JPH05168871A - Membrane separation device - Google Patents

Membrane separation device

Info

Publication number
JPH05168871A
JPH05168871A JP33340791A JP33340791A JPH05168871A JP H05168871 A JPH05168871 A JP H05168871A JP 33340791 A JP33340791 A JP 33340791A JP 33340791 A JP33340791 A JP 33340791A JP H05168871 A JPH05168871 A JP H05168871A
Authority
JP
Japan
Prior art keywords
water tank
water
membrane
concentrated water
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33340791A
Other languages
Japanese (ja)
Inventor
Shigeki Sawada
繁樹 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP33340791A priority Critical patent/JPH05168871A/en
Publication of JPH05168871A publication Critical patent/JPH05168871A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To continue filtering operation with low power and without lowering filtration speed by installing a raw water tank and a concentrated water tank in a position higher than the installing position of a crossflow membrane module and installing a siphon pipe for drainage in the concentrated water tank. CONSTITUTION:A raw water tank 4 and a concentrated water tank 5 are installed in a position higher than the installing one of three crossflow membrane modules 1-3. A raw water introducing pipe 6 is connected to raw water inlets 1A-3A of the membrane modules 1-3 and a concentrated water discharge pipe 7 is connected to concentrated water outlets 1B-3B of them, and difference in water head (DELTAH) between a permeated water passage of the membrane modules 1-3 and raw water or concentrated water flow acts as driving force for filtration. A siphon pipe 12 is installed in the concentrated water tank 5 and, when the siphon pipe 12 is filled with water by the rise of the level in the concentrated water tank 5, holding water in the concentrated water tank 5 is instantaneously discharged by siphon action, causing a cake-shaped product accumulated on the membrane surface to be removed by high speed water flow at that time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は膜分離装置に係り、特に
濾過速度を低下させることなく、低い運転動力にて運転
を継続することができる膜分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane separation device, and more particularly to a membrane separation device which can be continuously operated with low operation power without lowering the filtration rate.

【0002】[0002]

【従来の技術】近年、膜分離技術の発達により、各種の
分野で膜分離装置による膜濾過法が採用されるようにな
った。
2. Description of the Related Art In recent years, due to the development of membrane separation technology, a membrane filtration method using a membrane separation device has been adopted in various fields.

【0003】膜濾過法のうち、除濁、除菌などの分野で
の膜濾過は従来より多用されていたが、特に、クロス・
フロー型の膜モジュールの発達により、適用できる濃度
範囲が広くなった。このクロス・フロー型の膜モジュー
ルを用いた場合には、原水に濁度変動があっても、実用
に耐えない程の濾過速度まで濾過速度を低下させること
なく、膜濾過を継続させることができる。このため、河
川水、工業用水、上水をRO(逆浸透)膜分離するため
の前処理に凝集・沈殿・濾過に代わって、UF(限外濾
過)膜やMF(精密濾過)膜で膜濾過を行ない、前処理
プロセスを簡素化することが可能になった。
Among the membrane filtration methods, membrane filtration has been widely used in the fields of turbidity removal and sterilization.
With the development of flow-type membrane modules, the applicable concentration range has expanded. When this cross-flow type membrane module is used, even if the raw water changes in turbidity, it is possible to continue the membrane filtration without reducing the filtration rate to a filtration rate that cannot be practically used. .. For this reason, instead of coagulation / precipitation / filtration in the pretreatment for RO (reverse osmosis) membrane separation of river water, industrial water, and tap water, membranes with UF (ultrafiltration) or MF (microfiltration) membranes are used. It has become possible to carry out filtration and simplify the pretreatment process.

【0004】しかして、このような分野において、クロ
ス・フロー型の膜モジュールにより膜濾過を行なう場
合、濾過水当りの造水コスト(運転動力)をいかに下げ
るかが、実用化の課題となっている。
In such a field, however, when performing membrane filtration by a cross-flow type membrane module, how to reduce the cost of producing water (driving power) per filtered water is a subject of practical application. There is.

【0005】[0005]

【発明が解決しようとする課題】上述の如く、クロス・
フロー型の膜モジュールを用いれば、濾過速度を低下さ
せることなく膜濾過を継続させることができるが、膜面
に一定の流速を与えるために濾過する量よりも多量の原
水を循環させる必要がある。このため、濾過水当りの造
水コスト(運転動力)が高くならざるを得ない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
If a flow type membrane module is used, membrane filtration can be continued without lowering the filtration rate, but it is necessary to circulate a larger amount of raw water than the filtration amount in order to give a constant flow velocity to the membrane surface. .. Therefore, the cost of producing water (driving power) per filtered water is inevitably high.

【0006】濾過速度を低下させることなく運転動力を
下げるためには、原水流路を細くし、原水の循環流量を
下げれば良いが、原水流路を細くすると原水中のSSに
よる原水流路の閉塞が起こるため実用に供し得ない。
In order to reduce the operating power without lowering the filtration rate, it is sufficient to make the raw water flow channel thin and reduce the circulation flow rate of the raw water. However, if the raw water flow channel is made thin, the raw water flow channel due to SS in the raw water is reduced. It cannot be put to practical use because of blockage.

【0007】一方、全量濾過(デッドエンド・フィルト
レーション)によれば、濾過する原水だけをポンプで送
水すれば良く、運転動力を小さくできるが、経時により
膜面にケーキ状生成物が蓄積するために濾過速度が小さ
くなり、一定量の濾過水を得るためには多大な膜面積を
必要とする。また、全量濾過では、膜面に蓄積したケー
キ状生成物を除去して濾過速度を回復させるために定期
的に逆洗操作を行なうが、逆洗操作のための装置(逆洗
ポンプ、自動弁など)が複雑となり、設備費を増大させ
るという問題もある。
On the other hand, according to the dead end filtration, it is necessary to pump only the raw water to be filtered, and the driving power can be reduced. However, a cake-like product accumulates on the membrane surface over time. Therefore, the filtration rate becomes small, and a large membrane area is required to obtain a fixed amount of filtered water. Also, in total volume filtration, a backwash operation is regularly performed in order to remove the cake-like product accumulated on the membrane surface and restore the filtration rate, but a device for backwash operation (backwash pump, automatic valve Etc.) becomes complicated and the equipment cost increases.

【0008】濾過水当りの造水コスト(運転動力)を高
めずに、かつ濾過速度を低下させることなく膜濾過を継
続させるには、クロス・フロー濾過と全量濾過の中間の
原水供給方法として、間欠的に膜面に大きな流速を与え
る方法が有効である。しかし、この場合には、間欠的に
膜面に大きな流速を与えるための大容量のポンプが必要
となり、設備費用を増大させるという問題がある。
In order to continue the membrane filtration without increasing the water production cost (operating power) per filtered water and without decreasing the filtration rate, as a raw water supply method intermediate between cross flow filtration and total volume filtration, A method of intermittently giving a large flow velocity to the film surface is effective. However, in this case, a large-capacity pump for intermittently giving a large flow velocity to the membrane surface is required, which causes a problem of increasing equipment cost.

【0009】これらのことから、従来、膜分離装置にお
いて、濾過速度を低下させることなく運転動力を下げる
ための工夫が求められていた。
For these reasons, conventionally, in the membrane separation device, a device for reducing the driving power without lowering the filtration rate has been demanded.

【0010】本発明は上記従来の実情に鑑みてなされた
ものであって、原水流路の水頭差を濾過の推進力とし
て、ポンプを用いることなく間欠的に膜面に高流速を与
えることにより、低動力でしかも濾過速度を低下させる
ことなく濾過運転を継続できる膜分離装置を提供するこ
とを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and it is possible to intermittently apply a high flow velocity to the membrane surface without using a pump by using the head difference of the raw water flow passage as a driving force for filtration. It is an object of the present invention to provide a membrane separation device that can continue filtration operation with low power and without reducing the filtration rate.

【0011】[0011]

【課題を解決するための手段】本発明の膜分離装置は、
原水の流入口及び濃縮水の流出口を有するクロス・フロ
ー型の膜モジュールと、該膜モジュールの設置位置より
も高い位置に設置された原水槽及び濃縮水槽と、該原水
槽と前記膜モジュールの流入口とを接続する原水導入管
と、該濃縮水槽と前記膜モジュールの流出口とを接続す
る濃縮水排出管と、該濃縮水槽に設けられた排水用のサ
イホン管と、を備えてなる膜分離装置であって、前記原
水槽は、その水位が、濃縮水槽の水位よりも高位である
ことを特徴とする。
Means for Solving the Problems The membrane separation device of the present invention comprises:
A cross-flow type membrane module having a raw water inlet and a concentrated water outlet, a raw water tank and a concentrated water tank installed at a position higher than the installation position of the membrane module, and the raw water tank and the membrane module Membrane comprising a raw water inlet pipe connecting an inlet, a concentrated water discharge pipe connecting the concentrated water tank and an outlet of the membrane module, and a drainage siphon pipe provided in the concentrated water tank. In the separation device, the water level of the raw water tank is higher than the water level of the concentrated water tank.

【0012】[0012]

【作用】原水槽及び濃縮水槽が膜モジュールの設置位置
よりも高い位置に設けられているため、膜モジュールの
透過水流路と原水ないし濃縮水流路との水頭差(Δ
0)を確保することができ、この水頭差(ΔH0 )が
濾過の推進力として作用し、膜濾過が進行する。
[Function] Since the raw water tank and the concentrated water tank are provided at a position higher than the installation position of the membrane module, the head difference (Δ) between the permeated water channel of the membrane module and the raw water or concentrated water channel
H 0 ) can be secured, and this head difference (ΔH 0 ) acts as a driving force for filtration, and membrane filtration proceeds.

【0013】濾過の進行に伴い、膜モジュールの膜面に
ケーキ状生成物が蓄積すると、濾過速度が小さくなり、
原水ないし濃縮水流路と透過水流路との水頭差(ΔH
0 )が次第に増大し、濃縮水槽の水位が次第に上昇す
る。
As the cake-like product accumulates on the membrane surface of the membrane module as the filtration progresses, the filtration rate decreases,
Head difference between the raw water or concentrated water channel and the permeate channel (ΔH
0 ) gradually increases, and the water level in the concentrated water tank gradually rises.

【0014】この濃縮水槽の水位の上昇により、濃縮水
槽に設けられたサイホン管が満水となり、サイホンの作
用で濃縮水槽の保有水が瞬時に濃縮水槽から排出され
る。
Due to the rise of the water level in the concentrated water tank, the siphon pipe provided in the concentrated water tank is filled with water, and the water held in the concentrated water tank is instantaneously discharged from the concentrated water tank by the action of the siphon.

【0015】ところで、原水槽の水位は濃縮水槽の水位
よりも予め高く設定されており、両槽間には水頭差(Δ
H)があるが、上述の如く、濃縮水槽の水位が急激に低
下することにより、原水槽の水位と濃縮水槽の水位との
水頭差(ΔH)は最大となる。この最大水頭差(ΔH
max )により、原水槽から濃縮水槽へと大きな流速の水
の移動が生じる。これにより、膜モジュール内部の原水
流路に大きな流速の水流が生じる。しかして、この水流
により、膜モジュールの膜面に蓄積したケーキ状生成物
が除去されて濾過速度が回復する。
By the way, the water level in the raw water tank is set higher than that in the concentrated water tank, and the head difference (Δ
H), but as described above, the water level in the concentrated water tank sharply drops, and the head difference (ΔH) between the water level in the raw water tank and the water level in the concentrated water tank becomes maximum. This maximum head difference (ΔH
max ) causes a large flow of water from the raw water tank to the concentrated water tank. As a result, a water flow having a large flow velocity is generated in the raw water flow passage inside the membrane module. Thus, this water stream removes the cake-like product accumulated on the membrane surface of the membrane module and restores the filtration rate.

【0016】なお、この場合、原水槽と濃縮水槽との間
に水頭差(ΔH)が常に確保されていることから、膜モ
ジュール内の必要保有水が排出されることにより膜モジ
ュール内に空気が入り込むことはなく、また、上記高流
速の水流によるケーキ状生成物の除去後は、直ちに濾過
処理を再開し、透過水の採水を行なうことが可能であ
る。
In this case, since the head difference (ΔH) is always ensured between the raw water tank and the concentrated water tank, the necessary retained water in the membrane module is discharged, so that air is discharged into the membrane module. It does not enter, and after the cake-like product is removed by the above-mentioned high-speed water flow, the filtration process can be restarted immediately to collect permeated water.

【0017】[0017]

【実施例】以下に本発明を図面を参照して詳細に説明す
る。
The present invention will be described in detail below with reference to the drawings.

【0018】図1は本発明の膜分離装置の一実施例を示
す断面図である。図2は、図1の膜分離装置による膜濾
過における、濃縮水槽の水位の経時変化と膜モジュール
内の原水流路の水流の流速の経時変化との関係を示すグ
ラフである。
FIG. 1 is a sectional view showing an embodiment of the membrane separation device of the present invention. FIG. 2 is a graph showing the relationship between the time-dependent change in the water level of the concentrated water tank and the time-dependent change in the flow velocity of the water flow in the raw water channel in the membrane module in the membrane filtration by the membrane separation apparatus of FIG. 1.

【0019】本実施例の膜分離装置においては、3機の
クロス・フロー型膜モジュール1,2,3に対して、原
水槽4及び濃縮水槽5が膜モジュール1,2,3の設置
位置より高い位置に設置されている。
In the membrane separation apparatus of this embodiment, the raw water tank 4 and the concentrated water tank 5 are installed from the installation positions of the membrane modules 1, 2, 3 with respect to the three cross-flow type membrane modules 1, 2, 3. It is installed in a high position.

【0020】各膜モジュール1,2,3は、一端(図で
は下端)に原水の流入口1A,2A,3Aを有し、ま
た、他端(図では上端)に濃縮水の流出口1B,2B,
3Bを有し、内部に分離1C,2C,3Cが装填されて
いる。
Each of the membrane modules 1, 2 and 3 has raw water inlets 1A, 2A and 3A at one end (lower end in the figure), and concentrated water outlet 1B at the other end (upper end in the figure). 2B,
3B, and the separations 1C, 2C, 3C are loaded inside.

【0021】膜モジュール1,2,3の原水流入口1
A,2A,3Aには、原水槽4の底面からの原水導入管
6が接続されており、一方、濃縮水流出口1B,2B,
3Bには濃縮水槽5の底面からの濃縮水排出管7が接続
されている。また、膜モジュール1,2,3の透過水側
には、透過水抜出管8A,8B,8Cが接続されてお
り、透過水は、この抜出管8A,8B,8Cから抜き出
され、抜出本管8を経て透過水槽9に送給されるように
構成されている。
Raw water inlet 1 of the membrane modules 1, 2 and 3
A raw water inlet pipe 6 from the bottom of the raw water tank 4 is connected to A, 2A, and 3A, while concentrated water outlets 1B, 2B,
A concentrated water discharge pipe 7 from the bottom surface of the concentrated water tank 5 is connected to 3B. Further, permeated water extraction pipes 8A, 8B, 8C are connected to the permeated water sides of the membrane modules 1, 2, 3 and the permeated water is extracted from the extraction pipes 8A, 8B, 8C. It is configured to be fed to the permeated water tank 9 via the main pipe 8.

【0022】原水槽4には河川等の採水系から原水を送
給するための、取水ポンプ10を備える配管11が接続
されている。
A pipe 11 having a water intake pump 10 for feeding raw water from a water sampling system such as a river is connected to the raw water tank 4.

【0023】濃縮水槽5には、サイホン管12が所定の
高さに設けられており、サイホン管12の排出側12A
は、排水槽13に開口するように設置されている。14
は排水槽13内の濃縮水の排出管である。
The concentrated water tank 5 is provided with a siphon pipe 12 at a predetermined height, and a discharge side 12A of the siphon pipe 12 is provided.
Are installed so as to open to the drainage tank 13. 14
Is a concentrated water discharge pipe in the drainage tank 13.

【0024】なお、本発明において、原水槽4の水位4
Aは、濃縮水槽5の水位5Aよりも高く、所定以上の水
頭差ΔHが得られるように、各槽の設置高さや保有水量
及びサイホン管12の構成が設定されている。
In the present invention, the water level 4 in the raw water tank 4
A is higher than the water level 5A of the concentrated water tank 5, and the installation height of each tank, the amount of water held, and the configuration of the siphon pipe 12 are set so that a water head difference ΔH of a predetermined value or more can be obtained.

【0025】このような膜分離装置において、原水槽4
には取水ポンプ10を有する配管11より、一定の水量
となるように、河川水等の原水が揚水されている。
In such a membrane separator, the raw water tank 4
Raw water such as river water is pumped through a pipe 11 having a water intake pump 10 so that the amount of water is constant.

【0026】しかして、膜モジュール1,2,3の原水
及び濃縮水側の流路(以下「原水流路」と称す。)と透
過水流路との間には、濃縮水槽5の水位5Aと抜出本管
8の位置との差に相当する水頭差ΔH0 があるため、こ
の水頭差ΔH0 を濾過の推進力として、膜濾過が進行す
る。
However, between the raw water and concentrated water side channels (hereinafter referred to as “raw water channel”) of the membrane modules 1, 2, and 3 and the permeate channel, the water level 5A of the concentrated water tank 5 is provided. since there is water head difference [Delta] H 0 corresponding to a difference between the position of the extraction mains 8, the water head difference [Delta] H 0 as the driving force for filtration, membrane filtration progresses.

【0027】膜濾過の進行に伴い、各膜モジュール1,
2,3の膜面にケーキ状生成物が蓄積すると、濾過速度
が小さくなり、原水流路と透過水流路の水頭差(ΔH
0 )が増大し、濃縮水槽5の水位5Aが次第に上昇する
(図2のの部位)。
As the membrane filtration progresses, each membrane module 1,
When cake-like products accumulate on the membrane surfaces of a few, the filtration rate decreases, and the head difference between the raw water channel and the permeate channel (ΔH
0 ) increases, and the water level 5A of the concentrated water tank 5 gradually rises (the part in FIG. 2).

【0028】そして、遂にはサイホン管12が満水(図
2のの部位)となり、サイホンが作用して、濃縮水槽
5の保有水が瞬時に排水槽13に排出される(図2の
の部位)。
Finally, the siphon pipe 12 becomes full of water (portion in FIG. 2), the siphon acts, and the water held in the concentrated water tank 5 is instantly discharged to the drainage tank 13 (portion in FIG. 2). ..

【0029】このサイホンの作用により濃縮水槽5の保
有水量が急激に減るため、その水位5Aが低下し(図2
のの部位)、原水槽4と濃縮水槽5との間の水頭差
(ΔH)が最大(ΔHmax )になり、大きな水頭差(Δ
max )に基づいて原水槽4から濃縮水槽5へ水の移動
が生じる。この水の移動に伴い、各膜モジュール1,
2,3内部の原水流路に、所定の大きな流速が生じる。
Due to the action of this siphon, the amount of water held in the concentrated water tank 5 is sharply reduced, and the water level 5A is lowered (see FIG. 2).
Portion), the head difference (ΔH) between the raw water tank 4 and the concentrated water tank 5 becomes maximum (ΔH max ), and a large head difference (ΔH)
H max ) causes water to move from the raw water tank 4 to the concentrated water tank 5. With this movement of water, each membrane module 1,
A predetermined large flow velocity is generated in the raw water flow paths inside the second and third parts.

【0030】このように、サイホンの作用が間欠的に生
じるに伴って、間欠的に膜モジュール1,2,3内部の
原水流路に所定の高速流速が生じ、この水流が膜面に蓄
積したケーキ状生成物を洗い流す掃流効果をもたらす。
しかして、膜モジュール1,2,3は、その膜面に蓄積
したケーキ状生成物が除去されて、濾過速度が回復する
(図2のの部分)。
As described above, with the intermittent action of the siphon, a predetermined high-speed flow velocity is intermittently generated in the raw water flow passages inside the membrane modules 1, 2 and 3, and this water flow is accumulated on the membrane surface. Provides a scavenging effect to wash away the cake-like product.
Then, in the membrane modules 1, 2 and 3, the cake-like product accumulated on the membrane surface is removed, and the filtration rate is recovered (portion in FIG. 2).

【0031】従って、本発明の膜分離装置によれば、大
容量のポンプを用いることなく、間欠的に膜面に大きな
流速を与えることができ、周期的なクロス・フロー濾過
が達成されて濾過速度を低下させることなく、膜濾過を
継続させることができる。
Therefore, according to the membrane separation apparatus of the present invention, a large flow velocity can be intermittently applied to the membrane surface without using a large-capacity pump, and periodic cross-flow filtration can be achieved to perform filtration. Membrane filtration can be continued without slowing down.

【0032】本発明の膜分離装置において、膜モジュー
ルの形態は、中空糸、平膜などの膜エレメントを加工し
て膜モジュール内部に充填したものであれば良く、特に
制限はない。また、膜モジュール容器もプラスチック製
の筒状のものやコンクリート製のものなど各種のものを
用い得る。いずれのものでも、膜モジュールの一端に原
水流路の入口部を設け、他端に原水流路の出口部を設け
る。この場合図1に示す如く、複数の膜モジュールに共
通の入口部と、出口部を設けても良く、各々に独立して
設けても良い。
In the membrane separation apparatus of the present invention, the form of the membrane module is not particularly limited as long as the membrane element such as hollow fiber or flat membrane is processed and filled in the membrane module. Further, various types of membrane module containers such as a cylindrical one made of plastic and one made of concrete can be used. In either case, the inlet of the raw water channel is provided at one end of the membrane module, and the outlet of the raw water channel is provided at the other end. In this case, as shown in FIG. 1, a plurality of membrane modules may be provided with an inlet portion and an outlet portion that are common, or they may be provided independently of each other.

【0033】本発明の膜分離装置においては、前記サイ
ホンの作用を電気的に検出することにより、サイホンが
満水となって、排水が始まる直前に、膜面に透過水側か
ら原水流路側に逆洗水を送給して逆洗を行なうことによ
り、更に、膜面に蓄積したケーキ状生成物を除去する効
果が向上し、濾過速度を高い水準に維持することが可能
とされる。
In the membrane separation device of the present invention, by electrically detecting the action of the siphon, the siphon becomes full of water and the membrane surface is reversed from the permeated water side to the raw water flow path side immediately before drainage starts. By feeding the wash water and performing backwashing, the effect of removing the cake-like product accumulated on the membrane surface is further improved, and the filtration rate can be maintained at a high level.

【0034】[0034]

【発明の効果】以上詳述した通り、本発明の膜分離装置
によれば、原水流路と透過水流路との水頭差を利用して
膜濾過を推進させることができ、また、膜濾過の進行に
伴って、膜面にケーキ状生成物が付着することにより濾
過速度が低下した場合には、サイホン管による排水で生
じる原水槽と濃縮水槽との大きな水頭差を利用して、自
動的に高流速の水流を間欠的に発生させて膜モジュール
の膜面に付着したケーキ状生成物を除去して濾過速度を
回復することができる。
As described in detail above, according to the membrane separation device of the present invention, the membrane filtration can be promoted by utilizing the head difference between the raw water flow passage and the permeate flow passage, and the membrane filtration When the filtration rate is reduced due to the cake-like product adhering to the membrane surface as it progresses, it automatically uses the large head difference between the raw water tank and the concentrated water tank caused by the drainage by the siphon pipe. It is possible to recover the filtration rate by intermittently generating a high-flow water stream to remove the cake-like product adhering to the membrane surface of the membrane module.

【0035】本発明の膜分離装置によれば、簡易な構成
で、大容量のポンプを設けることなく、自動的に濾過速
度の回復のための大きな流速の水流を間欠的に発生させ
ることができることから、低い運転動力にて、かつ、実
用的な濾過速度を確保して効率的な膜濾過処理を行なう
ことが可能とされる。
According to the membrane separation apparatus of the present invention, it is possible to automatically generate a water flow having a large flow velocity for recovery of the filtration rate intermittently with a simple structure without providing a large capacity pump. Therefore, it is possible to perform an efficient membrane filtration process with a low operating power and at a practical filtration speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の膜分離装置の一実施例を示す断面図で
ある。
FIG. 1 is a sectional view showing an embodiment of a membrane separation device of the present invention.

【図2】濃縮水槽の水位の経時変化と膜モジュール内の
原水流路の水流の流速の経時変化との関係を示すグラフ
である。
FIG. 2 is a graph showing the relationship between the change over time of the water level in the concentrated water tank and the change over time of the flow velocity of the water flow in the raw water channel in the membrane module.

【符号の説明】[Explanation of symbols]

1,2,3 膜モジュール 4 原水槽 5 濃縮水槽 6 原水導入管 7 濃縮水排出管 9 透過水槽 10 取水ポンプ 12 サイホン管 13 排水管 1,2,3 Membrane module 4 Raw water tank 5 Concentrated water tank 6 Raw water introduction pipe 7 Concentrated water discharge pipe 9 Permeate water tank 10 Intake pump 12 Siphon pipe 13 Drain pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原水の流入口及び濃縮水の流出口を有す
るクロス・フロー型の膜モジュールと、 該膜モジュールの設置位置よりも高い位置に設置された
原水槽及び濃縮水槽と、 該原水槽と前記膜モジュールの流入口とを接続する原水
導入管と、 該濃縮水槽と前記膜モジュールの流出口とを接続する濃
縮水排出管と、 該濃縮水槽に設けられた排水用のサイホン管と、を備え
てなる膜分離装置であって、 前記原水槽の水位が、濃縮水槽の水位よりも高位である
ことを特徴とする膜分離装置。
1. A cross-flow type membrane module having a raw water inlet and a concentrated water outlet, a raw water tank and a concentrated water tank installed at a position higher than the installation position of the membrane module, and the raw water tank. And a raw water inlet pipe connecting the inlet of the membrane module, a concentrated water discharge pipe connecting the concentrated water tank and the outlet of the membrane module, a drainage siphon pipe provided in the concentrated water tank, A membrane separation apparatus comprising: a raw water tank having a higher water level than a concentrated water tank.
JP33340791A 1991-12-17 1991-12-17 Membrane separation device Pending JPH05168871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33340791A JPH05168871A (en) 1991-12-17 1991-12-17 Membrane separation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33340791A JPH05168871A (en) 1991-12-17 1991-12-17 Membrane separation device

Publications (1)

Publication Number Publication Date
JPH05168871A true JPH05168871A (en) 1993-07-02

Family

ID=18265770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33340791A Pending JPH05168871A (en) 1991-12-17 1991-12-17 Membrane separation device

Country Status (1)

Country Link
JP (1) JPH05168871A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11277063A (en) * 1998-03-31 1999-10-12 Kubota Corp Monitor of water treatment apparatus having membrane separator
FR2812219A1 (en) * 2000-07-26 2002-02-01 Suido Kiko Kaishya Ltd "WATER TREATMENT DEVICE COMPRISING A MEMBRANE FILTER ASSEMBLY WITH LARGE SIZE PORTS"
GB2444709A (en) * 2006-12-17 2008-06-18 Donald Litherland Device and methods for the desalination of brackish water
CN101985083A (en) * 2010-10-26 2011-03-16 哈尔滨乐普实业发展中心 Multi-film shell combining unit and multi-film shell combining method
WO2012055092A1 (en) * 2010-10-26 2012-05-03 哈尔滨乐普实业发展中心 Combination unit and combination method of multiple membrane shells
WO2015183022A1 (en) * 2014-05-30 2015-12-03 코오롱인더스트리 주식회사 Filtering system and hollow-fiber membrane module for same
KR20150139007A (en) * 2014-05-30 2015-12-11 코오롱인더스트리 주식회사 Filtration System and Hollow Fiber Membrane Module Therefor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11277063A (en) * 1998-03-31 1999-10-12 Kubota Corp Monitor of water treatment apparatus having membrane separator
FR2812219A1 (en) * 2000-07-26 2002-02-01 Suido Kiko Kaishya Ltd "WATER TREATMENT DEVICE COMPRISING A MEMBRANE FILTER ASSEMBLY WITH LARGE SIZE PORTS"
GB2444709A (en) * 2006-12-17 2008-06-18 Donald Litherland Device and methods for the desalination of brackish water
CN101985083A (en) * 2010-10-26 2011-03-16 哈尔滨乐普实业发展中心 Multi-film shell combining unit and multi-film shell combining method
WO2012055092A1 (en) * 2010-10-26 2012-05-03 哈尔滨乐普实业发展中心 Combination unit and combination method of multiple membrane shells
WO2015183022A1 (en) * 2014-05-30 2015-12-03 코오롱인더스트리 주식회사 Filtering system and hollow-fiber membrane module for same
KR20150139007A (en) * 2014-05-30 2015-12-11 코오롱인더스트리 주식회사 Filtration System and Hollow Fiber Membrane Module Therefor
CN106457157A (en) * 2014-05-30 2017-02-22 可隆工业株式会社 Filtering system and hollow-fiber membrane module for same
US10105654B2 (en) 2014-05-30 2018-10-23 Kolon Industries, Inc. Filtering system and hollow fiber membrane module for the same
CN106457157B (en) * 2014-05-30 2019-04-26 可隆工业株式会社 Filtration system and hollow fiber film assembly for the system

Similar Documents

Publication Publication Date Title
EP0335648B1 (en) Method of operating membrane separation systems
US5690830A (en) Waste water treatment apparatus and washing method thereof
EP0479492A1 (en) Membrane separation system and methods of operating and cleaning such a system
JP3198923B2 (en) Cleaning method of membrane
JP2003513785A (en) Immersion type membrane filtration system and overflow treatment method
JP2008542007A (en) Product membrane filtration
JPH04256425A (en) Back washing device for filtration
JPH11128692A (en) Hollow fiber membrane module
JP5151009B2 (en) Membrane separation device and membrane separation method
JPH05168871A (en) Membrane separation device
KR101508763B1 (en) Hollow fiber membrane module using positive pressure and back washing method using the same
JPH11207332A (en) Immersion type membrane filtering device of siphon suction system
JP3943748B2 (en) Cleaning method for membrane filtration equipment
JP3136715B2 (en) Membrane separation device
JPS644802B2 (en)
JP3953673B2 (en) Membrane separator
JP3264028B2 (en) Membrane separation device
CN205687675U (en) Reverse osmosis membrane brackish water desalination system
JP2005046762A (en) Water treatment method and water treatment apparatus
JP4156984B2 (en) Cleaning method for separation membrane module
CN219463029U (en) Dynamic stable mud discharging device for multi-tube membrane system
JP2003251160A (en) Method and apparatus for water treatment
JP3432363B2 (en) Sludge concentration method
JP2514930B2 (en) Membrane separation device with backwash ejector
JP3421905B2 (en) Wastewater treatment equipment