JPS644802B2 - - Google Patents

Info

Publication number
JPS644802B2
JPS644802B2 JP55013918A JP1391880A JPS644802B2 JP S644802 B2 JPS644802 B2 JP S644802B2 JP 55013918 A JP55013918 A JP 55013918A JP 1391880 A JP1391880 A JP 1391880A JP S644802 B2 JPS644802 B2 JP S644802B2
Authority
JP
Japan
Prior art keywords
liquid
pressure
membrane
backwashing
back pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55013918A
Other languages
Japanese (ja)
Other versions
JPS56111006A (en
Inventor
Teruyoshi Tsukamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP1391880A priority Critical patent/JPS56111006A/en
Publication of JPS56111006A publication Critical patent/JPS56111006A/en
Publication of JPS644802B2 publication Critical patent/JPS644802B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtration Of Liquid (AREA)

Description

【発明の詳細な説明】 本発明は、過工程を前処理工程とし脱塩など
の処理に圧力を使用する透過膜処理工程におい
て、透過膜処理工程から排出される流体の圧力を
利用して、該透過膜処理に付される被処理液中の
懸濁浮遊物質などを除去する過装置における
材を洗浄再生する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes the pressure of the fluid discharged from the permeable membrane treatment process in a permeable membrane treatment process in which the overstep is a pretreatment process and pressure is used for treatments such as desalination. The present invention relates to a method for cleaning and regenerating materials in a filtration device that removes suspended substances in a liquid to be treated that is subjected to the permeable membrane treatment.

最近、透過膜処理として逆浸透圧法、ウルトラ
フイルトレーシヨン法等が脱塩、脱有機物などに
効果的に利用されているが、これらの処理におい
ては数Kgf/cm2乃至数10Kgf/cm2の圧力を必要と
している。例えば逆浸透圧法においては、その被
処理液における浸透圧の数倍の圧力を運転圧とし
てその被処理液を加圧することによつて、半透膜
を経て透過水を得るわけであるが、この際濃縮液
は高圧であつて最終的には減圧弁によつて常圧に
減圧される。しかしながら、従来この濃縮液の有
する高圧の利用法としては、特公昭48−988号公
報にみられるごとき、タービンを利用し圧力を速
度エネルギに変換して高圧エネルギを回収し、こ
のエネルギをもつてポンプを駆動させる方法があ
る。この回収動力の利用に際しては、メインを流
れる液の送水とか、あるいは特開昭54−10284号
公報にみられるようにメインを流れる液の循環に
利用されている。このような利用法は、タービン
を利用して高圧エネルギを回収するものである
が、本発明は、高圧流体の高圧を直接利用しよう
とするものである。利用される流体の圧力は、そ
のままあるいは減圧して適度の圧力にしてから利
用することができる。
Recently, permeable membrane treatments such as reverse osmosis and ultrafiltration methods have been effectively used for desalination and removal of organic matter, but in these treatments, the Needs pressure. For example, in the reverse osmosis method, permeate water is obtained through a semi-permeable membrane by pressurizing the liquid to be treated at an operating pressure several times the osmotic pressure of the liquid to be treated. The concentrated liquid is under high pressure and is finally reduced to normal pressure by a pressure reducing valve. However, the conventional method of utilizing the high pressure of this concentrated liquid is as shown in Japanese Patent Publication No. 1988-988, in which the high pressure energy is recovered by converting the pressure into velocity energy using a turbine, and this energy is then used. There is a way to drive the pump. When this recovered power is utilized, it is used to transport the liquid flowing through the main, or to circulate the liquid flowing through the main as seen in Japanese Patent Laid-Open No. 54-10284. Although such usage uses a turbine to recover high-pressure energy, the present invention attempts to directly utilize the high pressure of high-pressure fluid. The pressure of the fluid used can be used as is or after being reduced to an appropriate pressure.

透過膜処理においては、液中に存する懸濁性物
質、コロイド性物質などの存在が大きな問題とな
り、これらの膜面への付着は、その透過水量の低
下へと大きく影響するとともに、濃度分極の原因
ともなつて、有効圧力差の低下、及び膜の破損を
招くから、できる限り十分な前処理によつて被処
理液中の懸濁浮遊物質などの除去が望まれるとと
もに、膜透過水もできる限り多く回収することが
望まれる。
In permeable membrane treatment, the presence of suspended substances and colloidal substances in the liquid poses a major problem, and their adhesion to the membrane surface has a significant effect on reducing the amount of permeated water and also causes concentration polarization. This may also lead to a decrease in the effective pressure difference and damage to the membrane, so it is desirable to remove suspended solids from the liquid to be treated by as sufficient a pretreatment as possible, and at the same time, water permeates through the membrane. It is desirable to collect as much as possible.

本発明は、透過膜処理において系外へ排出され
る高圧系の液体の圧力を有効に利用して、透過膜
工程によつて処理されるべき被処理液の過工程
における材の逆洗洗浄を遂行して材に付着す
る汚染物を除去するもので、かくて被処理液の前
処理を効果的に行い、膜への影響を極小にし、透
過膜プロセスの効率を向上させる有効な背圧利用
方法を提供することを目的とするものである。
The present invention effectively utilizes the pressure of the high-pressure liquid discharged outside the system in the permeable membrane process to backwash the material during the passing process of the liquid to be treated in the permeable membrane process. This method effectively pre-treats the liquid to be treated, minimizes the effect on the membrane, and improves the efficiency of the permeable membrane process. The purpose is to provide a method.

本発明は、圧力を使用する透過膜処理におい
て、該透過膜処理工程における高圧系液体の全部
又は一部を使用し、その液体が持つている比較的
高圧のエネルギをそのまま、前処理において使用
した過装置の材の逆洗に利用することによつ
て、常時被処理液の前処理を円滑に行ない透過膜
処理工程の処理効果を高度に維持しようとするも
のである。
In permeation membrane treatment using pressure, the present invention uses all or part of the high-pressure liquid in the permeation membrane treatment step, and uses the relatively high-pressure energy of the liquid as it is in pretreatment. By using it for backwashing the material of the permeation device, the pretreatment of the liquid to be treated can be carried out smoothly at all times and the treatment effect of the permeation membrane treatment process can be maintained at a high level.

透過膜処理工程から排出される液体の圧力は数
Kgf/cm2乃至数10Kgf/cm2の圧力であつて、例え
ば逆浸透圧法においては、その被処理液の浸透圧
の数倍の圧力を運転圧としてその被処理液を加圧
することによつて、半透膜を経て透過水を得るわ
けであるが、この際濃縮液は少なくとも15Kgf/
cm2の高圧である。海水に至つては浸透圧が約25Kg
f/cm2であるから被処理海水の加圧は自と、50〜
70Kgf/cm2となり、系外へ排出される濃縮液の圧
力は少なくとも45Kgf/cm2で相当の高圧と言え
る。
The pressure of the liquid discharged from the permeable membrane treatment process is
Kgf/cm 2 to several tens of Kgf/cm 2 , for example, in reverse osmosis, the operating pressure is several times the osmotic pressure of the liquid to be treated, and the liquid to be treated is pressurized. , the permeated water is obtained through a semi-permeable membrane, but at this time the concentrated liquid is at least 15Kgf/
It has a high pressure of cm2 . The osmotic pressure of seawater is approximately 25Kg.
f/ cm2 , so the pressure of the seawater to be treated is 50~
The pressure of the concentrated liquid discharged to the outside of the system is at least 45 Kgf/cm 2 , which can be said to be a considerably high pressure.

また、ウルトラフイルトレーシヨン法あるいは
マイクロポーラス膜を利用した膜過法において
は膜が一種の篩として利用される透過膜法であ
り、加える圧力は2〜7Kgf/cm2の低圧でよく、
その系外排出濃縮液の圧力は通常1〜5Kgf/cm2
程度である。この圧力の利用は低圧であるが故に
また考えられていない。特にウルトラフイルトレ
ーシヨン法の場合には、有機質含有液の処理に利
用される可能性が大きく、高分子物質である蛋白
質の濃縮、油水の分離、パルプ廃水中の高分子リ
グニンの分別濃縮、廃水中のコロイド性高分子機
物の分離濃縮などにも利用することができるが、
この工程において使用した圧力も全く回収利用さ
れずに廃棄されているのが現状である。
In addition, in the ultrafiltration method or the membrane filtration method using a microporous membrane, the membrane is used as a kind of sieve, and the pressure applied may be as low as 2 to 7 Kgf/ cm2 .
The pressure of the concentrated liquid discharged outside the system is usually 1 to 5 kgf/cm 2
That's about it. The use of this pressure is also not considered because of the low pressure. In particular, the ultrafiltration method has great potential to be used in the treatment of organic-containing liquids, such as the concentration of high-molecular proteins, separation of oil and water, fractional concentration of high-molecular lignin in pulp wastewater, and wastewater. It can also be used for separating and concentrating colloidal polymer substances inside.
At present, the pressure used in this process is not recovered or used at all and is discarded.

また、これら透過膜処理工程から排出される高
圧濃縮液(膜側残留液と同じ)の量は加圧水量の
1/2乃至1/5程度であることが多いが、海水を逆浸
透圧法によつて処理する場合には、加圧水量の2/
3程度であり場合によつては9/10程度に及ぶこと
もある。このような高圧の膜側残留液は、精密
過処理などの前処理からの処理水が濃縮されたも
のであるから、懸濁浮遊物はほとんど存在せず濃
縮された流体とは言え、極めて清澄なものであ
る。とくに濃縮度が余り進んでいない前記のよう
な加圧水量の2/3とか9/10が膜側残留液として排
出される場合にはほとんど過処理された液体と
変わらない。このような清澄かつ圧力を保有する
流体をそのまま廃棄することは極めて大きな損失
である。透過膜分離プロセスを利用するに当つて
は、多くの場合、被処理液の前処理を行なつてか
ら透過膜分離プロセスへ供給するが、この前処理
としての過工程においては定期的に材を清澄
な過水を加圧して逆洗し、材層の表面あるい
は材の細孔内、材間に付着した汚染物を除去
て再生を行なつているのが実状である。
In addition, the amount of high-pressure concentrated liquid (same as the residual liquid on the membrane side) discharged from these permeable membrane treatment processes is often about 1/2 to 1/5 of the amount of pressurized water, but seawater is When processing with water, 2/2 of the amount of pressurized water
It is about 3, and in some cases it can reach about 9/10. This kind of high-pressure residual liquid on the membrane side is concentrated treated water from pre-treatments such as precision overtreatment, so there are almost no suspended solids, and although it is a concentrated fluid, it is extremely clear. It is something. In particular, when 2/3 or 9/10 of the amount of pressurized water is discharged as membrane-side residual liquid, as mentioned above, where the degree of concentration has not progressed very much, it is almost the same as over-treated liquid. It would be a huge loss to dispose of such a clear and pressurized fluid as it is. When using a permeable membrane separation process, in most cases, the liquid to be treated is pretreated before being supplied to the permeable membrane separation process, but during this pretreatment process, the material is periodically removed. In reality, regeneration is carried out by backwashing with pressurized clear water to remove contaminants that have adhered to the surface of the material layer, within the pores of the material, or between the materials.

この材の逆洗に、前記するごとき清澄の高圧
膜側残留液を利用することは極めて合理的であ
る。前処理工程にて採用される過装置の一般的
なものは、砂、活性炭を材とする加圧式あるい
は重力式砂過機、珪藻土を利用したプレコート
過機、細孔の樹脂あるいはステンレス製のカー
トリツジフイルターなどである。従来法によるこ
れらの逆洗工程は、通常は清澄な過水を別途に
設けるポンプによつて加圧して行なわれるが、本
発明は清澄な過水の代りに、すでに前処理によ
つて過され清澄化した膜分離プロセスの膜側残
留液を利用するものであり、ポンプを利用せず、
その自らの有する圧力を利用するものであるか
ら、従来のごとく洗浄のための逆洗ポンプを設備
し、過したい過処理水を徒に使用する必要は
全くないのである。
It is extremely rational to use the clear residual liquid on the high-pressure membrane side as described above for backwashing this material. Common filtration equipment used in the pre-treatment process is a pressurized or gravity-type sand filtration machine made of sand or activated carbon, a pre-coat filtration machine made of diatomaceous earth, a pore resin or stainless steel carton. Such as Toritsuji Filter. These backwashing steps according to conventional methods are usually carried out by pressurizing clear filtered water with a separately provided pump, but the present invention uses water that has already been filtered through pre-treatment instead of clear filtered water. This method uses the clarified residual liquid on the membrane side of the membrane separation process, and does not use a pump.
Since it utilizes its own pressure, there is no need to install a backwash pump for cleaning as in the past and use overtreated water unnecessarily.

膜分離プロセスにおける膜側残留液量のみによ
つては過機の逆洗を完遂できない場合もあるの
で適当な清澄水の補給が必要なときもある。ま
た、高圧の膜側残留液による逆洗に当つては気体
の導入も可能で、ガス−液混合流体によつて逆洗
効果を助長することもできる。
Depending on the amount of liquid remaining on the membrane side in the membrane separation process, it may not be possible to complete the backwashing of the filter, so it may be necessary to replenish an appropriate amount of clear water. Further, when backwashing is performed using the high-pressure residual liquid on the membrane side, it is also possible to introduce gas, and the backwashing effect can also be promoted by using a gas-liquid mixed fluid.

次に本発明の実施例を第1図を参照しつつ説明
すると、被処理水は管路1を経て砂過装置Aに
供給され過される。この場合、通常材として
は平均粒径0.4〜0.6mmの珪砂を使用する。過速
度はLVとして5〜15m/hであるが、通常は約
6〜7m/hである。液は管路2を経て砂過
処理水槽Bに貯留された後、管路3を経て送液ポ
ンプP−1によつて加圧され、管路4,5を経て
精密過装置C−1に至りここで過される。精
密過装置C−1のメデア(材)は逆洗によつ
て再生し得るもの、すなわち材質としては多数の
樹脂を固結させたもの、あるいは焼結金属、網状
体、多数の網状体を圧着せしめたものなど逆洗可
能なメデアを利用する。
Next, an embodiment of the present invention will be described with reference to FIG. 1. Water to be treated is supplied to a sand filter device A through a pipe 1 and filtered. In this case, silica sand with an average particle size of 0.4 to 0.6 mm is usually used as the material. The overspeed is 5 to 15 m/h as LV, but usually about 6 to 7 m/h. After the liquid passes through pipe 2 and is stored in sand filter treatment tank B, it passes through pipe 3 and is pressurized by liquid sending pump P-1, and then passes through pipes 4 and 5 to precision filtration equipment C-1. This is where I end up. The media (material) of the precision filtering device C-1 can be recycled by backwashing, i.e., it can be made by solidifying many resins, sintered metal, mesh, or crimping many meshes. Use media that can be backwashed, such as those that have been washed.

次いで液は、管路6,7を経て昇圧ポンプP
−2によつて更に昇圧されて、管路8を経て透過
膜装置Dへ圧送される。透過膜装置Dにおいて
は、膜透過液と膜側残留液(濃縮液とも云
う)に分離される。膜側残留液は本発明におい
て利用する高圧の清澄な液体で、系内圧力調整弁
jによつて減圧され、管路11を経て系外へ排出
される。以上の間、各経路上の弁a,bおよびe
は全開であり、その他の弁は全閉となつている。
以上が透過膜システムの正常時の運転状況であ
る。
The liquid then passes through pipes 6 and 7 to the boost pump P.
-2, the pressure is further increased, and the pressure is sent to the permeable membrane device D via the pipe line 8. In the permeable membrane device D, the permeated liquid is separated into a membrane-side residual liquid (also referred to as a concentrated liquid). The residual liquid on the membrane side is a high-pressure clear liquid used in the present invention, and its pressure is reduced by the system pressure regulating valve j, and it is discharged to the outside of the system through the pipe line 11. During the above, valves a, b and e on each path
is fully open, and the other valves are fully closed.
The above is the normal operating status of the permeable membrane system.

さて、長期に運転が継続されるにつれて精密
過装置C−1におけるメデアは目詰まりして過
の圧力損失が増大する。そこで、所定の圧力損失
に至れば自動あるいは手動によつて弁の開閉の切
替えを行なう。即ち、送液ポンプP−1からの加
圧流体を管路4,17および13を経て並列配備
された予備の精密過装置C−2へ流入せしめ、
その液を管路12,16および7を経て昇圧ポ
ンプP−2へ送り昇圧せしめて管路8を経て透過
膜装置Dへ加圧下に送液する。透過膜装置D内の
圧力は系内圧力調整弁jの調整によつて所定圧に
維持される。管路10を経る高圧の膜側残留液
は系内圧力調整弁jによつて減圧され、管路1
5,6を経て精密過装置C−1のメデアを逆洗
し、管路18を経て系外へ排出される。以上の間
弁c,d,hおよびiは全開であり、他は全閉と
なつている。
Now, as the operation continues for a long period of time, the media in the precision filtration device C-1 becomes clogged and excessive pressure loss increases. Therefore, when a predetermined pressure loss is reached, the valve is automatically or manually switched to open and close. That is, the pressurized fluid from the liquid pump P-1 is made to flow through the pipes 4, 17 and 13 into the spare precision filter device C-2 arranged in parallel,
The liquid is sent to the booster pump P-2 via pipes 12, 16 and 7 to increase the pressure, and then sent to the permeable membrane device D via the pipe 8 under pressure. The pressure inside the permeable membrane device D is maintained at a predetermined pressure by adjusting the system pressure regulating valve j. The high pressure residual liquid on the membrane side passing through the pipe line 10 is reduced in pressure by the system pressure regulating valve j, and
5 and 6, the media of the precision filtration device C-1 is backwashed, and is discharged to the outside of the system through a pipe 18. During the above period, valves c, d, h, and i are fully open, and the others are fully closed.

次に精密過装置C−2のメデアが目詰まりす
ると、その圧力を自動あるいは人為的に検出し
て、自動あるいは手動によつて精密過装置C−
2の逆洗工程に、そして逆洗を終了した精密過
装置C−1は通常の過工程に移る。
Next, when the media of the precision filter C-2 becomes clogged, the pressure is automatically or manually detected and the precision filter C-2 is automatically or manually detected.
After completing the backwashing process, the precision filtration apparatus C-1 moves to the normal filtration process.

まず送液ポンプP−1から移送される被処理液
は、管路4,5を経て精密過装置C−1に至
り、その液は管路6,7を経て昇圧ポンプP−
2により更に昇圧されて管路8を経て透過膜装置
Dに加圧下に送液される。透過膜装置Dからの膜
透過液は管路9を経て系外へ排出され、膜側残
留液は管路10を経て系内圧力調整弁jにより
減圧された後、管路12を経て精密過装置C−
2に送られ、これを逆洗して管路13,14を経
て系外へ排出される。以上の間弁a,b,f,g
は全開で、他は全閉である。なお、管路11およ
び弁eは特に精密過装置C−1またはC−2の
逆洗を要しないときの膜側残留液の排出経路で
あり、また自動、手動による弁切替え時のそれぞ
れ経路およびリリーフ弁として作用するものであ
つて必須のものではない。
First, the liquid to be treated transferred from the liquid transfer pump P-1 passes through pipes 4 and 5 to reach the precision filter C-1, and the liquid passes through pipes 6 and 7 to the booster pump P-1.
2, the liquid is further pressurized and sent to the permeable membrane device D through the pipe line 8 under pressure. The membrane permeate liquid from the permeable membrane device D is discharged to the outside of the system via pipe 9, and the residual liquid on the membrane side passes through pipe 10 and is depressurized by the system pressure regulating valve j, and then passes through pipe 12 to the precision membrane. Device C-
2, it is backwashed and discharged to the outside of the system via pipes 13 and 14. Between the above valves a, b, f, g
are fully open and the others are fully closed. The pipe line 11 and the valve e are the discharge route for the residual liquid on the membrane side especially when backwashing of the precision filtration device C-1 or C-2 is not required, and the route and the valve e are respectively used when the valve is switched automatically or manually. It acts as a relief valve and is not essential.

以上においては、メデアを取り出すことなく逆
洗を行なう方法を説明したが、別にバツチ式の洗
浄設備を設けメデアを取り出してはその洗浄設備
に取り付け、(その間洗浄ずみのメデアを過設
備に収納して定常運転に入り、)高圧膜側残留液
で逆洗してもよい。
The above explained the method of backwashing without taking out the media, but it is also possible to install separate batch-type washing equipment, take out the media, attach it to the washing equipment, and store the washed media in the backwashing equipment. () to start steady operation, and backwash with the residual liquid on the high-pressure membrane side.

一方、高圧の膜側残留液によつて精密過装
置C−1又はC−2のメデアを逆洗する際、メデ
アの汚染原因物質あるいは目詰まり原因物質に対
して化学的に不活性なガス体又はこれらの原因物
質に対し酸化力を有するガス体、例えばN2
Cl2、O3、O2などを利用し、第2図に示す如くこ
れを管路19を経て気−液エゼクタEを介して流
入せしめ、メデアをガス−液混合流体で洗浄する
ことができる。
On the other hand, when backwashing the media of precision filtration equipment C-1 or C-2 with high-pressure membrane-side residual liquid, a gaseous substance that is chemically inert against substances that cause contamination or clogging of the media is used. Or a gaseous body that has oxidizing power against these causative substances, such as N 2 ,
Using Cl 2 , O 3 , O 2 , etc., the medium can be washed with the gas-liquid mixed fluid by flowing it through the pipe 19 and through the gas-liquid ejector E as shown in FIG. .

なお、ガス体の代りに管路19から逆洗に不足
分の液体を供給することもでき、そのときにはE
として液−液エゼクタを利用することができる。
In addition, it is also possible to supply the insufficient amount of liquid for backwashing from the pipe line 19 instead of the gas, and in that case, the E
A liquid-liquid ejector can be used as a liquid-liquid ejector.

また上記メデア洗浄の際に薬剤処理を必要とす
るときには、やはり管路19より適当な薬品を供
給しメデアの逆洗を円滑に行なうことができる。
例えば次亜塩素酸ソーダ液、ホルマリン液、過酸
化物などの溶液あるいは界面活性剤を含む洗剤、
酵素洗剤、酸、アルカリ剤などを利用することも
できる。あるいは、上記ガス体と薬剤溶液等の液
体の両方を同時に使用してもよい。
Further, when chemical treatment is required during the media cleaning, an appropriate chemical can be supplied from the conduit 19 to smoothly backwash the media.
For example, detergents containing solutions such as sodium hypochlorite solution, formalin solution, peroxide, or surfactants,
Enzyme detergents, acids, alkaline agents, etc. can also be used. Alternatively, both the gas and a liquid such as a drug solution may be used simultaneously.

また、上記メデアの逆洗に際して加温が効果的
である場合には、透過膜装置Dの膜側残留液の
流出口と精密過装置C−1又はC−2の逆洗流
体入口の間の経路に加熱圏を設けるか、精密過
装置C−1又はC−2自体を加熱し得る機構を設
けてもよい。
In addition, if heating is effective when backwashing the media, the temperature between the membrane-side residual liquid outlet of permeation membrane device D and the backwash fluid inlet of precision filtration device C-1 or C-2 may be increased. A heating zone may be provided in the path, or a mechanism may be provided that can heat the precision heating device C-1 or C-2 itself.

以上の説明においては精密過装置C−1又は
C−2の逆洗について示したが、同様の方法によ
り砂過装置Aのメデアの逆洗に利用することも
できる。その際には通常逆洗水量が不足するので
別途逆洗用水を補給する必要がある。この場合に
も第2図について示したように管路19からたと
えばガス体を導入して逆洗効果を高めることがで
きる。また精密過装置は、3台以上並列に配備
し、過工程と逆洗工程を順番に切替えて使用し
てもよい。
In the above explanation, the backwashing of the precision filtration device C-1 or C-2 has been described, but the same method can also be used for backwashing the media of the sand filtration device A. In this case, the amount of backwash water is usually insufficient, so it is necessary to separately supply backwash water. In this case as well, the backwashing effect can be enhanced by introducing, for example, a gaseous body through the conduit 19, as shown in FIG. Further, three or more precision washing devices may be arranged in parallel and used by switching over processing and backwashing steps in order.

このように本発明によるときには、膜分離プロ
セスから排出される清澄な加圧液を、過工程に
おけるメデアの逆洗に際し、直接的にその加圧液
の保有するエネルギを極めて効率良く且つ容易に
利用できるので、前処理としての過工程を効果
的に従つて膜分離プロセスを高い効率で実施で
き、また逆洗専用ポンプ等の設備が省略できるば
かりでなく、逆洗用の清澄水も不要となり、そ
の操作も簡便であり、設備費、運転経費ともに著
しく節減できるなどの利点を有するものである。
As described above, according to the present invention, the clear pressurized liquid discharged from the membrane separation process can be used to directly utilize the energy possessed by the pressurized liquid extremely efficiently and easily when backwashing the media in the previous step. As a result, the membrane separation process can be carried out with high efficiency by effectively following the filtration process as pre-treatment, and not only can equipment such as pumps exclusively for backwashing be omitted, but also clear water for backwashing is no longer necessary. Its operation is simple, and it has the advantage of significantly reducing both equipment costs and operating costs.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は全体系
統説明図、第2図はエゼクタを利用する場合の部
分系統説明図である。 A……砂過装置、B……処理水槽、C−1,
C−2……精密過装置、D……透過膜装置、E
……エゼクタ、P−1……送液ポンプ、P−2…
…昇圧ポンプ、a乃至j……弁、1乃至19……
管路、……膜透過液、……膜側残留液。
The drawings show an embodiment of the present invention, with FIG. 1 being an explanatory diagram of the entire system, and FIG. 2 being an explanatory diagram of a partial system when an ejector is used. A... Sand filter device, B... Treatment water tank, C-1,
C-2... Precision filter device, D... Permeable membrane device, E
...Ejector, P-1...Liquid pump, P-2...
...boosting pumps, a to j... valves, 1 to 19...
Pipe line, ...membrane permeate liquid, ...membrane side residual liquid.

Claims (1)

【特許請求の範囲】 1 前処理工程として過工程を有する膜分離プ
ロセスにおいて、前記膜分離プロセスから排出さ
れる膜側残留液の圧力を前記過工程における
材の逆洗洗浄に利用することを特徴とする膜分離
プロセスにおける背圧利用法。 2 前記逆洗洗浄工程が、前記膜側残留液を管路
により精密過装置へ供給、通液して処理される
ものである特許請求の範囲第1項記載の背圧利用
法。 3 前記過工程が、2台又は3台以上の前記精
密過装置を並列的に使用して行なわれるもので
あつて、前記過工程と前記逆洗洗浄工程がそれ
ぞれ交互又は順番に切替えて処理されるものであ
る特許請求の範囲第2項記載の背圧利用法。 4 前記逆洗洗浄工程が、前記膜側残留液に対し
前記精密過装置の材の汚染原因物質又は閉塞
原因物質に対し化学的又は物理的洗浄作用を有す
るガス体及び/又は薬剤を混合して処理されるも
のである特許請求の範囲第2項又は第3項記載の
背圧利用法。 5 前記ガス体又は薬剤の混合工程が、気−液エ
ゼクタ及び/又は液−液エゼクタを使用して処理
されるものである特許請求の範囲第4項記載の背
圧利用法。
[Scope of Claims] 1. In a membrane separation process having a pass step as a pretreatment step, the pressure of the residual liquid on the membrane side discharged from the membrane separation process is used for backwashing of the material in the pass step. A method of utilizing back pressure in membrane separation processes. 2. The back pressure utilization method according to claim 1, wherein the backwashing step is performed by supplying the residual liquid on the membrane side to a precision filtration device through a pipe and passing the liquid therethrough. 3. The above-mentioned passing process is carried out using two or more of the above-mentioned precision passing equipment in parallel, and the above-mentioned passing process and the backwashing process are respectively switched alternately or sequentially. 2. A method of utilizing back pressure according to claim 2. 4. The backwashing step includes mixing a gaseous body and/or a chemical agent having a chemical or physical cleaning effect on the contamination-causing substances or blockage-causing substances of the material of the precision filtration device into the membrane-side residual liquid. 3. The method of utilizing back pressure according to claim 2 or 3, wherein the method is processed. 5. The back pressure utilization method according to claim 4, wherein the step of mixing the gas or the drug is performed using a gas-liquid ejector and/or a liquid-liquid ejector.
JP1391880A 1980-02-07 1980-02-07 Method for utilization of back pressure in membrane separating process Granted JPS56111006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1391880A JPS56111006A (en) 1980-02-07 1980-02-07 Method for utilization of back pressure in membrane separating process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1391880A JPS56111006A (en) 1980-02-07 1980-02-07 Method for utilization of back pressure in membrane separating process

Publications (2)

Publication Number Publication Date
JPS56111006A JPS56111006A (en) 1981-09-02
JPS644802B2 true JPS644802B2 (en) 1989-01-26

Family

ID=11846544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1391880A Granted JPS56111006A (en) 1980-02-07 1980-02-07 Method for utilization of back pressure in membrane separating process

Country Status (1)

Country Link
JP (1) JPS56111006A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942011A (en) * 1982-09-02 1984-03-08 Mitsui Eng & Shipbuild Co Ltd Washing method of pretreatment filter in water making device with reverse osmotic membrane
JPS61139702U (en) * 1985-02-19 1986-08-29
JPS6295702U (en) * 1985-12-02 1987-06-18
JPS6443398A (en) * 1987-08-11 1989-02-15 S I Ii Kk Waste water regenerating apparatus
DE19520913A1 (en) * 1995-06-08 1996-12-12 Schael Wilfried Method and device for water treatment according to the principle of reverse osmosis
US6120688A (en) * 1997-02-25 2000-09-19 Zenon Environmental, Inc. Portable reverse osmosis unit for producing drinking water
FR2781168B1 (en) 1998-07-17 2000-09-15 Polymem WATER TREATMENT PROCESS AND INSTALLATION
JP2013163141A (en) * 2012-02-09 2013-08-22 Toshiba Corp Membrane filtration system
WO2014007262A1 (en) * 2012-07-02 2014-01-09 東レ株式会社 Fresh-water manufacturing device and fresh-water manufacturing method

Also Published As

Publication number Publication date
JPS56111006A (en) 1981-09-02

Similar Documents

Publication Publication Date Title
EP0479492A1 (en) Membrane separation system and methods of operating and cleaning such a system
JP2008539054A (en) Chemical cleaning for membrane filters
JP2007181822A (en) Water treatment system for producing drinking water and its operation method
JPH11156166A (en) Cleaning method for hollow fiber membrane module
WO2013140848A1 (en) Seawater desalination apparatus
WO2012098969A1 (en) Method for cleaning membrane module, method of fresh water generation, and fresh water generator
JPS644802B2 (en)
KR101732811B1 (en) Energy saving Forward Osmosis-filtration hybrid Water treatment/seawater desalination system using big size polymer draw solute and method of Water treatment/seawater desalination using the same
JP2002248324A (en) Membrane separation apparatus and its backwashing method
JPH11244852A (en) Desalination device and back washing method of filter used for desalination device
JP2011041907A (en) Water treatment system
JP3838689B2 (en) Water treatment system
WO2021157245A1 (en) Concentration system
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
WO2011108589A1 (en) Method for washing porous membrane module, and fresh water generator
JP3395846B2 (en) Water membrane purification method and method of operating the same
JP2794304B2 (en) Cleaning method for hollow fiber membrane module
JP4635414B2 (en) Cleaning method for reverse osmosis membrane device
JP2003117552A (en) Desalination apparatus
JPS6111108A (en) Process for washing membrane module
JPH119972A (en) Membrane filtration apparatus and membrane filtration method
JP2005046762A (en) Water treatment method and water treatment apparatus
CN205347002U (en) Waste water reclamation circulating device
JP2007152193A (en) Water purification device and method
CN204369692U (en) A kind of sewage water recycling and processing equipment