WO2007083723A1 - Membrane filtration apparatus and its operating method - Google Patents

Membrane filtration apparatus and its operating method Download PDF

Info

Publication number
WO2007083723A1
WO2007083723A1 PCT/JP2007/050747 JP2007050747W WO2007083723A1 WO 2007083723 A1 WO2007083723 A1 WO 2007083723A1 JP 2007050747 W JP2007050747 W JP 2007050747W WO 2007083723 A1 WO2007083723 A1 WO 2007083723A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fiber membrane
membrane module
membrane
membrane filtration
Prior art date
Application number
PCT/JP2007/050747
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroaki Kubo
Sang-Hoon Park
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to JP2007509803A priority Critical patent/JPWO2007083723A1/en
Priority to AU2007206356A priority patent/AU2007206356A1/en
Publication of WO2007083723A1 publication Critical patent/WO2007083723A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • B01D63/043Hollow fibre modules comprising multiple hollow fibre assemblies with separate tube sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/26Specific gas distributors or gas intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration

Definitions

  • the present invention relates to the structure of an apparatus for separating and filtering water with a hollow fiber membrane.
  • the present invention relates to a membrane filtration treatment apparatus that enables stable membrane filtration with a high recovery rate even when raw water has high turbidity.
  • the membrane filtration method of filtering water with a separation membrane has features such as energy saving, space saving, labor saving, and improvement of water quality, and therefore is widely used in various fields.
  • membrane filtration using microfiltration membranes and ultrafiltration membranes has been applied to water purification manufacturing processes that produce industrial water and tap water from river water, groundwater and treated sewage water.
  • the hollow fiber membrane module can secure a large membrane area per unit volume, it is applied to many fluid treatment fields, for example, chemical purification, sterilization, turbidity, etc. by a microfiltration membrane.
  • the hollow fiber membrane module is roughly classified into a pressure type hollow fiber membrane module and an immersion type hollow fiber membrane module.
  • the pressure-type hollow fiber membrane module is loaded with a number of hollow fiber membrane bundles in a pressure-resistant cylindrical case with no openings, and the ends of both ends of the membrane bundle and the inner walls of the cylindrical case are bonded and fixed. One end side or both ends are cut to open the inside of the hollow fiber membrane, and a filtrate collecting part is provided at the opening end to collect filtrate and supply the stock solution into the cylindrical case.
  • This is a membrane module with a structure in which pressurized raw water is introduced into the module and filtered through the hollow fiber membrane surface.
  • both ends of the hollow fiber membrane bundle are bonded and fixed with an adhesive, and then one end side or both ends are cut to open the inside of the hollow fiber membrane.
  • a membrane module that has a structure for collecting filtered water by providing a filtered water collecting section, and is a permeated water in which the membrane module is immersed in raw water in an immersion tank that is open to the atmosphere, and a filtering water collecting section is provided.
  • This type employs a suction filtration system that suctions and filters the sides.
  • the pressure-type hollow fiber membrane module can set the filtration pressure higher than that of the immersion type. Therefore, the processing amount per membrane area can be increased. As a result, the number of membranes required for processing can be reduced, and the installation area can be reduced.
  • the immersion type hollow fiber membrane module is used by immersing the hollow fiber membrane bundle in the treated raw water without providing a pressure-resistant cylindrical case around the hollow fiber membrane, so that it is clogged between the hollow fiber membranes.
  • turbidity can be easily discharged, that is, it is excellent in turbidity discharge performance and membrane filtration can be performed even with highly turbid raw water.
  • the filtration method is simple and there are few incidental pipes, there is an advantage that the equipment cost can be reduced.
  • the submerged membrane module has an advantage in that the pressure-resistant cylindrical case is clogged between the membranes. It has excellent turbidity discharge performance and can perform membrane filtration even with highly turbid raw water.
  • Various contrivances have been made for the immersion tank filled with water and equipped with an immersion membrane module so that the turbidity can be discharged and membrane filtration can be performed on raw water with higher turbidity.
  • Patent Document 1 a plurality of membrane modules in which a plurality of tubular ceramic separation membranes are arranged in parallel are stacked in an immersion tank, and a diffuser tube is disposed below the plurality of membrane modules.
  • An apparatus in which a sedimentation zone is formed in the lower region is disclosed.
  • the membrane module is placed flat so that the longitudinal direction of the tubular separation membrane is horizontal, and when the suspended components are peeled off by surface scrubbing by air scrubbing and circulated in the tank, A sedimentation zone is provided to facilitate precipitation of components into the sedimentation zone and to reduce raw water turbidity near the membrane module.
  • Patent Document 2 a baffle plate is provided between the air diffuser and the bottom of the dipping tank in order to prevent the turbid components precipitated in the sedimentation zone from being sprinkled up again by air scrubbing. It is disclosed that it is installed! Speak.
  • Patent Document 3 a flat membrane module is arranged inside an aeration tank (treatment tank) that performs activated sludge treatment, and an air diffuser is arranged below the aeration tank. It is disclosed that the tank area is set to be at least three times the membrane module area. By increasing the area inside the treatment tank in this way, it is possible to make the circulation flow in the tank easier to flow by the air supplied from the diffuser, and the effect of improving the discharge of turbidity clogged between the films is obtained. .
  • the submerged membrane modules particularly in the submerged hollow fiber membrane module, a large number of hollow fiber membranes are bundled and arranged in the module, and the membrane surface per unit volume Since the product is made large, there is a demerit that turbid components are easily clogged between the membranes, and it is difficult to cope with raw water with high turbidity only by the conventional technology as described above.
  • the continuous air scrubbing method in which air scrubbing is performed not only during the physical cleaning process but also during the filtration process, and most of the concentrated raw water in the immersion tank is periodically drained to remove the relatively pure raw water before concentration. Inflow methods (called the total drain method) and a combination of both methods have been generally adopted.
  • the continuous air scrubbing method is a method that is widely used mainly in the treatment of sewage wastewater.
  • the total drain method is a stable operation method for raw water with high turbidity because the concentration of the concentrated water in the tank rises and reaches the specified concentration, and then the entire amount is drained and filled again with the raw water before concentration.
  • the total drainage method is adopted in a conventional device that maintains the high turbidity discharge characteristic, which is a feature of the immersion membrane module, by placing it in a wide immersion bath, Because most of the concentrated water is drained, there is a problem that the operation recovery rate is greatly reduced.
  • the inner surface shape of the immersion tank it is possible to set the inner surface shape of the immersion tank to be approximately the same size as the membrane module shape. In this case, the operation recovery rate is greatly reduced even if the total drainage method is adopted. The problem to do is solved. However, if the shape of the membrane module and the inner shape of the immersion tank are similar and approximately the same size, there will be almost no functional difference from the pressurized module in which the hollow fiber membrane bundle is inserted into a pressure-resistant cylindrical case. In addition, the discharge of turbidity clogged between membranes is greatly reduced.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-191946
  • Patent Document 2 JP-A-9-220441
  • Patent Document 3 Japanese Patent Application Laid-Open No. 8-267083
  • a submerged hollow fiber membrane module that performs solid-liquid separation by suction filtration is disposed in a submerged tank, and a diffuser tube is disposed below the hollow fiber membrane module, thereby providing a hollow fiber membrane module.
  • Membrane filtration device with raw water supply port located above the tank has a high ability to discharge turbidity clogged between the membranes, and the operation recovery rate is kept high even if the total drainage method is adopted.
  • An object of the present invention is to provide a membrane filtration treatment apparatus that can perform a stable membrane filtration operation at a high recovery rate even for raw water with high turbidity.
  • the membrane filtration apparatus of the present invention comprises a plurality of hollow fiber membranes bundled in an immersion tank provided with a raw water supply port at the top and a drain port at the bottom.
  • the submerged hollow fiber membrane module is a membrane filtration treatment device in which the longitudinal direction of the hollow fiber membrane is in the vertical direction, and an aeration tube is arranged below the hollow fiber membrane module.
  • the position of the supply port is above the hollow fiber membrane module, and the ratio of the cross-sectional area of the hollow fiber membrane module to the in-vessel cross-sectional area in the horizontal section where the hollow fiber membrane module is arranged is 60% to 90%.
  • the distance force between the air diffuser and the bottom of the immersion tank is greater than or equal to OOmm, and the position of the drain outlet is 200mm or lower lower than the air diffuser.
  • the ratio of the cross-sectional area of the hollow fiber membrane module to the cross-sectional area of the immersion tank in the horizontal cross section in which the hollow fiber membrane module is disposed is 70 to 80%, and the aeration tube and the bottom of the immersion tank Is preferably 200 to 700 mm.
  • a large number of hollow fiber membranes are bundled at least at the upper end portion and the lower end portion, and the upper end side of the hollow fiber membrane bundle is bundled and fixed with the end surface of the hollow fiber membrane being opened.
  • the drain outlet is installed on the bottom surface of the immersion tank.
  • the present invention it is possible to maintain a high drainage of turbidity clogged between the membranes, which is an advantage of the submerged hollow fiber membrane module, and to regularly or substantially remove all or most of the water in the immersion tank. Even if it drains, the operation recovery rate can be kept high. In addition, most of the suspended solids contained in the raw water settle in the vicinity of the bottom of the immersion tank without being membrane filtered and are present in a deposited or concentrated state. In contrast, it is possible to perform a stable membrane filtration operation with a high recovery rate.
  • FIG. 1 is a schematic sectional view showing one embodiment of a membrane filtration device according to the present invention.
  • FIG. 2 is a schematic cross-sectional view of the horizontal cut surface taken along the horizontal line ZZ in FIG.
  • FIG. 3 is an enlarged schematic cross-sectional view showing one embodiment of the hollow fiber membrane module used in the present invention.
  • FIG. 4 is a schematic sectional view showing another embodiment of the membrane filtration apparatus according to the present invention.
  • FIG. 5 is a schematic cross-sectional view of the horizontal section cut along the horizontal line Z—Z in FIG.
  • FIG. 6 is a schematic cross-sectional view schematically showing the flow of water in the immersion tank during air scrubbing in the membrane filtration apparatus shown in FIG.
  • 1 immersion tank
  • 1A inner surface of immersion tank
  • 2 hollow fiber membrane module
  • 2B outer surface of hollow fiber membrane module
  • 3 air diffuser
  • 4 air diffuser
  • 5 permeate pipe
  • 6 raw water Supply port
  • 7 Drain line
  • 8 Hollow fiber membrane
  • 9a, 9b Adhesive fixing part
  • 10 Water collecting cap
  • 11 Air introduction cylinder
  • 12 Through hole
  • 13 Drain port
  • the raw water supply port is provided at the upper part and the drainage port is provided at the lower part.
  • An immersion type hollow fiber membrane module in which a large number of hollow fiber membranes are bundled inside the immersion tank is arranged so that the longitudinal direction of the hollow fiber membrane is in the vertical direction, and below the hollow fiber membrane module. It is a membrane filtration processing apparatus which arrange
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a membrane filtration apparatus according to the present invention
  • FIG. 2 is an upper view of the immersion tank and the hollow fiber membrane module cut along a horizontal line Z-Z in FIG. It is sectional drawing which shows the outline of the horizontal cut surface which also looked at force.
  • FIG. 3 is an enlarged schematic cross-sectional view showing an embodiment of the hollow fiber membrane module in FIG.
  • FIG. 4 is a schematic sectional view showing another embodiment of the membrane filtration apparatus according to the present invention.
  • FIG. 5 is a cross-sectional view showing an outline of a horizontal cut surface when the immersion tank and the hollow fiber membrane module are cut along the horizontal line Z-Z in FIG. 4 and viewed from the upper side.
  • the immersion type hollow fiber membrane module 2 in the present invention has a hollow fiber membrane bundle in which a large number (for example, several hundred to several tens of thousands) of hollow fiber membranes 8 are aligned and bundled, and both ends thereof are bonded and fixed.
  • One end side 9a of the adhesive fixing part is bonded and fixed with the end face of the hollow fiber membrane open and a filtrate collecting part is provided, and the other end side 9b is the end face of the hollow fiber membrane.
  • It is preferably a hollow fiber membrane module that is bonded and fixed in the closed state (the type illustrated in Fig. 1 and Fig. 3 etc.), but the end surfaces of the hollow fiber membranes are open at both ends of the adhesive fixing part.
  • It may be a hollow fiber membrane module that is bonded and fixed with a filter water collecting part.
  • the hollow fiber membrane 8 is not particularly limited as long as it is a porous hollow fiber membrane having a desired filtration performance, but polyacrylonitrile, polyphenylenesulfone, polyphenylene sulfide sulfone, polyvinyl fluoride.
  • -Polymer materials such as redene, polypropylene, polyethylene, polysulfone, polyvinyl alcohol, and cellulose acetate, and inorganic materials such as ceramic Group force At least one kind of force selected is preferred. From the viewpoint of membrane strength, a hollow fiber membrane having polyvinylidene fluoride strength is more preferred.
  • the pore diameter on the surface of the hollow fiber membrane is not particularly limited, but can be conveniently selected so as to obtain a desired filtration performance within a range of 0.001 ⁇ m to 1 ⁇ m.
  • the outer diameter of the hollow fiber membrane 8 is not particularly limited, but the outer diameter is preferably in the range of 250 ⁇ to 2000 / ⁇ ⁇ because the hollow fiber membrane has high oscillating property and excellent detergency. .
  • thermosetting resin such as epoxy resin or urethane resin.
  • the adhesive fixing portions 9a and 9b respectively formed at both ends of the hollow fiber membrane bundle are connected via a large number of hollow fiber membrane portions existing therebetween, and the large number of hollow fibers.
  • the hollow fiber membranes are arranged in parallel, and the membrane filtration function is exhibited in this part.
  • the outer periphery of the parallel draw bundle in the multiple hollow fiber membrane portions may have a structure in which no reinforcing member is interposed, or a structure in which a reinforcing means is interposed (not shown). )! / ⁇ .
  • reinforcing means for example, about 1 to 30 reinforcing stays (metal bars, etc.) are arranged on the outer periphery or inside of the aligned bundle of the hollow fiber membranes, and the adhesive fixing portions are connected to each other.
  • reinforcing stays metal bars, etc.
  • the stage include a cylindrical rod-shaped body having a cross-sectional area of 3 to 700 mm 2 .
  • an adhesive fixing portion 9a that is integrally bonded with the end surface of the hollow fiber membrane being opened is formed on the upper end side where a large number of hollow fiber membranes are bundled.
  • a water collection portion by a water collection cap 10 is provided on the open end surface of the hollow fiber membrane.
  • the adhesive fixing portion 9b on the lower end side of the hollow fiber membrane bundle may have a structure in which an adhesive fixing portion is formed in which the membrane end surface is adhesively fixed with a plurality of small bundle units in a non-open state. Such a small bundle unit can further enhance the discharge of suspended solids from the module.
  • the small bundle unit adhesive fixing portion formed on the lower end side of the hollow fiber membrane bundle is such that the small bundles that are bonded and fixed are not adhered to each other and independent, and there is a space between the small bundles.
  • the number of small bundles formed on the lower end side of the hollow fiber membrane bundle is preferably 3-50 per membrane module. In addition, the number of hollow fiber membranes forming a small bundle is preferably 50 to 2000.
  • the ratio of the membrane module cross-sectional area to the in-vessel cross-sectional area of the immersion tank is the upper end of the membrane module 2 disposed in the immersion tank 1 as shown in FIG. 2 is a ratio (in percent) of the cross-sectional area of the outer surface 2B of the membrane module to the cross-sectional area of the inner surface 1A of the immersion tank in the horizontal section at the height from the bottom to the bottom.
  • the upper end force of the membrane module 2 placed in the immersion tank 1 where the cross-sectional area of the membrane module 2 and the immersion tank 1 are not constant occupies the horizontal cross-sectional area of the immersion tank at the height to the lower end. If the ratio of the membrane module cross-sectional area changes, the maximum value should be within the range of 60% to 90%.
  • the membrane module when the ratio of the cross-sectional area of the membrane module to the cross-sectional area in the tank of the immersion tank is defined from the one-end adhesive fixing part to the other-end adhesive fixing part, and the water collection attached to the front and rear thereof Do not include caps or air cylinders.
  • the cross-sectional area of the membrane module outer surface 2B from the upper end to the lower end of the membrane module 2 refers to the area surrounded by the outer peripheral portion of the adhesive fixing portion 9a, 9b, and the hollow fiber membrane between the adhesive fixing portions. If is an exposed part, it refers to the circumscribed area that encloses all of the hollow fiber membranes present.
  • the outer peripheral part of the hollow fiber membrane bundle between the adhesive fixing parts is covered with a porous plate-like material such as a net, the area surrounded by the outer peripheral part of the net or the like is indicated.
  • the air scrubbing air diffuser 3 is disposed below the membrane module 2 in order to discharge suspended substances accumulated in the hollow fiber membrane module out of the membrane module system. Any material is acceptable.
  • the air diffuser 3 is formed with air diffuser holes 4 for diffusing compressed air supplied with a blower (not shown) equal force into the raw water in the immersion tank 1. The number does not matter.
  • the distance between the diffuser tube and the bottom of the immersion tank is the distance when the position of the diffuser hole 4 provided in the diffuser pipe 3 is expressed by the height distance of the bottom of the immersion tank. It is.
  • the position of the bottom surface of the immersion tank is the bottom surface when the bottom surface has a cone shape as shown in the figure. This is based on the substantially lowest position.
  • the height position of the diffuser hole 4 varies depending on the position of each diffuser hole, it indicates the distance to the diffuser hole at the lowest position of the immersion tank bottom surface force.
  • one to several hundred hollow fiber membrane modules 2 are arranged in the immersion tank 1, depending on conditions such as the amount of water treated and the immersion tank area.
  • raw water containing suspended solids is placed in the immersion tank 1 in advance, and when the upper end adhesive fixing part side that is bonded and fixed with the end face of the hollow fiber membrane opened is sucked with a pump or the like.
  • the raw water containing suspended solids is solid-liquid separated (filtered) by the hollow fiber membrane 8, and the filtered water is sent from the water collection cap 10 to the water collection pipe (not shown) through the permeate pipe 5. If the raw water is aspirated and the filtered water is taken out of the immersion tank, the immersion tank water level drops, so the raw water is supplied into the immersion tank intermittently or regularly as necessary.
  • the raw water supply port 6 is installed above the membrane module, and the ratio of the membrane module cross-sectional area to the cross-sectional area in the bath of the immersion bath is set within a range of 60% to 90%. For this reason, most of the suspended solids in the raw water are placed in a downward flow accompanying the inflow of the raw water, and there is a gap between the membrane module 2 and the immersion tank 1 where a certain amount of space exists, or a gap between the multiple membrane modules arranged. Passes through and sinks to the bottom of the immersion bath.
  • the suspended matter settled below the air diffuser wraps around the membrane filtration surface. Without being deposited in the lower part of the air duct, the suspended substance concentration in the vicinity of the hollow fiber membrane 8 can be lowered, and the membrane blockage by the suspended substance can be greatly relieved.
  • FIG. 6 shows the flow of water in the immersion tank when air scrubbing is performed in the membrane filtration apparatus shown in FIG.
  • the membrane module is installed so that the ratio of the cross-sectional area of the membrane module 2 to the cross-sectional area of the immersion tank 1 in the tank is 60% to 90%, and the space in the tank is secured within a predetermined range. Therefore, it is possible to ensure high discharge of turbidity clogged between the hollow fiber membranes, which is an advantage of the submerged membrane module, and it is peeled off from the hollow fiber membranes by backwashing and air scrubbing.
  • the suspended suspension is quickly discharged out of the membrane module, and the separated suspension floats in the immersion tank, and then the gap between the membrane module 2 and the immersion tank 1 inner wall or a plurality of membrane modules arranged. It sinks to the bottom of the immersion tank through the gap between them. At this time, a part of the suspension settles down to the suspended matter accumulation space below the diffuser, but a part of the suspension again moves to the vicinity of the surface of the hollow fiber membrane along the air flow. Move.
  • suspended substances clogged between the hollow fiber membranes during air scrubbing can be easily discharged out of the module, and at least the suspended substances can be discharged.
  • a part of the suspended matter can be allowed to settle down below the diffuser, and the force that has once settled down to the vicinity of the bottom surface of the immersion tank 1 and accumulated and concentrated does not reappear.
  • the membrane filtration step, back-flow purification, and air scrubbing are repeatedly performed, and the suspended sediment that has accumulated and concentrated on the bottom surface of the immersion tank 1 is drained from the drainage line 7 to periodically increase the turbidity. It is possible to continue a stable membrane filtration operation even for the raw water.
  • the water level in the immersion tank 1 is drained so that the water level in the immersion tank 1 is lowered by 200 mm from the air diffuser 3 to a position below. Yes, just drive.
  • suspended substances staying at a position 200 mm below and below the air diffuser are not sprinkled again even after air scrubbing. It is not necessary to replace the water below the lower position. Therefore, when draining the entire amount regularly, drain the water in the bath so that the water level in the immersion bath is lowered to 200 mm below the diffuser tube, or below, so that it is the purpose of the drainage of the entire amount.
  • the reduction of suspended solid concentration in the vicinity of the yarn membrane 8 can be sufficiently achieved.
  • the water level in the immersion tank is adjusted to obtain a hollow fiber membrane module.
  • the operation recovery rate can be maintained at a higher level.
  • the air diffuser 3 is installed at a position as close as possible to the lower end of the hollow fiber membrane module 2, it is possible to further reduce the amount of drainage when draining the entire amount, and to increase the operation recovery rate.
  • the membrane filtration treatment device specified in the present invention it is possible to maintain a high discharge of turbidity clogged between the membranes, which is an advantage of the submerged membrane module, and periodically. Even if all or most of the water in the immersion tank is drained, the operation recovery rate can be maintained high. In addition, since many suspended solids in raw water are deposited and concentrated on the bottom of the immersion tank without membrane filtration, stable membrane filtration operation with high recovery rate is possible even for raw water with high turbidity. .
  • the ratio of the membrane module 2 cross-sectional area to the horizontal cross-sectional area of the immersion tank 1 is 70% to 80%. It is more preferable to set the distance between the air diffusing pipe 3 and the bottom of the immersion bath to 200 mm to 700 mm from the viewpoint of installation space and construction cost that are more preferable.
  • the ratio of the cross-sectional area of the membrane module 2 to the horizontal cross-sectional area of the immersion tank 1 is effective to be 200 mm or more in order to prevent the suspended solids that have once settled from rising again. It is preferable to set it to 700mm!
  • a hollow fiber membrane made of polyvinylidene fluoride with an outer diameter of 1.5 mm, an inner diameter of 0.9 mm, and a length of about 1000 mm is bundled with 3500 hollow fiber membrane bundles, with the upper end at the end of the hollow fiber membrane and the lower end.
  • this membrane module has a through hole 12 in the lower end adhesive fixing portion, the air introduction cylinder 11 on the lower side of the lower end adhesive fixing portion, and the upper side of the upper end adhesive fixing portion.
  • the structure was equipped with a water cap 10. Further, a polyethylene mesh perforated plate was attached between the upper end adhesive fixing part and the lower end adhesive fixing part so as to surround the outer periphery of the hollow fiber membrane bundle (not shown).
  • One hollow fiber membrane module was placed vertically in the immersion bath shown in FIG. At this time, the membrane filtration experiment was conducted under the following conditions, with the ratio of the membrane module cross-sectional area occupying 75% of the horizontal cross-sectional area of the immersion tank and the distance between the diffuser tube and the bottom of the immersion tank being 300 mm. Went.
  • Lake water with turbidity of 2-50 was used as raw water, membrane filtration flow rate 0.5mZday, filtration process time 30 minutes later, membrane filtration water flow rate with sodium hypochlorite 10mg / L added 1.
  • OmZday Back scrubbing for 30 seconds and air scrubbing with air flow lOOLZMin for 60 seconds were performed. Then, every time this filtration, backwashing, and air scrubbing was repeated 12 times, all the water in the immersion tank was drained, and the operation recovery rate was set to 98%.
  • the size is such that the ratio of the membrane module cross-sectional area to the horizontal cross-sectional area of the immersion tank is 95%, and the distance between the diffuser tube and the bottom of the immersion tank is 100 mm.
  • a hollow fiber membrane module and the like were installed in different immersion tanks. In terms of operating conditions, only the number of times the entire amount of water in the immersion tank was drained was changed, and the membrane filtration flux, the operation recovery rate, etc. were set the same, and the same membrane filtration experiment as in Example 1 was conducted. .
  • the size of the membrane module cross-sectional area in the horizontal cross-sectional area of the immersion tank is 30%, and the distance between the air diffuser and the bottom of the immersion tank is 500 mm.
  • a hollow fiber membrane module and the like were installed in different immersion tanks. Also in the operating conditions Regarding this, only the number of times the entire amount of water in the immersion tank was drained was changed, the membrane filtration flux, the operation recovery rate, etc. were set to be the same, and the same membrane filtration experiment as in Example 1 was performed.
  • the membrane filtration apparatus using the submerged hollow fiber membrane module of the present invention can be applied not only to water treatment but also to sewage treatment and industrial wastewater treatment.

Abstract

This invention provides a membrane filtration apparatus that can realize stable membrane filtration operation at a high percentage operation recovery even for raw water having a relatively high level of turbidity. The membrane filtration apparatus comprises a dipping tank (1) having a raw water supply port in its upper part and a water discharge port in its lower part. A dipping-type hollow fiber membrane module (2) comprising a large number of hollow fiber membranes which have been bundled, is disposed within the dipping tank (1) so that the longitudinal direction of the hollow fiber membrane is a vertical direction. A diffuser tube (3) is disposed below the hollow fiber membrane module. The position of the raw water supply port is located above the hollow fiber membrane module. In a horizontal section of the dipping tank in which the hollow fiber membrane module has been disposed, the proportion of the sectional area of the hollow fiber membrane module to the sectional area within the dipping tank is 60% to 90%, the distance between the diffuser tube and the bottom face of the dipping tank is not less than 200 mm, and the position of the water discharge port is not less than 200 mm below the diffuser tube.

Description

明 細 書  Specification
膜ろ過処理装置及びその運転方法  Membrane filtration apparatus and method for operating the same
技術分野  Technical field
[0001] 本発明は、中空糸膜により水を分離ろ過処理する装置の構造に関するものである。  The present invention relates to the structure of an apparatus for separating and filtering water with a hollow fiber membrane.
さらに詳しくは、原水が高濁度の場合でも高回収率で安定して膜ろ過することが可能 になる膜ろ過処理装置に関するものである。  More specifically, the present invention relates to a membrane filtration treatment apparatus that enables stable membrane filtration with a high recovery rate even when raw water has high turbidity.
背景技術  Background art
[0002] 分離膜により水をろ過処理する膜ろ過法は、省エネルギー、省スペース、省力化お よび水質向上等の特長を有するため、様々な分野で使用が拡大している。例えば、 精密ろ過膜や限外ろ過膜による膜ろ過が、河川水や地下水や下水処理水から、ェ 業用水や水道水を製造する浄水製造プロセスへ適用されてきている。  [0002] The membrane filtration method of filtering water with a separation membrane has features such as energy saving, space saving, labor saving, and improvement of water quality, and therefore is widely used in various fields. For example, membrane filtration using microfiltration membranes and ultrafiltration membranes has been applied to water purification manufacturing processes that produce industrial water and tap water from river water, groundwater and treated sewage water.
[0003] さらに中空糸膜モジュールは、単位体積あたりの膜面積を大きく確保できることから 、多数の流体処理分野、たとえば、精密ろ過膜による薬品精製、除菌、除濁等に適 用されている。  [0003] Further, since the hollow fiber membrane module can secure a large membrane area per unit volume, it is applied to many fluid treatment fields, for example, chemical purification, sterilization, turbidity, etc. by a microfiltration membrane.
[0004] また、中空糸膜モジュールには、大きく分けて、加圧型中空糸膜モジュールと浸漬 型中空糸膜モジュールが存在する。加圧型中空糸膜モジュールは、多数本の中空 糸膜束を開口の無い耐圧性の筒状ケース内に装填し、膜束の両端の端部および筒 状ケースの内壁をそれぞれ接着固定した後、一端側もしくは両端を切断して中空糸 膜の内部を開口させ、この開口端にろ過水集水部を設けてろ過水を集水し、筒状ケ ース内に原液を供給する原液供給口を設けた構造の膜モジュールであり、加圧した 原水をモジュール内に導入し、中空糸膜面によってろ過を行うタイプである。一方、 浸漬型中空糸膜モジュールは、中空糸膜束の両側の端部をそれぞれ接着剤で接着 固定した後、一端側もしくは両端を切断して中空糸膜の内部を開口させ、この開口端 にろ過水集水部を設けてろ過水を集水する構造にした膜モジュールであって、大気 開放された浸漬槽内の原水中に膜モジュールを浸漬させ、ろ過集水部を設けた透 過水側を吸引してろ過する吸引ろ過方式を採用するタイプである。  [0004] In addition, the hollow fiber membrane module is roughly classified into a pressure type hollow fiber membrane module and an immersion type hollow fiber membrane module. The pressure-type hollow fiber membrane module is loaded with a number of hollow fiber membrane bundles in a pressure-resistant cylindrical case with no openings, and the ends of both ends of the membrane bundle and the inner walls of the cylindrical case are bonded and fixed. One end side or both ends are cut to open the inside of the hollow fiber membrane, and a filtrate collecting part is provided at the opening end to collect filtrate and supply the stock solution into the cylindrical case. This is a membrane module with a structure in which pressurized raw water is introduced into the module and filtered through the hollow fiber membrane surface. On the other hand, in the immersion type hollow fiber membrane module, both ends of the hollow fiber membrane bundle are bonded and fixed with an adhesive, and then one end side or both ends are cut to open the inside of the hollow fiber membrane. A membrane module that has a structure for collecting filtered water by providing a filtered water collecting section, and is a permeated water in which the membrane module is immersed in raw water in an immersion tank that is open to the atmosphere, and a filtering water collecting section is provided. This type employs a suction filtration system that suctions and filters the sides.
[0005] 加圧型中空糸膜モジュールは、浸漬型に比べろ過圧力をより大きく設定できること から、膜面積あたりの処理量を増加することができ、この結果、処理に必要な膜本数 を減らすことができ、設置面積を小さくできる等の長所を持つ。一方、浸漬型中空糸 膜モジュールは、中空糸膜の周囲に耐圧性の筒状ケースを設けずに処理原水中に 中空糸膜束を浸漬させて使用されるので、中空糸膜の間に詰まる濁質を排出し易く 、即ち濁質排出性に優れ、高濁質の原水でも膜ろ過が行えるという長所がある。また ろ過方法が単純であり、付帯配管も少ないことから、設備費を低減できる長所もある。 [0005] The pressure-type hollow fiber membrane module can set the filtration pressure higher than that of the immersion type. Therefore, the processing amount per membrane area can be increased. As a result, the number of membranes required for processing can be reduced, and the installation area can be reduced. On the other hand, the immersion type hollow fiber membrane module is used by immersing the hollow fiber membrane bundle in the treated raw water without providing a pressure-resistant cylindrical case around the hollow fiber membrane, so that it is clogged between the hollow fiber membranes. There is an advantage that turbidity can be easily discharged, that is, it is excellent in turbidity discharge performance and membrane filtration can be performed even with highly turbid raw water. In addition, since the filtration method is simple and there are few incidental pipes, there is an advantage that the equipment cost can be reduced.
[0006] 浸漬型膜モジュールは前述したとおり、耐圧性の筒状ケースが無ぐ膜間に詰まる 濁質の排出性に優れ、高濁質の原水でも膜ろ過が行えるという長所を持つので、原 水を満たし浸漬型膜モジュールが配置される浸漬槽に関しても、濁質の排出性を高 め、より高濁度の原水に対して膜ろ過が行えるように、様々な工夫がなされてきた。  [0006] As described above, the submerged membrane module has an advantage in that the pressure-resistant cylindrical case is clogged between the membranes. It has excellent turbidity discharge performance and can perform membrane filtration even with highly turbid raw water. Various contrivances have been made for the immersion tank filled with water and equipped with an immersion membrane module so that the turbidity can be discharged and membrane filtration can be performed on raw water with higher turbidity.
[0007] 例えば、特許文献 1には、浸漬槽内に、複数本の管状セラミック分離膜を平行に配 置した膜モジュールの複数を積層させて配置し、その下方に散気管を配置し、更に その下方領域に沈降ゾーンを形成させた装置が開示されている。この装置では管状 分離膜の長手方向が水平方向となるように膜モジュールを平置きで配置し、濁質成 分がエアスクラビングによって分離膜の表面力 剥がされて槽内循環される際、濁質 成分が沈降ゾーンへ沈殿され易くし、膜モジュール近傍の原水濁度を低減させるた めに沈降ゾーンを設けて 、る。  [0007] For example, in Patent Document 1, a plurality of membrane modules in which a plurality of tubular ceramic separation membranes are arranged in parallel are stacked in an immersion tank, and a diffuser tube is disposed below the plurality of membrane modules. An apparatus in which a sedimentation zone is formed in the lower region is disclosed. In this device, the membrane module is placed flat so that the longitudinal direction of the tubular separation membrane is horizontal, and when the suspended components are peeled off by surface scrubbing by air scrubbing and circulated in the tank, A sedimentation zone is provided to facilitate precipitation of components into the sedimentation zone and to reduce raw water turbidity near the membrane module.
[0008] また、特許文献 2には、沈降ゾーンへ沈殿させた濁質成分がエアスクラビングによつ て再び撒き上がらないようにするため、散気装置と浸漬槽底面との間に邪魔板を設 置することが開示されて!ヽる。  [0008] Further, in Patent Document 2, a baffle plate is provided between the air diffuser and the bottom of the dipping tank in order to prevent the turbid components precipitated in the sedimentation zone from being sprinkled up again by air scrubbing. It is disclosed that it is installed! Speak.
[0009] また特許文献 3には、活性汚泥処理する曝気槽 (処理槽)の内部に、平膜モジユー ルを配置し、その下方に散気装置を配置した装置において、同一水平断面に占める 処理槽の面積が、膜モジュール面積の 3倍以上となるように設定することが開示され ている。このように処理槽内面積を大きくすることにより、散気装置から供給されるェ ァによる槽内循環流を流れ易くし、膜間に詰まった濁質の排出性を高める効果が得 られている。  [0009] In Patent Document 3, a flat membrane module is arranged inside an aeration tank (treatment tank) that performs activated sludge treatment, and an air diffuser is arranged below the aeration tank. It is disclosed that the tank area is set to be at least three times the membrane module area. By increasing the area inside the treatment tank in this way, it is possible to make the circulation flow in the tank easier to flow by the air supplied from the diffuser, and the effect of improving the discharge of turbidity clogged between the films is obtained. .
[0010] し力しながら、浸漬型膜モジュールの中でも特に浸漬型中空糸膜モジュールにお いては、モジュール内に多数本の中空糸膜を束ねて配置し、単位体積当たりの膜面 積を大きくしているので、膜間に濁質成分が詰まりやすいというデメリットがあり、上述 したような従来技術だけでは高濁度の原水に対応することが困難である。そのため物 理洗浄工程時のみではなぐろ過工程時にもエアスクラビングを行う常時ェアスクラビ ング方法や、定期的に浸漬槽内の濃縮された原水の大部分を排水し、比較的清澄 な濃縮前の原水を流入させる方法 (全量ドレン法という。)や、その両方法を組み合わ せた方法が一般的に採用されてきた。 [0010] Among the submerged membrane modules, particularly in the submerged hollow fiber membrane module, a large number of hollow fiber membranes are bundled and arranged in the module, and the membrane surface per unit volume Since the product is made large, there is a demerit that turbid components are easily clogged between the membranes, and it is difficult to cope with raw water with high turbidity only by the conventional technology as described above. For this reason, the continuous air scrubbing method, in which air scrubbing is performed not only during the physical cleaning process but also during the filtration process, and most of the concentrated raw water in the immersion tank is periodically drained to remove the relatively pure raw water before concentration. Inflow methods (called the total drain method) and a combination of both methods have been generally adopted.
[0011] 常時エアスクラビング法は、主に下廃水処理において多用されている方法であるが [0011] The continuous air scrubbing method is a method that is widely used mainly in the treatment of sewage wastewater.
、その膨大なランニングコストが実用上の問題点であり、また高濁度の原水に対する 安定運転手法としては確実性に欠ける問題がある。 The enormous running cost is a practical problem, and there is a problem of lack of certainty as a stable operation method for raw water with high turbidity.
[0012] 一方、全量ドレン法は、槽内濃縮水の濃度が上昇し所定濃度に達した時に全量排 水し、その後再び濃縮前の原水で満たすため、高濁度の原水に対する安定運転手 法として確実なものである。し力しながら、浸漬型膜モジュールを広い浸漬槽の中に 配置することによって、その特長である濁質の高い排出性を維持させている従来装 置で全量ドレン法を採用すると、浸漬槽内の濃縮水の大部分が排水されてしまうので その運転回収率が大きく低下してしまう問題がある。  [0012] On the other hand, the total drain method is a stable operation method for raw water with high turbidity because the concentration of the concentrated water in the tank rises and reaches the specified concentration, and then the entire amount is drained and filled again with the raw water before concentration. As a certain thing. However, if the total drainage method is adopted in a conventional device that maintains the high turbidity discharge characteristic, which is a feature of the immersion membrane module, by placing it in a wide immersion bath, Because most of the concentrated water is drained, there is a problem that the operation recovery rate is greatly reduced.
[0013] ここで、浸漬槽の内面形状を膜モジュール形状と相似形のほぼ同サイズに設定す ることも可能であり、その場合には全量ドレン方法を採用しても大きく運転回収率が 低下する問題は解消される。しかし、膜モジュール形状と浸漬槽の内面形状が相似 形でほぼ同サイズの場合は、中空糸膜束が耐圧性の筒状ケースに挿入されてなる 加圧型モジュールとの機能的な差異がほとんど無くなり、膜間に詰まった濁質の排出 性は大きく低下する。  [0013] Here, it is possible to set the inner surface shape of the immersion tank to be approximately the same size as the membrane module shape. In this case, the operation recovery rate is greatly reduced even if the total drainage method is adopted. The problem to do is solved. However, if the shape of the membrane module and the inner shape of the immersion tank are similar and approximately the same size, there will be almost no functional difference from the pressurized module in which the hollow fiber membrane bundle is inserted into a pressure-resistant cylindrical case. In addition, the discharge of turbidity clogged between membranes is greatly reduced.
[0014] 以上のような浸漬型中空糸膜モジュールを配置した膜ろ過処理装置に関し、濁質 の排出性の向上と運転回収率の向上とは二律背反する事項であり、両者をともに良 好な条件とすることは困難なものと考えられていた。  [0014] With respect to the membrane filtration processing apparatus in which the above-described submerged hollow fiber membrane module is arranged, improvement of turbidity discharge and improvement of operation recovery rate are contradictory matters, and both are favorable conditions. Was considered difficult.
特許文献 1:特開 2002— 191946号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-191946
特許文献 2:特開平 9 - 220441号公報  Patent Document 2: JP-A-9-220441
特許文献 3:特開平 8 - 267083号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 8-267083
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0015] 本発明は、浸漬槽内に、吸引ろ過にて固液分離を行う浸漬型中空糸膜モジュール を配置し、かつ、中空糸膜モジュールの下方に散気管を配置し、中空糸膜モジユー ルの上方に原水供給口を配置してなる膜ろ過処理装置において、膜間に詰まった 濁質の排出性が高ぐかつ、全量ドレン法を採用してもその運転回収率を高く維持す ることができ、高濁度の原水に対しても高回収率で安定した膜ろ過運転を行うことが 可能となる膜ろ過処理装置を提供することを目的とする。  [0015] In the present invention, a submerged hollow fiber membrane module that performs solid-liquid separation by suction filtration is disposed in a submerged tank, and a diffuser tube is disposed below the hollow fiber membrane module, thereby providing a hollow fiber membrane module. Membrane filtration device with raw water supply port located above the tank has a high ability to discharge turbidity clogged between the membranes, and the operation recovery rate is kept high even if the total drainage method is adopted. An object of the present invention is to provide a membrane filtration treatment apparatus that can perform a stable membrane filtration operation at a high recovery rate even for raw water with high turbidity.
課題を解決するための手段  Means for solving the problem
[0016] 上記目的を達成するための本発明の膜ろ過処理装置は、原水供給口が上部に、 排水口が下部に設けられた浸漬槽の内部に、多数本の中空糸膜が束ねられてなる 浸漬型中空糸膜モジュールを、中空糸膜の長手方向が上下方向となるように配置し 、かつ、中空糸膜モジュールの下方に散気管を配置してなる膜ろ過処理装置であつ て、原水供給口の位置が中空糸膜モジュールよりも上であり、中空糸膜モジュールが 配置された水平断面において浸漬槽の槽内断面積に対する中空糸膜モジュール断 面積の割合が 60%〜90%であり、散気管と浸漬槽底面との距離力 ^OOmm以上であり 、かつ、排水口の位置が散気管より 200mm以上低い位置にあることを特徴とする。 [0016] In order to achieve the above object, the membrane filtration apparatus of the present invention comprises a plurality of hollow fiber membranes bundled in an immersion tank provided with a raw water supply port at the top and a drain port at the bottom. The submerged hollow fiber membrane module is a membrane filtration treatment device in which the longitudinal direction of the hollow fiber membrane is in the vertical direction, and an aeration tube is arranged below the hollow fiber membrane module. The position of the supply port is above the hollow fiber membrane module, and the ratio of the cross-sectional area of the hollow fiber membrane module to the in-vessel cross-sectional area in the horizontal section where the hollow fiber membrane module is arranged is 60% to 90%. The distance force between the air diffuser and the bottom of the immersion tank is greater than or equal to OOmm, and the position of the drain outlet is 200mm or lower lower than the air diffuser.
[0017] ここで、中空糸膜モジュールが配設された水平断面において浸漬槽の槽内断面積 に対する中空糸膜モジュール断面積の割合が 70〜80%であり、かつ、散気管と浸漬 槽底面との距離が 200〜700mmであることが好ましい。  [0017] Here, the ratio of the cross-sectional area of the hollow fiber membrane module to the cross-sectional area of the immersion tank in the horizontal cross section in which the hollow fiber membrane module is disposed is 70 to 80%, and the aeration tube and the bottom of the immersion tank Is preferably 200 to 700 mm.
[0018] また、中空糸膜モジュールが、多数本の中空糸膜が少なくとも上端部及び下端部 において束ねられ、中空糸膜束の上端側は中空糸膜端面が開口した状態で束ねら れて固定され、開口した中空糸膜端面上に集水部が設けられ、かつ、中空糸膜束の 下端側は膜端面が非開口状態で複数の小束単位で束ねられて ヽる構造の膜モジュ ールであることが好まし!/、。  [0018] Further, in the hollow fiber membrane module, a large number of hollow fiber membranes are bundled at least at the upper end portion and the lower end portion, and the upper end side of the hollow fiber membrane bundle is bundled and fixed with the end surface of the hollow fiber membrane being opened. A membrane module having a structure in which a water collecting part is provided on the open end surface of the hollow fiber membrane and the lower end side of the bundle of hollow fiber membranes is bundled in a plurality of small bundle units with the membrane end surface being non-opened. It is preferred to be Le! /.
[0019] さらに、排水口が浸漬槽底面に設置されていることが好ましい。  [0019] Further, it is preferable that the drain outlet is installed on the bottom surface of the immersion tank.
[0020] 上記した膜ろ過処理装置にて原水を膜ろ過処理する運転方法においては、定期 的に、浸漬槽内水の水位を、散気管から 200mm低い位置以下まで低下させる方法を とることが有効である。また、上記した膜ろ過処理装置にて原水を膜ろ過処理する運 転方法においては、定期的に、浸漬槽内水の一部を排水ロカ 排出する方法をとる ことも有効である。 [0020] In the operation method in which the raw water is subjected to membrane filtration with the membrane filtration device described above, it is effective to periodically take a method in which the water level in the immersion bath is lowered to a position 200 mm lower than the diffuser tube. It is. In addition, the above-mentioned membrane filtration treatment apparatus is used to treat raw water with membrane filtration It is also effective to periodically drain part of the water in the dipping bath as a drainage process.
発明の効果  The invention's effect
[0021] 本発明によれば、浸漬型中空糸膜モジュールの長所である膜間に詰まった濁質の 高い排出性を維持できると共に、定期的に、浸漬槽内の水の全部もしくは大部分を 排水しても、運転回収率を高く維持することができる。また、原水中に含まれる懸濁物 質の多くは膜ろ過されることなく浸漬槽の底面近傍部分に沈殿し、堆積若しくは濃縮 状態で存在することになるので、比較的高濁度の原水に対しても高回収率で安定し た膜ろ過運転を行うことが可能である。  [0021] According to the present invention, it is possible to maintain a high drainage of turbidity clogged between the membranes, which is an advantage of the submerged hollow fiber membrane module, and to regularly or substantially remove all or most of the water in the immersion tank. Even if it drains, the operation recovery rate can be kept high. In addition, most of the suspended solids contained in the raw water settle in the vicinity of the bottom of the immersion tank without being membrane filtered and are present in a deposited or concentrated state. In contrast, it is possible to perform a stable membrane filtration operation with a high recovery rate.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]本発明にかかる膜ろ過装置の一実施様態を示す概略断面図である。 FIG. 1 is a schematic sectional view showing one embodiment of a membrane filtration device according to the present invention.
[図 2]図 1中における水平線 Z— Zで切断した水平切断面を上部力 見た概略断面図 である。  FIG. 2 is a schematic cross-sectional view of the horizontal cut surface taken along the horizontal line ZZ in FIG.
[図 3]本発明で用いる中空糸膜モジュールの一実施様態を示す拡大概略断面図で ある。  FIG. 3 is an enlarged schematic cross-sectional view showing one embodiment of the hollow fiber membrane module used in the present invention.
[図 4]本発明にかかる膜ろ過処理装置の別の一実施様態を示す概略断面図である。  FIG. 4 is a schematic sectional view showing another embodiment of the membrane filtration apparatus according to the present invention.
[図 5]図 4中における水平線 Z— Zで切断した水平断面を上部力 見た概略断面図で ある。  FIG. 5 is a schematic cross-sectional view of the horizontal section cut along the horizontal line Z—Z in FIG.
[図 6]図 1に示す膜ろ過装置において、エアスクラビング実施時における浸漬槽内の 水の流れを模式的に示す概略断面図である。  FIG. 6 is a schematic cross-sectional view schematically showing the flow of water in the immersion tank during air scrubbing in the membrane filtration apparatus shown in FIG.
符号の説明  Explanation of symbols
[0023] 1 :浸漬槽、 1A:浸漬槽内面、 2 :中空糸膜モジュール、 2B :中空糸膜モジユー ル外面、 3 :散気管、 4 :散気孔、 5 :透過水配管、 6 :原水供給口、 7 :排水ライ ン、 8 :中空糸膜、 9a、9b :接着固定部、 10 :集水キャップ、 11 :エア導入筒、 12 :貫通孔、 13 :排水口  [0023] 1: immersion tank, 1A: inner surface of immersion tank, 2: hollow fiber membrane module, 2B: outer surface of hollow fiber membrane module, 3: air diffuser, 4: air diffuser, 5: permeate pipe, 6: raw water Supply port, 7: Drain line, 8: Hollow fiber membrane, 9a, 9b: Adhesive fixing part, 10: Water collecting cap, 11: Air introduction cylinder, 12: Through hole, 13: Drain port
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 本発明の膜ろ過処理装置は、原水供給口が上部に、排水口が下部に設けられた 浸漬槽の内部に、多数本の中空糸膜が束ねられてなる浸漬型中空糸膜モジュール を、中空糸膜の長手方向が上下方向となるように配置し、かつ、中空糸膜モジュール の下方に散気管を配置してなる膜ろ過処理装置である。そして、原水供給口の位置 が中空糸膜モジュールよりも上であり、中空糸膜モジュールが配置された水平断面 において浸漬槽の槽内断面積に対する中空糸膜モジュール断面積の割合が 60% 〜90%であり、散気管と浸漬槽底面との距離力 ^OOmm以上であり、かつ、排水口の 位置が散気管より 200mm以上下方の位置である。 [0024] In the membrane filtration apparatus of the present invention, the raw water supply port is provided at the upper part and the drainage port is provided at the lower part. An immersion type hollow fiber membrane module in which a large number of hollow fiber membranes are bundled inside the immersion tank is arranged so that the longitudinal direction of the hollow fiber membrane is in the vertical direction, and below the hollow fiber membrane module. It is a membrane filtration processing apparatus which arrange | positions a diffuser tube. And, the position of the raw water supply port is above the hollow fiber membrane module, and the ratio of the hollow fiber membrane module cross-sectional area to the in-vessel cross-sectional area in the horizontal cross section where the hollow fiber membrane module is arranged is 60% to 90%. %, The distance force between the diffuser tube and the bottom of the immersion tank is more than OOmm, and the position of the drain is 200mm or more below the diffuser tube.
[0025] 本発明の最良の実施形態の膜ろ過装置を、模式的に示す図面を参照しながら以 下に説明する。ただし、本発明の範囲がこれらに限られるものではない。  [0025] A membrane filtration apparatus according to the best embodiment of the present invention will be described below with reference to the drawings schematically. However, the scope of the present invention is not limited to these.
[0026] 図 1は本発明にかかる膜ろ過処理装置の一実施様態を示す概略断面図であり、図 2は図 1中における水平線 Z—Zで浸漬槽及び中空糸膜モジュールを切断して上方 力も見た水平切断面の概略を示す断面図である。また図 3は図 1中の中空糸膜モジ ユールの一実施様態を示す拡大概略断面図である。また図 4は本発明に力かる膜ろ 過処理装置の別の一実施様態を示す概略断面図である。また図 5は図 4中における 水平線 Z—Zで浸漬槽及び中空糸膜モジュールを切断して上方カゝら見た水平切断 面の概略を示す断面図である。  FIG. 1 is a schematic cross-sectional view showing one embodiment of a membrane filtration apparatus according to the present invention, and FIG. 2 is an upper view of the immersion tank and the hollow fiber membrane module cut along a horizontal line Z-Z in FIG. It is sectional drawing which shows the outline of the horizontal cut surface which also looked at force. FIG. 3 is an enlarged schematic cross-sectional view showing an embodiment of the hollow fiber membrane module in FIG. FIG. 4 is a schematic sectional view showing another embodiment of the membrane filtration apparatus according to the present invention. FIG. 5 is a cross-sectional view showing an outline of a horizontal cut surface when the immersion tank and the hollow fiber membrane module are cut along the horizontal line Z-Z in FIG. 4 and viewed from the upper side.
[0027] 本発明における浸漬型中空糸膜モジュール 2は、多数本 (例えば、数百本から数万 本)の中空糸膜 8を揃えて束ねた中空糸膜束の両端部が接着固定されてなる構造の 膜モジュールであり、その接着固定部の片端側 9aは中空糸膜端面が開口した状態 で接着固定されてろ過水集水部が設けられ、もう一方の片端側 9bは中空糸膜端面 が閉塞された状態で接着固定されたタイプ(図 1及び図 3等に例示したタイプ)の中 空糸膜モジュールであることが好ましいが、接着固定部の両端共に中空糸膜端面が 開口した状態で接着固定されてろ過水集水部が設けられたタイプの中空糸膜モジュ ールでもよい。 [0027] The immersion type hollow fiber membrane module 2 in the present invention has a hollow fiber membrane bundle in which a large number (for example, several hundred to several tens of thousands) of hollow fiber membranes 8 are aligned and bundled, and both ends thereof are bonded and fixed. One end side 9a of the adhesive fixing part is bonded and fixed with the end face of the hollow fiber membrane open and a filtrate collecting part is provided, and the other end side 9b is the end face of the hollow fiber membrane. It is preferably a hollow fiber membrane module that is bonded and fixed in the closed state (the type illustrated in Fig. 1 and Fig. 3 etc.), but the end surfaces of the hollow fiber membranes are open at both ends of the adhesive fixing part. It may be a hollow fiber membrane module that is bonded and fixed with a filter water collecting part.
[0028] 中空糸膜 8は、所望のろ過性能を有する多孔質の中空糸膜であれば、特に限定さ れないが、ポリアクリロニトリル、ポリフエ二レンスルフォン、ポリフエ二レンスルフィドス ルフォン、ポリフッ化ビ-リデン、ポリプロピレン、ポリエチレン、ポリスルホン、ポリビ- ルアルコール、酢酸セルロース等のポリマ素材や、セラミック等の無機素材力 なる 群力 選ばれる少なくとも 1種力 なることが好ましぐさらに膜強度の点からポリフッ 化ビニリデン力 なる中空糸膜がより好まし 、。中空糸膜表面の細孔径につ ヽても特 に限定されないが、 0. 001 μ m〜l μ mの範囲内で所望のろ過性能となるように便 宜選択することができる。また、中空糸膜 8の外径についても特に限定されないが、 中空糸膜の揺動性が高ぐ洗浄性に優れるため、 250 πι〜2000 /ζ πιの範囲内の 外径であることが好ましい。 [0028] The hollow fiber membrane 8 is not particularly limited as long as it is a porous hollow fiber membrane having a desired filtration performance, but polyacrylonitrile, polyphenylenesulfone, polyphenylene sulfide sulfone, polyvinyl fluoride. -Polymer materials such as redene, polypropylene, polyethylene, polysulfone, polyvinyl alcohol, and cellulose acetate, and inorganic materials such as ceramic Group force At least one kind of force selected is preferred. From the viewpoint of membrane strength, a hollow fiber membrane having polyvinylidene fluoride strength is more preferred. The pore diameter on the surface of the hollow fiber membrane is not particularly limited, but can be conveniently selected so as to obtain a desired filtration performance within a range of 0.001 μm to 1 μm. Further, the outer diameter of the hollow fiber membrane 8 is not particularly limited, but the outer diameter is preferably in the range of 250 πι to 2000 / ζ πι because the hollow fiber membrane has high oscillating property and excellent detergency. .
[0029] また、中空糸膜束の両端部を接着剤で接着固定する際の接着剤は特に限定され ないが、エポキシ榭脂、ウレタン榭脂などの熱硬化性榭脂を用いることが好ましい。  [0029] Although there are no particular limitations on the adhesive used to bond and fix both ends of the hollow fiber membrane bundle with an adhesive, it is preferable to use a thermosetting resin such as epoxy resin or urethane resin.
[0030] また、中空糸膜束の両端にそれぞれ形成された接着固定部 9a、 9b同士は、その 間に存在する多数本の中空糸膜部分を介して繋がっており、その多数本の中空糸 膜部分では中空糸膜が並列に引き揃えられた状態にあり、この部分で膜ろ過機能が 発揮される。この多数本の中空糸膜部分における並列引き揃え束の外周は、図 3に 示すように、特に補強部材を介在させない構造であってもよいし、また、補強手段を 介在させた構造(図示なし)であってもよ!/ヽ。その補強手段を介在させた構造としては 、例えば、補強用のステー (金属棒等)を 1〜30本程度、中空糸膜の引き揃え束の外 周や内部に配置し、接着固定部同士カ^テ一によつても連結した構造や、ネット等の 多孔板状素材を接着固定部間の中空糸膜引揃え束の外周を覆うように配置した構 造が挙げられる。ステ一としては、断面積 3〜700mm2の円筒形の棒状体が例示さ れる。 [0030] Further, the adhesive fixing portions 9a and 9b respectively formed at both ends of the hollow fiber membrane bundle are connected via a large number of hollow fiber membrane portions existing therebetween, and the large number of hollow fibers. In the membrane part, the hollow fiber membranes are arranged in parallel, and the membrane filtration function is exhibited in this part. As shown in FIG. 3, the outer periphery of the parallel draw bundle in the multiple hollow fiber membrane portions may have a structure in which no reinforcing member is interposed, or a structure in which a reinforcing means is interposed (not shown). )! / ヽ. As a structure including the reinforcing means, for example, about 1 to 30 reinforcing stays (metal bars, etc.) are arranged on the outer periphery or inside of the aligned bundle of the hollow fiber membranes, and the adhesive fixing portions are connected to each other. There are also structures that are connected by a tape or a structure in which a perforated plate material such as a net is arranged so as to cover the outer periphery of the bundle of hollow fiber membranes between the adhesive fixing parts. Examples of the stage include a cylindrical rod-shaped body having a cross-sectional area of 3 to 700 mm 2 .
[0031] 本発明の中空糸膜モジュールでは、多数本の中空糸膜が束ねられた上端側には、 中空糸膜端面が開口した状態で一体的に接着された接着固定部 9aが形成され、そ の開口した中空糸膜端面上に集水キャップ 10による集水部が設けられている。  [0031] In the hollow fiber membrane module of the present invention, an adhesive fixing portion 9a that is integrally bonded with the end surface of the hollow fiber membrane being opened is formed on the upper end side where a large number of hollow fiber membranes are bundled. A water collection portion by a water collection cap 10 is provided on the open end surface of the hollow fiber membrane.
[0032] 中空糸膜束の下端側の接着固定部 9bは、膜端面が非開口状態で複数の小束単 位で接着固定された接着固定部が形成されている構造としてもよい。このような小束 単位とする方がモジュール内からの懸濁物質の排出性をさらに高めることができる。 中空糸膜束の下端側に形成されている小束単位の接着固定部は、接着固定された 小束が相互に非接着で独立しているものであり、小束間に間隔が存在する。中空糸 膜束の下端側に形成される小束の数は、膜モジュールあたり 3〜50であることが好ま しぐまた、小束を形成する中空糸膜の本数は、 50〜2000であることが好ましい。 [0032] The adhesive fixing portion 9b on the lower end side of the hollow fiber membrane bundle may have a structure in which an adhesive fixing portion is formed in which the membrane end surface is adhesively fixed with a plurality of small bundle units in a non-open state. Such a small bundle unit can further enhance the discharge of suspended solids from the module. The small bundle unit adhesive fixing portion formed on the lower end side of the hollow fiber membrane bundle is such that the small bundles that are bonded and fixed are not adhered to each other and independent, and there is a space between the small bundles. The number of small bundles formed on the lower end side of the hollow fiber membrane bundle is preferably 3-50 per membrane module. In addition, the number of hollow fiber membranes forming a small bundle is preferably 50 to 2000.
[0033] 本発明の膜ろ過処理装置において、浸漬槽の槽内断面積に対する膜モジュール 断面積の割合とは、図 2に示すとおり、浸漬槽 1の中に配置した膜モジュール 2の上 端部から下端部までの高さ部分における水平断面において、浸漬槽の槽内面 1Aの 断面積に対する膜モジュール外面 2Bの断面積の割合 (パーセント表示)である。また 膜モジュール 2の断面積や浸漬槽 1の断面積が一定ではなぐ浸漬槽 1内に配置し た膜モジュール 2の上端部力も下端部までの高さ部分における、浸漬槽の水平断面 積に占める膜モジュール断面積の割合が変化する場合には、その最大値が、 60% 〜90%の範囲内の所定値となるようにすればょ 、。  In the membrane filtration apparatus of the present invention, the ratio of the membrane module cross-sectional area to the in-vessel cross-sectional area of the immersion tank is the upper end of the membrane module 2 disposed in the immersion tank 1 as shown in FIG. 2 is a ratio (in percent) of the cross-sectional area of the outer surface 2B of the membrane module to the cross-sectional area of the inner surface 1A of the immersion tank in the horizontal section at the height from the bottom to the bottom. The upper end force of the membrane module 2 placed in the immersion tank 1 where the cross-sectional area of the membrane module 2 and the immersion tank 1 are not constant occupies the horizontal cross-sectional area of the immersion tank at the height to the lower end. If the ratio of the membrane module cross-sectional area changes, the maximum value should be within the range of 60% to 90%.
[0034] なお、浸漬槽の槽内断面積に対する膜モジュール断面積の割合を規定する際の 膜モジュールとは片端接着固定部からもう片端の接着固定部までを指し、その前後 に付属する集水キャップやエア導入筒等はその対象としな 、。また膜モジュール 2の 上端部から下端部における膜モジュール外面 2Bの断面積とは、接着固定部 9a、 9b 部分であれば、その外周部分で囲まれる面積を指し、接着固定部間の中空糸膜が 露出している部分であれば、そこに存在する中空糸膜の全てを内包する外接形の面 積を指す。また接着固定部間の中空糸膜束外周部がネット等の多孔板状素材により 覆われている場合には、ネット等の外周部分で囲まれる面積を指す。  [0034] Note that the membrane module when the ratio of the cross-sectional area of the membrane module to the cross-sectional area in the tank of the immersion tank is defined from the one-end adhesive fixing part to the other-end adhesive fixing part, and the water collection attached to the front and rear thereof Do not include caps or air cylinders. In addition, the cross-sectional area of the membrane module outer surface 2B from the upper end to the lower end of the membrane module 2 refers to the area surrounded by the outer peripheral portion of the adhesive fixing portion 9a, 9b, and the hollow fiber membrane between the adhesive fixing portions. If is an exposed part, it refers to the circumscribed area that encloses all of the hollow fiber membranes present. In addition, when the outer peripheral part of the hollow fiber membrane bundle between the adhesive fixing parts is covered with a porous plate-like material such as a net, the area surrounded by the outer peripheral part of the net or the like is indicated.
[0035] また図 4に示すように浸漬槽の内部に複数の中空糸膜モジュールが配置されて!ヽ る場合には、図 5に示すように浸漬槽の槽内面 1Aの断面積を分母とし、各膜モジュ ール外面 2Bの断面積の合計を分子として算出される割合を指す。  [0035] When a plurality of hollow fiber membrane modules are arranged inside the immersion tank as shown in Fig. 4, the cross-sectional area of the inner surface 1A of the immersion tank is set as the denominator as shown in Fig. 5. And the ratio calculated using the sum of the cross-sectional areas of the outer surface 2B of each membrane module as a numerator.
[0036] 本発明では、中空糸膜モジュール内に蓄積される懸濁物質を膜モジュール系外に 排出させるためにエアスクラビング用の散気管 3を膜モジュール 2の下方に配置する 力 散気管の構造や材質は問わない。また散気管 3には、ブロア (図示なし)等力も供 給される圧縮空気を、浸漬槽 1内の原水中に散気するための散気孔 4が形成されて いるが、散気孔の孔径ゃ個数は問わない。  [0036] In the present invention, a structure in which the air scrubbing air diffuser 3 is disposed below the membrane module 2 in order to discharge suspended substances accumulated in the hollow fiber membrane module out of the membrane module system. Any material is acceptable. The air diffuser 3 is formed with air diffuser holes 4 for diffusing compressed air supplied with a blower (not shown) equal force into the raw water in the immersion tank 1. The number does not matter.
[0037] また本発明において、散気管と浸漬槽底面との距離とは、散気管 3に設けられた散 気孔 4の位置を、浸漬槽底面力ゝらの高さ距離でもって表す場合の距離である。ここで 、浸漬槽底面の位置は、図示したように底面が錐形状となっている場合には、底面に おける実質的に最も下の位置を基準とする。また散気孔 4の高さ位置が各々の散気 孔位置によって変化する場合には、浸漬槽底面力 最も低い位置にある散気孔まで の距離を指す。 [0037] In the present invention, the distance between the diffuser tube and the bottom of the immersion tank is the distance when the position of the diffuser hole 4 provided in the diffuser pipe 3 is expressed by the height distance of the bottom of the immersion tank. It is. Here, the position of the bottom surface of the immersion tank is the bottom surface when the bottom surface has a cone shape as shown in the figure. This is based on the substantially lowest position. In addition, when the height position of the diffuser hole 4 varies depending on the position of each diffuser hole, it indicates the distance to the diffuser hole at the lowest position of the immersion tank bottom surface force.
[0038] 次に、上記構成からなる浸漬型中空糸膜モジュールを用いた膜ろ過処理装置によ り膜ろ過運転する場合について述べながら、本発明の効果について説明する。  Next, the effect of the present invention will be described while describing the case of membrane filtration operation using a membrane filtration apparatus using the immersion type hollow fiber membrane module having the above-described configuration.
[0039] まず、水の処理量や浸漬槽面積等の条件に応じて、 1本〜数百本中空糸膜モジュ ール 2が浸漬槽 1内に配置される。ここで、浸漬槽 1内には、予め、懸濁物質を含む 原水が入れられており、中空糸膜端面が開口した状態で接着固定されている上端接 着固定部側をポンプなどで吸引すると、懸濁物質を含む原水が中空糸膜 8により固 液分離 (ろ過処理)され、ろ過水は集水キャップ 10から透過水配管 5を通って図示し ない集水管へと送られる。また原水を吸引してろ過水を浸漬槽外に取り出すと、浸漬 槽水位が低下するため、必要に応じて間欠的にもしくは定常的に浸漬槽内に原水を 供給する。  [0039] First, one to several hundred hollow fiber membrane modules 2 are arranged in the immersion tank 1, depending on conditions such as the amount of water treated and the immersion tank area. Here, raw water containing suspended solids is placed in the immersion tank 1 in advance, and when the upper end adhesive fixing part side that is bonded and fixed with the end face of the hollow fiber membrane opened is sucked with a pump or the like. The raw water containing suspended solids is solid-liquid separated (filtered) by the hollow fiber membrane 8, and the filtered water is sent from the water collection cap 10 to the water collection pipe (not shown) through the permeate pipe 5. If the raw water is aspirated and the filtered water is taken out of the immersion tank, the immersion tank water level drops, so the raw water is supplied into the immersion tank intermittently or regularly as necessary.
[0040] この際、本発明では、原水供給口 6が膜モジュールよりも上に設置され、かつ浸漬 槽の槽内断面積に占める膜モジュール断面積の割合を 60%〜90%の範囲内として あることから、原水中の懸濁物質の多くは、原水流入に伴う下降流にのり、ある程度 のスペースが存在する膜モジュール 2と浸漬槽 1との間隙又は複数配置した膜モジュ ール同士の間隙を通って、浸漬槽底面へと沈降する。また本発明では膜モジュール 2の下方に設置した散気管 3から浸漬槽底面までの距離を 200mm以上としてあるこ とから、散気管よりも下に沈降した懸濁物質は、膜ろ過面の近傍に回り込むことなく散 気管よりも下方の部分に堆積され、中空糸膜 8近傍の懸濁物質濃度を下げることが でき、懸濁物質による膜閉塞を大きく緩和することができる。  [0040] At this time, in the present invention, the raw water supply port 6 is installed above the membrane module, and the ratio of the membrane module cross-sectional area to the cross-sectional area in the bath of the immersion bath is set within a range of 60% to 90%. For this reason, most of the suspended solids in the raw water are placed in a downward flow accompanying the inflow of the raw water, and there is a gap between the membrane module 2 and the immersion tank 1 where a certain amount of space exists, or a gap between the multiple membrane modules arranged. Passes through and sinks to the bottom of the immersion bath. In the present invention, since the distance from the air diffuser 3 installed below the membrane module 2 to the bottom of the immersion tank is 200 mm or more, the suspended matter settled below the air diffuser wraps around the membrane filtration surface. Without being deposited in the lower part of the air duct, the suspended substance concentration in the vicinity of the hollow fiber membrane 8 can be lowered, and the membrane blockage by the suspended substance can be greatly relieved.
[0041] 一方、沈降しな力つた一部の懸濁物質は、中空糸膜 8の膜面近傍に達し、膜ろ過 により膜表面及び膜孔内部に付着する。そのため、所定時間のろ過工程が終了する と、ろ過水または圧縮エア^^水キャップ 10側力も原水側への向きで流入させて、膜 孔内部に付着した懸濁物を剥離させる洗浄操作 (逆流洗浄という)を行うか、及び Z 又は、中空糸膜モジュール 2の下方に設置した散気管 3の散気孔 4から、膜モジユー ル下部のエア導入筒 11及び下部接着固定部の貫通孔 12を通じて、圧縮エアを中 空糸膜 8に向けて供給し中空糸膜を揺らし、中空糸膜の表面に付着した懸濁物質を 剥がし、中空糸膜間力も懸濁物を排出する洗浄操作 (エアスクラビングという)を行う。 [0041] On the other hand, some suspended substances that have not settled down reach the vicinity of the membrane surface of the hollow fiber membrane 8, and adhere to the membrane surface and inside the membrane pores by membrane filtration. For this reason, when the filtration process for a predetermined time is completed, the filtered water or compressed air ^^ water cap 10 side force is also introduced in the direction toward the raw water side, and the washing operation (back flow) is performed to separate the suspended matter adhering to the inside of the membrane hole. Z) or from the air diffuser 4 of the air diffuser 3 installed below the hollow fiber membrane module 2 through the air introduction cylinder 11 at the lower part of the membrane module and the through hole 12 of the lower adhesive fixing part. Compressed air inside Supply to the hollow fiber membrane 8 to shake the hollow fiber membrane, peel off the suspended matter adhering to the surface of the hollow fiber membrane, and perform a washing operation (called air scrubbing) to discharge the suspended matter with the force between the hollow fiber membranes.
[0042] 図 6に、図 1に示す膜ろ過処理装置においてエアスクラビングを実施した時の浸漬 槽内の水の流れを示す。本発明では、浸漬槽 1の槽内断面積に占める膜モジュール 2断面積の割合が 60%〜90%となるように、膜モジュールの設置されて 、な ヽ槽内 スペースを所定範囲内で確保して 、ることから、浸漬型膜モジュールの長所である中 空糸膜間に詰まった濁質の高い排出性を確保することができ、逆流洗浄及びエアス クラビングすることにより中空糸膜から剥離された懸濁物は、速やかに膜モジュール 外へと排出され、剥離された懸濁物は、浸漬槽内を浮遊した後、膜モジュール 2と浸 漬槽 1内壁との間隙又は複数配置した膜モジュール同士の間隙を通って、浸漬槽の 底面へと沈降する。この時、懸濁物の一部は、散気管の下方の懸濁物質堆積スぺー スへと沈降していくが、一部はエアの流れに沿って再び中空糸膜の表面近傍へと移 動する。 FIG. 6 shows the flow of water in the immersion tank when air scrubbing is performed in the membrane filtration apparatus shown in FIG. In the present invention, the membrane module is installed so that the ratio of the cross-sectional area of the membrane module 2 to the cross-sectional area of the immersion tank 1 in the tank is 60% to 90%, and the space in the tank is secured within a predetermined range. Therefore, it is possible to ensure high discharge of turbidity clogged between the hollow fiber membranes, which is an advantage of the submerged membrane module, and it is peeled off from the hollow fiber membranes by backwashing and air scrubbing. The suspended suspension is quickly discharged out of the membrane module, and the separated suspension floats in the immersion tank, and then the gap between the membrane module 2 and the immersion tank 1 inner wall or a plurality of membrane modules arranged. It sinks to the bottom of the immersion tank through the gap between them. At this time, a part of the suspension settles down to the suspended matter accumulation space below the diffuser, but a part of the suspension again moves to the vicinity of the surface of the hollow fiber membrane along the air flow. Move.
[0043] また本発明では膜モジュール 2の下方に設置された散気管 3から浸漬槽底面まで の距離を 200mm以上としていることから、散気管の下方で、懸濁物質が堆積、濃縮 されている領域内の水は、エアスクラビング時でも乱されることが無い。従って、ー且 散気管の下方でエアスクラビングの影響を受け難い領域内に移動した懸濁物質は再 び撒き上がることが無ぐ中空糸膜 8近傍へと移動して 、くことが無 、。  [0043] In the present invention, since the distance from the air diffuser 3 installed below the membrane module 2 to the bottom of the immersion bath is 200 mm or more, suspended substances are deposited and concentrated below the air diffuser. The water in the area is not disturbed even during air scrubbing. Therefore, the suspended matter that has moved into the region where it is difficult to be affected by air scrubbing below the diffuser tube moves to the vicinity of the hollow fiber membrane 8 where it does not move up again, and it does not get damaged.
[0044] 以上のように、本発明の膜ろ過処理装置では、エアスクラビング時に中空糸膜間に 詰まった懸濁物質を容易にモジュール外へと排出することができると共に、その懸濁 物質の少なくとも一部を散気管の下方へと沈降させることができ、し力も、一旦浸漬槽 1の底面近傍まで沈降し堆積'濃縮した懸濁物質は再び撒き上がらない。  [0044] As described above, in the membrane filtration apparatus of the present invention, suspended substances clogged between the hollow fiber membranes during air scrubbing can be easily discharged out of the module, and at least the suspended substances can be discharged. A part of the suspended matter can be allowed to settle down below the diffuser, and the force that has once settled down to the vicinity of the bottom surface of the immersion tank 1 and accumulated and concentrated does not reappear.
[0045] そして、膜ろ過工程と逆流浄及びエアスクラビングとを繰り返し行 、、定期的に、浸 漬槽 1底面に堆積'濃縮した懸濁物を排水ライン 7から排水することによって、高濁度 の原水に対しても、安定した膜ろ過運転を続けることが可能となる。  [0045] Then, the membrane filtration step, back-flow purification, and air scrubbing are repeatedly performed, and the suspended sediment that has accumulated and concentrated on the bottom surface of the immersion tank 1 is drained from the drainage line 7 to periodically increase the turbidity. It is possible to continue a stable membrane filtration operation even for the raw water.
[0046] しかしながら、浸漬型中空糸膜モジュールにおいては、モジュール内に多数本の 中空糸膜を束ねて配置し、単位体積当たりの膜面積を大きくしているので、膜間に濁 質成分が詰まりやすいという問題があるので、本発明の膜ろ過処理装置の場合でも、 浸漬槽底面に沈降せず浮遊した懸濁物質が中空糸膜 8の膜面近傍に留まり、長期 間にわたり運転を継続するうちに次第に中空糸膜近傍の懸濁物質濃度が高まってい き、やがて安定運転が行えなくなる。 [0046] However, in the immersion type hollow fiber membrane module, a large number of hollow fiber membranes are bundled and arranged in the module to increase the membrane area per unit volume, so that turbid components are clogged between the membranes. Since there is a problem that it is easy, even in the case of the membrane filtration processing apparatus of the present invention, Suspended substances that do not settle on the bottom of the immersion tank remain in the vicinity of the membrane surface of the hollow fiber membrane 8, and as the operation continues for a long period of time, the concentration of the suspended substance in the vicinity of the hollow fiber membrane gradually increases and eventually becomes stable. It becomes impossible to drive.
[0047] この問題を解消するためには、中空糸膜 8近傍の懸濁物質濃度を低減できる操作 を行うことが必要である。例えば、定期的に、浸漬槽 1内の懸濁物質濃度の高い水の 殆ど全部ないしは全量を排出し、代わりに、比較的清澄な原水 (懸濁物質が比較的 低い原水)を流入させる全量ドレン法が行なわれる。従来の浸漬型中空糸膜モジュ ールの場合には、浸漬槽体積に占める膜モジュール体積が小さいので、全量ドレン 法を行うと、ろ過処理運転による水回収率 (運転回収率という)が大きく低下していた 力 本発明では、浸漬槽 1の水平断面積に占める膜モジュール 2断面積を 60%〜90 %としているため、全量ドレン法を行っても運転回収率を高く維持することができる。  [0047] In order to solve this problem, it is necessary to perform an operation that can reduce the concentration of suspended solids in the vicinity of the hollow fiber membrane 8. For example, periodically drain almost all or all of the water with high suspended matter concentration in the immersion tank 1 and instead drain all the relatively clear raw water (raw water with relatively low suspended solids) into it. The law is done. In the case of conventional immersion-type hollow fiber membrane modules, the membrane module volume occupies the immersion tank volume is small, so when the total drainage method is used, the water recovery rate (referred to as the operation recovery rate) by the filtration treatment operation is greatly reduced. In the present invention, since the cross-sectional area of the membrane module 2 occupying the horizontal cross-sectional area of the immersion tank 1 is 60% to 90%, the operation recovery rate can be kept high even if the total drainage method is performed.
[0048] また本発明の膜ろ過処理装置にて、定期的に全量ドレン法を行う場合には、浸漬 槽 1内の水の水位が散気管 3から 200mm低 、位置以下まで低下するように排水する 運転を行えばよい。本発明の膜ろ過装置では、散気管から 200mm低い位置及びそ れより下に滞留している懸濁物質は、エアスクラビングを行っても再び撒き上がらない ため、全量ドレンの際、散気管から 200mm以上低い位置より下方の水は敢えて置き 換える必要が無い。そのため定期的に行う全量ドレンの際、浸漬槽内の水位が散気 管から 200mm低 、位置もしくはそれ以下まで低下するように、槽内の水を排水させる ことで、全量ドレンの目的である中空糸膜 8近傍の懸濁物質濃度の低減を充分に達 成することができる。  [0048] When the total amount drain method is periodically performed in the membrane filtration apparatus of the present invention, the water level in the immersion tank 1 is drained so that the water level in the immersion tank 1 is lowered by 200 mm from the air diffuser 3 to a position below. Yes, just drive. In the membrane filtration apparatus of the present invention, suspended substances staying at a position 200 mm below and below the air diffuser are not sprinkled again even after air scrubbing. It is not necessary to replace the water below the lower position. Therefore, when draining the entire amount regularly, drain the water in the bath so that the water level in the immersion bath is lowered to 200 mm below the diffuser tube, or below, so that it is the purpose of the drainage of the entire amount. The reduction of suspended solid concentration in the vicinity of the yarn membrane 8 can be sufficiently achieved.
[0049] 特に中空糸膜モジュールの下方の鉛直方向に大きなスペースを有する浸漬槽の 場合には、余分な排水を減らし、運転回収率を向上させるためにも、全量ドレンの際 、槽内水の殆ど全部ないしは全量を排水するのでは無ぐ散気管から 200mn!〜 400m m低 、位置まで水位低下させる運転方法が好ま U、。上述した運転方法によって全 量ドレンを行なえば、中空糸膜モジュール 2の下方の鉛直方向に大きなスペースを 有する浸漬槽を用いた膜ろ過処理装置においても運転回収率を高く維持することが できる。  [0049] Especially in the case of an immersion tank having a large space in the vertical direction below the hollow fiber membrane module, in order to reduce excess drainage and improve the operation recovery rate, 200mn from the air diffuser, which does not drain almost all or the whole volume! ~ 400mm low U, prefer the driving method to lower the water level to the position. If all the drainage is performed by the operation method described above, the operation recovery rate can be maintained high even in a membrane filtration apparatus using an immersion tank having a large space in the vertical direction below the hollow fiber membrane module 2.
[0050] また全量ドレンを行う直前には、浸漬槽内の水の水位を調整し、中空糸膜モジユー ル 2よりも上方に存在する槽内水量ができるだけ少なくなるようにすることによって更 に運転回収率を高く維持することが可能となる。また散気管 3を中空糸膜モジュール 2の下端に極力近い位置に設置することにより、更に全量ドレンの際の排水量を低減 でき、運転回収率を高めることが可能となる。 [0050] Immediately before the total drainage is performed, the water level in the immersion tank is adjusted to obtain a hollow fiber membrane module. By making the amount of water in the tank above the level 2 as small as possible, the operation recovery rate can be maintained at a higher level. Further, by installing the air diffuser 3 at a position as close as possible to the lower end of the hollow fiber membrane module 2, it is possible to further reduce the amount of drainage when draining the entire amount, and to increase the operation recovery rate.
[0051] 以上のように、本発明で特定した膜ろ過処理装置とすることによって、浸漬型膜モ ジュールの長所である膜間に詰まった濁質の高い排出性を維持すると共に、定期的 に浸漬槽内の水の全部若しくは大部分を排水しても、運転回収率を高く維持できる。 また、原水中の多くの懸濁物質は膜ろ過されることなく浸漬槽底面に堆積し濃縮され るため、高濁度の原水に対しても高回収率で安定した膜ろ過運転が可能となる。 [0051] As described above, by using the membrane filtration treatment device specified in the present invention, it is possible to maintain a high discharge of turbidity clogged between the membranes, which is an advantage of the submerged membrane module, and periodically. Even if all or most of the water in the immersion tank is drained, the operation recovery rate can be maintained high. In addition, since many suspended solids in raw water are deposited and concentrated on the bottom of the immersion tank without membrane filtration, stable membrane filtration operation with high recovery rate is possible even for raw water with high turbidity. .
[0052] また更に、優れた濁質の排出性を維持しつつ運転回収率を大きく向上させるため には、浸漬槽 1の水平断面積に占める膜モジュール 2断面積の割合を 70%〜80%に 設定することがより好ましぐ設置スペース、建設費の点から、散気管 3と浸漬槽底面 との距離は 200mm〜700mmに設定することがより好ましい。  [0052] Furthermore, in order to greatly improve the operation recovery rate while maintaining excellent turbidity discharge, the ratio of the membrane module 2 cross-sectional area to the horizontal cross-sectional area of the immersion tank 1 is 70% to 80%. It is more preferable to set the distance between the air diffusing pipe 3 and the bottom of the immersion bath to 200 mm to 700 mm from the viewpoint of installation space and construction cost that are more preferable.
[0053] また、原水に凝集剤を添加した場合等、原水中の懸濁物質の沈降性が高い場合に は、中空糸膜近傍に浮遊する懸濁物質が少なくなるため、定期的に全量ドレンを実 施せずに、定期的に浸漬槽内水の一部を排水ロカ 排出する運転方法を採ることで も、高回収率での安定運転を行うことが可能である。しかし、この運転方法においても 、浸漬槽 1の水平断面積に占める膜モジュール 2断面積の割合が高いほど濁質排出 性が低下し、低いほど装置の設置面積が広ぐコスト高となる。よって、この運転方法 を行う場合でも、浸漬槽 1の水平断面積に占める膜モジュール 2断面積の割合を 60 〜90%とすることが有効であり、さらに 70%〜80%に設定することが好ましい。また散 気管 3と浸漬槽底面との距離は、一旦沈降した懸濁物質が再び撒き上がらないように するため、 200mm以上とすることが有効であり、さらに設置スペース、建設費の点から 200mm〜700mmに設定することが好まし!/、。  [0053] Further, when the sedimentation of suspended substances in the raw water is high, such as when a flocculant is added to the raw water, the amount of suspended substances floating near the hollow fiber membrane is reduced. By adopting an operation method that periodically drains a portion of the water in the immersion tank without implementing the above, stable operation with a high recovery rate can be achieved. However, also in this operation method, the higher the ratio of the membrane module 2 cross-sectional area to the horizontal cross-sectional area of the immersion tank 1, the lower the turbidity discharge performance, and the lower the cost, the larger the installation area of the apparatus. Therefore, even when this operation method is performed, it is effective to set the ratio of the cross-sectional area of the membrane module 2 to the horizontal cross-sectional area of the immersion tank 1 to 60 to 90%, and further to 70 to 80%. preferable. In addition, the distance between the diffuser 3 and the bottom of the immersion tank is effective to be 200 mm or more in order to prevent the suspended solids that have once settled from rising again. It is preferable to set it to 700mm!
実施例  Example
[0054] <実施例 1 > <Example 1>
外径 1. 5mm、内径 0. 9mm、長さ約 1000mmのポリフッ化ビ-リデン製中空糸膜 3500本力もなる中空糸膜束を束ね、上端を中空糸膜端面が開口した状態で、下端 を中空糸膜端面が閉塞された状態でウレタン系接着剤にて接着固定し、膜面積 15 m2の中空糸膜モジュールを作製した。この膜モジュールは、図 3に示すように、下端 接着固定部には貫通孔 12を有し、下端接着固定部の下部側にエア導入筒 11を、上 端接着固定部の上部側には集水キャップ 10を装着した構造とした。さらに、上端接 着固定部と下端接着固定部との間には、中空糸膜束の外周を包囲するようにポリエ チレン製メッシュ状多孔板を取り付けた構造とした (図示なし)。 A hollow fiber membrane made of polyvinylidene fluoride with an outer diameter of 1.5 mm, an inner diameter of 0.9 mm, and a length of about 1000 mm is bundled with 3500 hollow fiber membrane bundles, with the upper end at the end of the hollow fiber membrane and the lower end. Was bonded and fixed with a urethane-based adhesive with the end face of the hollow fiber membrane closed, to produce a hollow fiber membrane module having a membrane area of 15 m 2 . As shown in FIG. 3, this membrane module has a through hole 12 in the lower end adhesive fixing portion, the air introduction cylinder 11 on the lower side of the lower end adhesive fixing portion, and the upper side of the upper end adhesive fixing portion. The structure was equipped with a water cap 10. Further, a polyethylene mesh perforated plate was attached between the upper end adhesive fixing part and the lower end adhesive fixing part so as to surround the outer periphery of the hollow fiber membrane bundle (not shown).
[0055] 上記中空糸膜モジュール 1本を図 1に示す浸漬槽内に縦置きに配置した。この際、 浸漬槽の水平断面積に占める膜モジュール断面積の割合が 75%、散気管と浸漬槽 底面との距離が 300mmとなるような大きさの浸漬槽とし、以下の条件で膜ろ過実験を 行った。 [0055] One hollow fiber membrane module was placed vertically in the immersion bath shown in FIG. At this time, the membrane filtration experiment was conducted under the following conditions, with the ratio of the membrane module cross-sectional area occupying 75% of the horizontal cross-sectional area of the immersion tank and the distance between the diffuser tube and the bottom of the immersion tank being 300 mm. Went.
[0056] 濁度 2〜50の湖沼水を原水とし、膜ろ過流速 0. 5mZday、ろ過工程時間 30分の 後、次亜塩素酸ナトリウム 10mg/Lを添加した膜ろ過水による流速 1. OmZdayでの 逆洗 30秒、さらに、エア流量 lOOLZMinでのエアスクラビング 60秒を行った。そし てこのろ過、逆洗、エアスクラビングを 12回繰り返す毎に 1回、浸漬槽内水を全量排 水し、運転回収率を 98%に設定した。  [0056] Lake water with turbidity of 2-50 was used as raw water, membrane filtration flow rate 0.5mZday, filtration process time 30 minutes later, membrane filtration water flow rate with sodium hypochlorite 10mg / L added 1. OmZday Back scrubbing for 30 seconds and air scrubbing with air flow lOOLZMin for 60 seconds were performed. Then, every time this filtration, backwashing, and air scrubbing was repeated 12 times, all the water in the immersion tank was drained, and the operation recovery rate was set to 98%.
[0057] これらの運転を約 1週間連続して行ったが、実験期間中、膜間差圧の上昇は観察 されず、安定した膜ろ過を継続することができた。  [0057] These operations were carried out continuously for about 1 week. During the experimental period, no increase in transmembrane pressure difference was observed, and stable membrane filtration could be continued.
[0058] <比較例 1 >  [0058] <Comparative Example 1>
実施例 1で用いた中空糸膜モジュールを用い、浸漬槽の水平断面積に占める膜モ ジュール断面積の割合が 95%、散気管と浸漬槽底面との距離が 100mmとなるように 、大きさの異なる浸漬槽の中に中空糸膜モジュール等を設置した。また運転条件に 関しては、浸漬槽内の水を全量排水する回数のみを変更し、膜ろ過流束、運転回収 率等は同一に設定し、実施例 1と同様の膜ろ過実験を行つた。  Using the hollow fiber membrane module used in Example 1, the size is such that the ratio of the membrane module cross-sectional area to the horizontal cross-sectional area of the immersion tank is 95%, and the distance between the diffuser tube and the bottom of the immersion tank is 100 mm. A hollow fiber membrane module and the like were installed in different immersion tanks. In terms of operating conditions, only the number of times the entire amount of water in the immersion tank was drained was changed, and the membrane filtration flux, the operation recovery rate, etc. were set the same, and the same membrane filtration experiment as in Example 1 was conducted. .
[0059] その結果、膜間差圧は 1. OkPaZdayの割合で上昇していった。  [0059] As a result, the transmembrane pressure difference increased at a rate of 1. OkPaZday.
[0060] <比較例 2>  [0060] <Comparative Example 2>
実施例 1で用いた中空糸膜モジュールを用い、浸漬槽の水平断面積に占める膜モ ジュール断面積の割合が 30%、散気管と浸漬槽底面との距離が 500mmとなるように 、大きさの異なる浸漬槽の中に中空糸膜モジュール等を設置した。また運転条件に 関しては、浸漬槽内水を全量排水する回数のみを変更し、膜ろ過流束、運転回収率 等は同一に設定し、実施例 1と同様の膜ろ過実験を行つた。 Using the hollow fiber membrane module used in Example 1, the size of the membrane module cross-sectional area in the horizontal cross-sectional area of the immersion tank is 30%, and the distance between the air diffuser and the bottom of the immersion tank is 500 mm. A hollow fiber membrane module and the like were installed in different immersion tanks. Also in the operating conditions Regarding this, only the number of times the entire amount of water in the immersion tank was drained was changed, the membrane filtration flux, the operation recovery rate, etc. were set to be the same, and the same membrane filtration experiment as in Example 1 was performed.
[0061] その結果、膜間差圧は 1. OkPaZdayの割合で上昇していった。 [0061] As a result, the transmembrane pressure difference increased at a rate of 1. OkPaZday.
産業上の利用可能性  Industrial applicability
[0062] 本発明の、浸漬型中空糸膜モジュールを用いた膜ろ過処理装置は、上水処理に 限らず、下水処理や産業廃水処理などにも適用することができる。 [0062] The membrane filtration apparatus using the submerged hollow fiber membrane module of the present invention can be applied not only to water treatment but also to sewage treatment and industrial wastewater treatment.

Claims

請求の範囲 The scope of the claims
[1] 原水供給口が上部に、排水口が下部に設けられた浸漬槽の内部に、多数本の中空 糸膜が束ねられてなる浸漬型中空糸膜モジュールを、中空糸膜の長手方向が上下 方向となるように配置し、かつ、中空糸膜モジュールの下方に散気管を配置してなる 膜ろ過処理装置であって、原水供給口の位置が中空糸膜モジュールよりも上であり、 中空糸膜モジュールが配置された水平断面において浸漬槽の槽内断面積に対する 中空糸膜モジュール断面積の割合が 60%〜90%であり、散気管と浸漬槽底面との 距離が 200mm以上であり、かつ、排水口の位置が散気管より 200mm以上低い位置で あることを特徴とする膜ろ過処理装置。  [1] An immersion type hollow fiber membrane module in which a plurality of hollow fiber membranes are bundled inside an immersion tank having a raw water supply port at the top and a drain port at the bottom. It is a membrane filtration processing device that is arranged so as to be in the vertical direction and has an aeration tube arranged below the hollow fiber membrane module, where the position of the raw water supply port is above the hollow fiber membrane module, The ratio of the cross-sectional area of the hollow fiber membrane module to the in-vessel cross-sectional area of the immersion tank in the horizontal cross-section where the thread membrane module is arranged is 60% to 90%, and the distance between the diffuser tube and the bottom of the immersion tank is 200 mm or more, In addition, the membrane filtration apparatus is characterized in that the position of the drain outlet is at least 200 mm lower than the air diffuser.
[2] 中空糸膜モジュールが配設された水平断面において浸漬槽の槽内断面積に対する 中空糸膜モジュール断面積の割合が 70〜80%であり、かつ、散気管と浸漬槽底面と の距離力 ¾00〜700mmであることを特徴とする請求項 1に記載の膜ろ過処理装置。  [2] The ratio of the cross-sectional area of the hollow fiber membrane module to the in-vessel cross-sectional area of the immersion tank in the horizontal cross section where the hollow fiber membrane module is disposed is 70 to 80%, and the distance between the aeration tube and the bottom of the immersion tank 2. The membrane filtration apparatus according to claim 1, wherein the force is ¾00 to 700 mm.
[3] 中空糸膜モジュールが、多数本の中空糸膜が少なくとも上端部及び下端部において 束ねられ、中空糸膜束の上端側は中空糸膜端面が開口した状態で束ねられて固定 され、開口した中空糸膜端面上に集水部が設けられ、かつ、中空糸膜束の下端側は 膜端面が非開口状態で複数の小束単位で束ねられて 、る構造の膜モジュールであ ることを特徴とする請求項 1に記載の膜ろ過処理装置。  [3] In the hollow fiber membrane module, a large number of hollow fiber membranes are bundled at least at the upper end portion and the lower end portion, and the upper end side of the hollow fiber membrane bundle is bundled and fixed with the end surface of the hollow fiber membrane being opened. The membrane module has a structure in which a water collecting portion is provided on the end surface of the hollow fiber membrane, and the lower end side of the bundle of hollow fiber membranes is bundled in a plurality of small bundle units with the membrane end surface being in an unopened state. The membrane filtration apparatus according to claim 1, wherein:
[4] 排水口が浸漬槽底面に設置されて!ヽることを特徴とする請求項 1に記載の膜ろ過処 理装置。  [4] The membrane filtration apparatus according to claim 1, wherein the drain port is installed at the bottom of the immersion tank.
[5] 請求項 1〜4のいずれかに記載の膜ろ過処理装置にて原水を膜ろ過処理する運転 において、定期的に、浸漬槽内水の水位を、散気管から 200mm低い位置以下まで低 下させることを特徴とする膜ろ過処理装置の運転方法。  [5] In the operation of membrane filtration treatment of raw water with the membrane filtration treatment device according to any one of claims 1 to 4, the water level in the immersion bath is periodically lowered to a position below 200 mm lower than the diffuser tube. A method of operating a membrane filtration apparatus characterized by
[6] 請求項 1〜4のいずれかに記載の膜ろ過処理装置にて原水を膜ろ過処理する運転 において、定期的に、浸漬槽内水の一部を排水ロカ 排出することを特徴とする膜 ろ過処理装置の運転方法。 [6] In the operation of performing membrane filtration treatment of raw water with the membrane filtration treatment device according to any one of claims 1 to 4, a part of the water in the immersion bath is periodically discharged to a drainage location. Operation method of membrane filtration processing equipment.
PCT/JP2007/050747 2006-01-20 2007-01-19 Membrane filtration apparatus and its operating method WO2007083723A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007509803A JPWO2007083723A1 (en) 2006-01-20 2007-01-19 Membrane filtration apparatus and method for operating the same
AU2007206356A AU2007206356A1 (en) 2006-01-20 2007-01-19 Membrane filtration apparatus and its operating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-012063 2006-01-20
JP2006012063 2006-01-20

Publications (1)

Publication Number Publication Date
WO2007083723A1 true WO2007083723A1 (en) 2007-07-26

Family

ID=38287675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050747 WO2007083723A1 (en) 2006-01-20 2007-01-19 Membrane filtration apparatus and its operating method

Country Status (5)

Country Link
JP (1) JPWO2007083723A1 (en)
KR (1) KR20080087899A (en)
CN (1) CN101370571A (en)
AU (1) AU2007206356A1 (en)
WO (1) WO2007083723A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008141080A1 (en) * 2007-05-11 2008-11-20 Zenon Technology Partnership Membrane module with multiple bottom headers and filtration process
CN102895882A (en) * 2011-07-28 2013-01-30 海南立昇净水科技实业有限公司 Immersed hollow fiber membrane module, and filtration apparatus containing same
JP2013517937A (en) * 2010-01-28 2013-05-20 ウンジンコウェー カンパニー リミテッド Hollow fiber membrane module
JP2014024031A (en) * 2012-07-27 2014-02-06 Japan Organo Co Ltd Membrane filtration apparatus
US8795526B2 (en) 2008-01-31 2014-08-05 Toray Industries, Inc. Hollow fiber membrane element, frame for hollow fiber membrane element, and membrane filtration apparatus
KR102598280B1 (en) * 2022-09-16 2023-11-03 (주)엘에스티에스 Water treatment system using hybrid type ceramic reactor and selective nano-bubbles, and industrial wastewater treatment method using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013105795A1 (en) * 2012-01-11 2013-07-18 엘지전자 주식회사 Hollow fiber membrane module
JPWO2014192416A1 (en) * 2013-05-30 2017-02-23 住友電気工業株式会社 Filtration device and filtration method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08252438A (en) * 1995-03-17 1996-10-01 Maezawa Ind Inc Method for washing membrane with liquid chemical in immersion type membrane filter and device therefor
JP2001286886A (en) * 2000-04-05 2001-10-16 Kurita Water Ind Ltd Treatment process of wastewater
JP2002191946A (en) * 2000-12-28 2002-07-10 Kubota Corp Waste water treatment apparatus for water purification plant
JP2003053159A (en) * 2001-08-20 2003-02-25 Japan Organo Co Ltd Membrane filtration system and method of operating the same
JP2003326140A (en) * 2002-05-10 2003-11-18 Daicen Membrane Systems Ltd Hollow-fiber membrane module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08252438A (en) * 1995-03-17 1996-10-01 Maezawa Ind Inc Method for washing membrane with liquid chemical in immersion type membrane filter and device therefor
JP2001286886A (en) * 2000-04-05 2001-10-16 Kurita Water Ind Ltd Treatment process of wastewater
JP2002191946A (en) * 2000-12-28 2002-07-10 Kubota Corp Waste water treatment apparatus for water purification plant
JP2003053159A (en) * 2001-08-20 2003-02-25 Japan Organo Co Ltd Membrane filtration system and method of operating the same
JP2003326140A (en) * 2002-05-10 2003-11-18 Daicen Membrane Systems Ltd Hollow-fiber membrane module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008141080A1 (en) * 2007-05-11 2008-11-20 Zenon Technology Partnership Membrane module with multiple bottom headers and filtration process
US8795526B2 (en) 2008-01-31 2014-08-05 Toray Industries, Inc. Hollow fiber membrane element, frame for hollow fiber membrane element, and membrane filtration apparatus
JP2013517937A (en) * 2010-01-28 2013-05-20 ウンジンコウェー カンパニー リミテッド Hollow fiber membrane module
CN102895882A (en) * 2011-07-28 2013-01-30 海南立昇净水科技实业有限公司 Immersed hollow fiber membrane module, and filtration apparatus containing same
JP2014024031A (en) * 2012-07-27 2014-02-06 Japan Organo Co Ltd Membrane filtration apparatus
KR102598280B1 (en) * 2022-09-16 2023-11-03 (주)엘에스티에스 Water treatment system using hybrid type ceramic reactor and selective nano-bubbles, and industrial wastewater treatment method using the same

Also Published As

Publication number Publication date
JPWO2007083723A1 (en) 2009-06-11
CN101370571A (en) 2009-02-18
AU2007206356A1 (en) 2007-07-26
KR20080087899A (en) 2008-10-01

Similar Documents

Publication Publication Date Title
WO2007083723A1 (en) Membrane filtration apparatus and its operating method
KR100974912B1 (en) Hollow fiber membrane frame construction and hollow fiber membrane unit using the same
US20130264254A1 (en) Oil-containing wastewater treatment system
US20150060360A1 (en) Systems and methods of membrane separation
WO2006080482A1 (en) Method for manufacturing module having selectively permeable membrane and module having selectively permeable membrane
WO2011158559A1 (en) Method for cleaning membrane modules
KR101958154B1 (en) Integral type immersed hollow fiber membrane module equipment for air scouring
JPH11128692A (en) Hollow fiber membrane module
RU2515444C2 (en) Membrane module, membrane unit and membrane separator
JP5326571B2 (en) Filtration method
JP5238128B2 (en) Solid-liquid separation device for solid-liquid mixed processing liquid
KR100999945B1 (en) Air relif device for membrane filter pipe
JP2007209949A (en) Filtrate recovery device of solid-liquid mixed/processed liquid
KR100236921B1 (en) Immersion type hollow fiber membrane module and method for treating waste water by using the same
JPH09131517A (en) Hollow fiber membrane module and method for using the same
WO2018051630A1 (en) Membrane-separation activated sludge treatment system
JP2010188250A (en) Water treatment method
JP3601014B2 (en) Method and apparatus for concentrating raw water in submerged membrane filtration equipment
KR100340450B1 (en) Membrane for Water Treatment Using Hollow Fiber
JP2002306932A (en) Filtration separation cylindrical membrane cartridge
JP7213711B2 (en) Water treatment device and water treatment method
KR101974612B1 (en) Hollow fiber membrane module of in-out mode with high washing efficiency
JPH11104469A (en) Spiral-type membrane element, membrane module and water treatment apparatus using the element
JP2010119948A (en) Membrane separator, and filtration treatment operation method
JPH0824590A (en) Method for filtering concentrated organic solution

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007509803

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007206356

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 3736/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200780002710.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007206356

Country of ref document: AU

Date of ref document: 20070119

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020087020357

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07707051

Country of ref document: EP

Kind code of ref document: A1