化学工業株式会社 Water treatment apparatus and water treatment method
JP2019209280A (en) * 2018-06-06 2019-12-12 積水化学工業株式会社 Water treatment apparatus and water treatment method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1157434A (en) * 1997-08-26 1999-03-02 Nkk Corp Drain treatment device and drain treating method and clean water treatment installation
JP2002011333A (en) * 2000-06-29 2002-01-15 Kuraray Co Ltd Method and apparatus for washing hollow fiber membrane module
JP2002301339A (en) * 2001-04-06 2002-10-15 Daicel Chem Ind Ltd Membrane filtration operation method
JP2003103279A (en) * 2001-09-28 2003-04-08 Yuasa Corp Septic tank
JP2007111576A (en) * 2005-10-18 2007-05-10 Ngk Insulators Ltd Back-washing method of membrane module
KR100819541B1 (en) * 2006-11-28 2008-04-07 (주)라텍환경기술 Equipment and method of thickening sludge and precipitation sludge useing pipe membrane cross flow
JP2010260047A (en) * 2009-04-28 2010-11-18 Daewoo E&C Co Ltd Apparatus for and method of purifying water using pressurized precise filter used after pretreating with coagulation-inclined plate settling pond and void control type fiber filter to improve the recovery rate and method thereof
JP2013052340A (en) * 2011-09-02 2013-03-21 Sekisui Chem Co Ltd Water treating method
JP2013052339A (en) * 2011-09-02 2013-03-21 Sekisui Chem Co Ltd Water treating method
JP2013052338A (en) * 2011-09-02 2013-03-21 Sekisui Chem Co Ltd Water treating device and water treating method
JP2015217335A (en) * 2014-05-16 2015-12-07 積水化学工業株式会社 Water treatment apparatus and water treatment method
JP2019209280A (en) * 2018-06-06 2019-12-12 積水化学工業株式会社 Water treatment apparatus and water treatment method

Also Published As

Publication number Publication date
JP2911327B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
JP2860191B2 (en) Method of changing operation mode in automatic water filtration device
US4670150A (en) Cross-flow microfiltration lime softener
US5047154A (en) Method and apparatus for enhancing the flux rate of cross-flow filtration systems
JPH07112185A (en) Waste water treating device and washing method therefor
JP2911327B2 (en) Method and apparatus for treating water containing turbid components
CN101148275A (en) PVC centrifugal mother liquor treatment reclaiming technique and device
JP3338505B2 (en) Method for membrane purification of surface water with improved recovery rate and method of operating the same
JP3640285B2 (en) Coagulation sedimentation equipment
JP2000263063A (en) Method and apparatus for treating fluorine-containing waste liquid
JPH0555199B2 (en)
JP2002346347A (en) Method and apparatus for filtration
JP3953673B2 (en) Membrane separator
JP2010131472A (en) Apparatus and method for concentrating backwash effluent in membrane filtration
JPH1119696A (en) Treatment of sludge waste water and water purifier
JP3697529B2 (en) Membrane-based wastewater treatment method and water purification apparatus
JPH10202010A (en) Water treatment device
JP2007111576A (en) Back-washing method of membrane module
JP2514930B2 (en) Membrane separation device with backwash ejector
JP3421905B2 (en) Wastewater treatment equipment
JP4124957B2 (en) Filter body washing method and apparatus
JPH06238135A (en) Permeated flux recovery method for hollow fiber filter membrane module
JP3889254B2 (en) Solid-liquid separation method and apparatus for biological treatment liquid of organic wastewater
JP2000210540A (en) Membrane filter apparatus
JP2000202209A (en) Filtering method and filter device
WO2018074328A1 (en) Water treatment apparatus and water treatment method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100409

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees