JP2002248324A - Membrane separation apparatus and its backwashing method - Google Patents

Membrane separation apparatus and its backwashing method

Info

Publication number
JP2002248324A
JP2002248324A JP2001050614A JP2001050614A JP2002248324A JP 2002248324 A JP2002248324 A JP 2002248324A JP 2001050614 A JP2001050614 A JP 2001050614A JP 2001050614 A JP2001050614 A JP 2001050614A JP 2002248324 A JP2002248324 A JP 2002248324A
Authority
JP
Japan
Prior art keywords
membrane
water
gas
backwash
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001050614A
Other languages
Japanese (ja)
Inventor
Shigeki Sawada
繁樹 澤田
Yoshioki Ota
喜興 太田
Naoki Matsutani
直樹 松渓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001050614A priority Critical patent/JP2002248324A/en
Publication of JP2002248324A publication Critical patent/JP2002248324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To prolong a time interval of chemical cleaning work by exfoliating contaminants stuck onto the membrane surface of the primary side of a membrane separation apparatus efficiently by backwashing. SOLUTION: This membrane separation apparatus 2 of an inside-pressurizing hollow fiber type, a tubular type or a spiral type, in which the permeated water is obtained from one side 2B of a separation membrane 2M by supplying raw water to the other side 2A, is provided with means 14, 21 for introducing gas directly from one end of the raw water side 2A, a means 20 for introducing backwashing water into the permeated water side 2B and a gas-liquid discharging means 22 arranged on the other end of the end 2A. The membrane 2M is washed efficiently by supplying backwashing water and the gas at the same time when backwashed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、脱塩の逆浸透(R
O)膜や、微量有機物を除去する用水処理、河川水や工
業用水又は排水、或いは生物処理水等の固液分離処理に
使用される限外濾過(UF)膜や精密濾過(MF)膜等
で構成される内圧中空糸型、管状(チューブラ)型又は
スパイラル型の膜分離装置及びその逆洗方法に係り、特
に、効率的な逆洗を行うことができ、これより薬品洗浄
間隔を延長して装置の稼動効率を高めることができる膜
分離装置とこの膜分離装置の逆洗方法に関する。
The present invention relates to a desalination reverse osmosis (R)
O) membranes, ultrafiltration (UF) membranes and microfiltration (MF) membranes used for water treatment for removing trace organic substances, solid-liquid separation treatment for river water, industrial water or wastewater, or biologically treated water The present invention relates to an internal pressure hollow fiber type, tubular (tubular) type or spiral type membrane separation device and a backwashing method thereof, in particular, which enables efficient backwashing, thereby extending the chemical washing interval. The present invention relates to a membrane separation device capable of improving the operation efficiency of the device and a method for back washing the membrane separation device.

【0002】[0002]

【従来の技術】近年、工業用水や上水道の取水水源の有
機物汚染により、微生物代謝産物であるフミン酸やフル
ボ酸からなるTOC成分が増加し、膜を用いる水処理施
設においては、膜汚染が益々増加する傾向にある。
2. Description of the Related Art In recent years, TOC components comprising humic acid and fulvic acid, which are microbial metabolites, have increased due to organic contamination of industrial water and water intake water sources, and in water treatment facilities using membranes, membrane contamination has been increasing. It tends to increase.

【0003】一般的に、RO膜処理の前処理として、従
来、凝集,沈澱,砂濾過からなるシステムが採用されて
きたが、原水の有機物濃度が高まった場合には、塩化第
二鉄、ポリ塩化アルミニウム、硫酸アルミニウム等の凝
集剤を多量に添加する必要がある。この場合、これらの
凝集剤が過剰に添加されると、凝集しきれない微量の溶
解状態の凝集剤が凝集処理水中に残存し、この残存凝集
剤がRO膜で濃縮される過程で再凝集してRO膜の一次
側(原水側)表面に固着し、薬品洗浄頻度を高めるとい
う問題があった。
Generally, a system consisting of coagulation, sedimentation and sand filtration has conventionally been used as a pretreatment for RO membrane treatment. However, when the concentration of organic matter in raw water increases, ferric chloride and polystyrene are used. It is necessary to add a large amount of a coagulant such as aluminum chloride and aluminum sulfate. In this case, if these coagulants are added in excess, a small amount of coagulant in a dissolved state that cannot be coagulated remains in the coagulation treatment water, and the remaining coagulant re-aggregates in the process of being concentrated in the RO membrane. Thus, there is a problem in that the RO film is fixed to the primary side (raw water side) surface and the frequency of chemical cleaning is increased.

【0004】最近では、このような凝集,沈澱による前
処理システムに替わって、MF膜やUF膜を用いる前処
理システムが採用されるようになり、このような膜分離
処理によれば、凝集剤を添加することなく、或いは微量
の凝集剤の添加だけで、RO膜を汚染させる原水中のコ
ロイド状成分を除去することができるため、RO膜の汚
染を抑制して、薬品洗浄間隔を延ばすことによりRO膜
の運転効率を向上させることができる。
In recent years, a pretreatment system using an MF membrane or a UF membrane has been adopted in place of such a pretreatment system based on coagulation and sedimentation. It is possible to remove the colloidal component in the raw water that contaminates the RO membrane without adding a small amount of coagulant or by adding only a small amount of coagulant, thereby suppressing the contamination of the RO membrane and extending the chemical cleaning interval. Thereby, the operation efficiency of the RO membrane can be improved.

【0005】しかし、前処理として用いられるMF膜や
UF膜では、原水中のTOC成分である高分子状のフミ
ン酸やフルボ酸がこれらの膜の一次側の表面に吸着ない
し沈着し、これらの膜の濾過抵抗を高めることになる。
このような高分子状のフミン酸やフルボ酸による膜汚染
は、一般的な水逆洗では除去することができず、薬品洗
浄を行うことが必要となる。
However, in the MF membrane or UF membrane used as a pretreatment, the polymeric humic acid or fulvic acid, which is the TOC component in raw water, is adsorbed or deposited on the primary surface of these membranes, and This will increase the filtration resistance of the membrane.
Such membrane contamination due to polymeric humic acid or fulvic acid cannot be removed by general water backwashing, and requires chemical cleaning.

【0006】一方、下水や産業排水の生物処理水を膜分
離処理して再利用する場合においても、その生物処理水
中には微生物代謝産物であるフミン酸やフルボ酸からな
るTOC成分が存在するため、このような生物処理水の
膜分離に用いられる膜においては、上記と同様の問題が
あった。
On the other hand, even in the case where sewage or industrial effluent biologically treated water is subjected to membrane separation treatment and reused, the biologically treated water contains TOC components composed of humic acid and fulvic acid, which are microbial metabolites. However, membranes used for membrane separation of such biologically treated water have the same problems as described above.

【0007】本発明者は、このような膜分離装置におい
て、ガスを用いた洗浄操作に着目し、これらの膜汚染物
を効率よく除去する方法を考案している。例えば、濾過
運転時にガスを導入して膜汚染を防止することを提案し
た(特開平9−99223号公報、同9−99227号
公報)。
The present inventor has focused on a cleaning operation using gas in such a membrane separation apparatus, and has devised a method for efficiently removing these membrane contaminants. For example, it has been proposed to introduce a gas during a filtration operation to prevent membrane contamination (JP-A-9-99223 and JP-A-9-99227).

【0008】また、外圧中空糸型の膜分離装置にあって
は、膜同士を接触させて膜汚染物の剥離効果を高めたス
クラビング洗浄法が公知であり、内圧中空糸型の膜分離
装置においても、同様な効果を狙ったガス洗浄法が公知
である。
[0008] Further, in the external pressure hollow fiber type membrane separation apparatus, a scrubbing cleaning method in which the membranes are brought into contact with each other to enhance the effect of removing membrane contaminants is known. Also, a gas cleaning method aiming at a similar effect is known.

【0009】これらの方法は、逆洗の前後の工程に膜モ
ジュールの原水流路の一端からガスを導入し、気液界面
が膜面を通過する時に発生する剪断力を利用したもので
あるが、このような方法でも有機物濃度が高い水を分離
する場合には、洗浄効果が十分でなく、次第に膜汚染物
が蓄積するため、頻繁な薬品洗浄が必要であった。
In these methods, a gas is introduced from one end of a raw water flow path of a membrane module before and after backwashing, and a shear force generated when a gas-liquid interface passes through the membrane surface is used. However, even in such a method, when water having a high organic substance concentration is separated, the cleaning effect is not sufficient, and the film contaminants gradually accumulate, so frequent chemical cleaning is required.

【0010】一方、本発明者は、薬品洗浄時にガスを併
用することで使用薬品の低減を図る膜の洗浄方法を提案
した(特開2000−167364号公報)。しかしな
がら、この方法は、薬品洗浄効率の向上には有効である
が、濾過運転時の膜汚染の抑制には効果がなく、薬品洗
浄間隔を延ばすことはできなかった。
On the other hand, the present inventor has proposed a film cleaning method for reducing the amount of used chemicals by using a gas at the time of chemical cleaning (Japanese Patent Laid-Open No. 2000-167364). However, although this method is effective for improving the chemical cleaning efficiency, it is not effective for suppressing membrane contamination during the filtration operation, and the chemical cleaning interval cannot be extended.

【0011】[0011]

【発明が解決しようとする課題】上述の如く、従来にお
いては、脱塩のRO膜や、微量有機物を除去する用水処
理、河川水や工業用水又は排水、或いは生物処理水等の
固液分離処理に使用されるUF膜やMF膜等の薬品洗浄
間隔を延長するために有効な方法は提供されていなかっ
た。
As described above, conventionally, a conventional RO membrane for desalination, a water treatment for removing a trace amount of organic substances, a solid-liquid separation treatment for river water, industrial water or wastewater, or biologically treated water. No effective method has been provided for extending the chemical cleaning interval of a UF film, an MF film, or the like used for the above.

【0012】従って、本発明は、 一次側膜面に付着した汚染物を逆洗により効率的に
剥離させて、薬品洗浄間隔を延長すること。 逆洗時に気液界面の移動による強力な剪断力を発生
させて、逆洗水量を減少させると共に、逆洗操作を簡素
化すること。が可能な膜分離装置及びその逆洗方法を提
供することを目的とする。
Accordingly, an object of the present invention is to extend the chemical cleaning interval by efficiently removing contaminants adhering to the primary film surface by backwashing. To generate a strong shear force due to the movement of the gas-liquid interface during backwashing to reduce the amount of backwash water and simplify the backwash operation. It is an object of the present invention to provide a membrane separation device capable of performing the method and a back washing method thereof.

【0013】[0013]

【課題を解決するための手段】本発明の膜分離装置は、
分離膜の一方の側に原水を供給し、他方の側から透過水
を得る内圧中空糸型、管状型、又はスパイラル型の膜分
離装置において、該分離膜の原水側の一端から気体を直
接導入する手段と、該分離膜の透過水側に逆洗水を導入
する手段と、該分離膜の原水側の、前記気体導入手段と
離れた他端側に設けられた気液排出手段とを有し、逆洗
水と気体とを同時に供給して分離膜を洗浄可能としたこ
とを特徴とする。
The membrane separation device of the present invention comprises:
In an internal pressure hollow fiber type, tubular type, or spiral type membrane separation device that supplies raw water to one side of the separation membrane and obtains permeated water from the other side, gas is directly introduced from one end of the raw water side of the separation membrane. Means for introducing backwash water to the permeated water side of the separation membrane, and gas-liquid discharge means provided on the other end side of the raw water side of the separation membrane away from the gas introduction means. Further, the separation membrane can be washed by simultaneously supplying backwash water and gas.

【0014】本発明の逆洗方法は、分離膜の一方の側に
原水を供給し、他方の側から透過水を得る内圧中空糸
型、管状型、又はスパイラル型の膜分離装置を逆洗する
方法において、該分離膜の原水側の一端から気体を直接
導入すると共に、これと併行して、該分離膜の透過水側
に逆洗水を導入し、該分離膜の原水側の、前記気体導入
手段と離れた他端側に設けられた気液排出手段から逆洗
水と気体とを排出することを特徴とする。
The backwashing method of the present invention backwashes an internal pressure hollow fiber type, tubular type or spiral type membrane separation device which supplies raw water to one side of a separation membrane and obtains permeated water from the other side. In the method, a gas is directly introduced from one end of the raw water side of the separation membrane, and in parallel with this, backwash water is introduced into a permeated water side of the separation membrane, and the gas is supplied to the raw water side of the separation membrane. It is characterized in that backwash water and gas are discharged from gas-liquid discharge means provided on the other end side remote from the introduction means.

【0015】本発明では、逆洗(逆圧洗浄)時に分離膜
の原水側(一次側)に気体、例えばエアを導入すると共
に、透過水側(二次側)に逆洗水を導入して逆洗を行
う。
In the present invention, a gas such as air is introduced into the raw water side (primary side) of the separation membrane at the time of back washing (back pressure washing), and back washing water is introduced into the permeated water side (secondary side). Perform backwash.

【0016】このため、逆洗水が膜の二次側から一次側
への膜内を通過する時に、膜面に付着した汚染物を剥離
すると共に、同時に一次側に導入されたエアが高速で膜
モジュール内部を通過し、上記逆洗効果だけでなく、気
液界面の剪断効果を発生させることにより、それぞれの
単独の効果以上の剥離効果をもたらす。
For this reason, when the backwash water passes through the membrane from the secondary side to the primary side of the membrane, the contaminants adhering to the membrane surface are peeled off, and at the same time, the air introduced into the primary side is moved at a high speed. By passing through the inside of the membrane module and generating not only the above-mentioned backwashing effect but also a shearing effect at the gas-liquid interface, a separating effect that is more than each of the individual effects is brought about.

【0017】即ち、図2(a)に示す如く、膜10の一
次側10Aへのエア導入のみでは、膜面に生じる流体通
過速度はエア通過速度Uに依存するだけであり、一
方、図2(b)に示す如く、膜10の二次側10Bから
一次側10Aへ逆洗水を通過させる逆洗のみでは、膜面
に生じる流体通過速度は、逆洗水排出速度Uのみであ
るが、図2(c)に示す如く、逆洗時に逆洗水と同時に
膜の一次側にエアを導入することにより、膜面の実質流
体通過速度Uは逆洗水排出速度Uとエア通過速度U
との和となり、気液界面の急激な移動による強い剪断
力で高い剥離効果を得ることができる。なお、図2にお
いてPは膜10の一次側10Aの表面に付着した汚染物
を示す。
[0017] That is, as shown in FIG. 2 (a), only the air introduced to the primary side 10A of the membrane 10, the fluid passage rate occurring on the membrane surface is only dependent on the air passing speed U G, while FIG. as shown in 2 (b), alone backwashing passing the backwash water from the secondary side 10B of the membrane 10 to the primary side 10A, the fluid passage rate caused the film surface is only backwash water discharging speed U L but, as shown in FIG. 2 (c), by introducing air into the primary side simultaneously film the backwash water during backwashing, substantially fluid passing speed U 0 of the membrane surface backwash water discharging speed U L and the air Passing speed U
G, and a high peeling effect can be obtained with a strong shearing force due to rapid movement of the gas-liquid interface. In FIG. 2, P indicates a contaminant attached to the surface of the primary side 10A of the film 10.

【0018】このように本発明では、膜の一次側に導入
した気体の流速と逆洗水の流速とを合わせて膜の一次側
に高流速を発生させ、高剪断力で膜面の汚れを効果的に
除去するものであるが、このような高流速は、内圧中空
糸型、管状型、又はスパイラル型のように、原水側の流
路が制限された空間となっている場合に達成される。外
圧中空糸型のように原水側が広い空間のものでは、気体
や逆洗水の流速が低下してしまい、本発明の目的を達成
し得ない。
As described above, in the present invention, the flow rate of the gas introduced into the primary side of the membrane and the flow rate of the backwash water are combined to generate a high flow rate on the primary side of the membrane, and the dirt on the membrane surface is removed by high shearing force. Although effectively removed, such a high flow rate is achieved when the flow path on the raw water side is a restricted space, such as an internal pressure hollow fiber type, a tubular type, or a spiral type. You. In a space having a wide raw water side such as an external pressure hollow fiber type, the flow rate of gas or backwash water is reduced, and the object of the present invention cannot be achieved.

【0019】[0019]

【発明の実施の形態】以下、図面を参照して本発明の膜
分離装置及び逆洗方法の実施の形態を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a membrane separation apparatus and a backwashing method according to the present invention will be described in detail with reference to the drawings.

【0020】図1は本発明の膜分離装置の実施の形態を
示す系統図である。
FIG. 1 is a system diagram showing an embodiment of the membrane separation apparatus of the present invention.

【0021】図1において、1は原水槽、2は膜モジュ
ール、3は透過水槽、4はコンプレッサを示し、P
原水ポンプ、Pは逆洗ポンプである。11〜22の各
符号は配管を示す。V〜Vは開閉バルブである。
[0021] In FIG. 1, 1 is raw water tank, 2 membrane module 3 is transmitted water tank, 4 denotes a compressor, P 1 is the raw water pump, P 2 is a backwashing pump. Each code | symbol of 11-22 shows a piping. V 1 to V 6 are open / close valves.

【0022】この膜分離装置では、原水の濾過を所定時
間行った後、逆洗を行い、濾過工程と逆洗工程とを交互
に繰り返し行う。
In this membrane separation apparatus, after filtering raw water for a predetermined time, backwashing is performed, and the filtration step and the backwashing step are alternately repeated.

【0023】原水の濾過工程では、バルブV,V
開、バルブV,V,V閉として、原水ポンプ
を作動させ、配管11より導入される原水を、原水
槽1、配管12,13,14を経て膜モジュール2に導
入する。膜モジュール2の透過水は配管17,18を経
て透過水槽3に貯留し、必要に応じて配管19より取り
出す。一方、濃縮水は配管15、16を経て原水導入側
へ循環する。なお、この濾過工程において、バルブV
を開として、濃縮水の一部を配管22より系外へ排出し
ても良い。
In the step of filtering raw water, the valves V 1 , V 2 ,
With V 3 open and valves V 4 , V 5 , V 6 closed, the raw water pump P 1 is operated, and the raw water introduced from the pipe 11 is introduced into the membrane module 2 via the raw water tank 1 and the pipes 12, 13, 14. I do. The permeated water of the membrane module 2 is stored in the permeated water tank 3 via the pipes 17 and 18 and taken out from the pipe 19 as needed. On the other hand, the concentrated water circulates through the pipes 15 and 16 to the raw water introduction side. In this filtration step, the valve V 6
May be opened, and a part of the concentrated water may be discharged from the pipe 22 to the outside of the system.

【0024】逆洗工程では、原水ポンプPを停止し、
バルブV,V,Vを閉とすると共に、バルブ
,V,Vを開として、逆洗ポンプP及びコン
プレッサ4を作動させ、透過水槽3内の透過水を配管2
0,17を経て膜モジュール2の二次側2Bに加圧導入
し、逆洗水を膜モジュール2の二次側2Bから膜2Mを
透過させて一次側2Aに流入させる。また、この逆圧洗
浄時にコンプレッサ4で加圧したエアを配管21,14
を経て膜モジュール2の一端側から一次側2Aに導入す
る。
[0024] In the backwash process, stop the raw water pump P 1,
The valves V 1 , V 2 , V 3 are closed, the valves V 4 , V 5 , V 6 are opened, the backwash pump P 2 and the compressor 4 are operated, and the permeated water in the permeated water tank 3 is supplied to the pipe 2.
Pressure is introduced into the secondary side 2B of the membrane module 2 via 0 and 17, and the backwash water permeates through the membrane 2M from the secondary side 2B of the membrane module 2 and flows into the primary side 2A. The air pressurized by the compressor 4 at the time of the back pressure cleaning is supplied to the pipes 21 and 14.
Through the membrane module 2 from one end to the primary side 2A.

【0025】これにより、膜モジュール2の一次側2A
では図2(c)に示す如く、逆洗水とエアによる高い流
体速度が得られ、気液界面の急激な移動による強力な剪
断剥離作用が得られ、膜2Mの一次側2Aの表面に付着
した汚染物は、効果的に剥離除去される。そして、剥離
された汚染物は、逆洗水及びエアの気液混合液と共に、
配管15,22を経て系外へ排出される。
Thus, the primary side 2A of the membrane module 2
As shown in FIG. 2 (c), as shown in FIG. 2 (c), a high fluid velocity by backwash water and air is obtained, a strong shearing action is obtained by rapid movement of the gas-liquid interface, and adheres to the surface of the primary side 2A of the membrane 2M. The contaminants thus removed are effectively removed and removed. And the peeled contaminants, together with the gas-liquid mixture of backwash water and air,
It is discharged out of the system via pipes 15 and 22.

【0026】逆洗工程終了後は、逆洗ポンプP及びコ
ンプレッサ4を停止し、バルブV,V,Vを閉と
すると共に、原水ポンプPを作動させ、V,V
を開として濾過工程を再開する。
The backwash step after the end stops backwash pump P 2 and the compressor 4, the valve V 4, V 5, V 6 with the closed actuates the raw water pump P 1, V 1, V 2 ,
Resume filtration step the V 3 is opened.

【0027】なお、逆洗条件(逆洗の頻度、逆洗時間、
逆洗水流速、エア流速)は、膜モジュールの形式や原水
の水質、濾過運転条件等により異なるが、各種水処理に
おける固液分離用のUF膜モジュールやMF膜モジュー
ル、或いは脱塩用のRO膜モジュールの場合には、15
〜180分程度の濾過工程毎に10〜60秒程度逆洗を
行うのが好ましく、このときの逆洗水流速は膜モジュー
ルの原水一次側流路出口の流速([単位時間当りに供給
した逆流水量]/[一次側流路の断面積])として0.
3〜2.0m/sec程度であり、またエア流速は、原
水一次側流路出口の流速([単位時間当りに供給したエ
ア量]/[一次側流路の断面積])として0.1〜1.
0m/sec程度であることが好ましい。
The backwash conditions (backwash frequency, backwash time,
The backwash water flow rate and air flow rate) vary depending on the type of membrane module, raw water quality, filtration operation conditions, etc., but a UF membrane module or MF membrane module for solid-liquid separation in various types of water treatment, or an RO for desalination. 15 for membrane modules
It is preferable to perform backwashing for about 10 to 60 seconds at every filtration step of about 180 minutes, and the backwash water flow rate at this time is the flow rate at the outlet of the raw water primary-side flow channel of the membrane module ([the backflow supplied per unit time). Water amount] / [cross-sectional area of primary flow path]).
The air flow velocity is about 0.1 to 2.0 m / sec, and the flow velocity at the outlet of the raw water primary flow path ([air amount supplied per unit time] / [cross-sectional area of primary flow path]) is 0.1. ~ 1.
It is preferably about 0 m / sec.

【0028】図1に示す膜分離装置では、膜モジュール
2の原水導入配管14が膜モジュール2の一次側2Aの
一端側に設けられ、一方、濃縮水及び逆洗排水排出用の
配管15,22がこの一次側2Aの他端側に設けられて
いるため、この原水導入配管14及び濃縮水及び逆洗排
水排出用の配管15,22を利用して、原水導入配管1
4にエア導入用の配管21を接続して気体導入手段と
し、濃縮水及び逆洗排水排出用の配管15,22を気液
排出手段としているが、気体導入手段及び気液排出手段
は、別途独立した配管として設けても良い。また、濃縮
水及び逆洗排水排出用の配管22にエア導入用の配管2
1を接続して気体導入手段とし、原水導入配管14に分
岐した枝管を設けて気液排出手段としても良い。
In the membrane separation apparatus shown in FIG. 1, a raw water introduction pipe 14 of the membrane module 2 is provided at one end of the primary side 2A of the membrane module 2, while pipes 15 and 22 for discharging concentrated water and backwash wastewater are provided. Is provided at the other end of the primary side 2A, the raw water introducing pipe 1 and the pipes 15 and 22 for discharging the concentrated water and the backwash wastewater are used to make the raw water introducing pipe 1
4 is connected to a pipe 21 for introducing air as gas introducing means, and pipes 15 and 22 for discharging concentrated water and backwash drainage are used as gas-liquid discharging means. The gas introducing means and gas-liquid discharging means are separately provided. It may be provided as an independent pipe. In addition, a pipe 2 for introducing air is connected to a pipe 22 for discharging concentrated water and backwash wastewater.
1 may be connected as gas introduction means, and a branch pipe branched from the raw water introduction pipe 14 may be provided as gas-liquid discharge means.

【0029】一般に、膜分離装置には、逆洗水導入配管
及び逆洗排水排出配管が設けられており、また、原水導
入配管と濃縮水及び逆洗排水排出配管とは、互いに間隔
をあけて設けられているため、図1に示す如く、原水導
入配管14にエア導入管を接続して気体導入手段とする
のが好ましく、このような膜分離装置であれば、既存の
膜分離装置に単にエア導入管及びコンプレッサを設ける
のみで容易に実施することができる。
Generally, the membrane separation device is provided with a backwash water introduction pipe and a backwash drainage discharge pipe, and the raw water introduction pipe and the concentrated water and the backwash wastewater discharge pipe are spaced apart from each other. Because of this, as shown in FIG. 1, it is preferable to connect an air introduction pipe to the raw water introduction pipe 14 and use it as a gas introduction means. With such a membrane separation apparatus, simply use an existing membrane separation apparatus. It can be easily implemented simply by providing an air introduction pipe and a compressor.

【0030】このような本発明は、特に各種水処理に用
いられる固液分離用のUF膜分離装置又はMF膜分離装
置、或いは脱塩用のRO膜分離装置に有効であり、効率
的な逆洗を行って、薬品洗浄間隔を大幅に延長し、膜分
離装置の稼動効率を高めることができる。
The present invention is particularly effective for a UF membrane separator or MF membrane separator for solid-liquid separation or an RO membrane separator for desalination used in various water treatments, and is an efficient reverse-separation device. By performing the washing, the chemical washing interval can be greatly extended, and the operation efficiency of the membrane separation device can be increased.

【0031】[0031]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0032】実施例1 図1に示す膜分離装置により、有機汚濁の進んだ表流水
を原水として、逆洗水と共にガスを導入して逆洗を行う
本発明による効果を調べる実験を行った。
Example 1 Using the membrane separation apparatus shown in FIG. 1, an experiment was conducted to examine the effect of the present invention in which surface water with advanced organic pollution was used as raw water and gas was introduced together with backwash water to perform backwash.

【0033】用いた膜モジュールは次の通りである。 メーカー:株式会社クラレ 形式 :MU−6305(内圧中空糸型UF膜モジュ
ール) 内径 :0.7mm 材質 :ポリスルフォン 膜濾過はクロスフロー濾過(0.3m/s)で、一定量
を濾過する定量濾過とし、表1に示す運転条件で濾過を
行った。
The used membrane modules are as follows. Manufacturer: Kuraray Co., Ltd. Type: MU-6305 (Internal pressure hollow fiber type UF membrane module) Inner diameter: 0.7 mm Material: Polysulfone Membrane filtration is constant flow filtration of a fixed amount by cross flow filtration (0.3 m / s) And filtration was performed under the operating conditions shown in Table 1.

【0034】膜の汚れ程度の判定には膜間差圧ΔPの上
昇速度(kPa/day)を用い、14日間濾過を継続
して行ったときに膜間差圧ΔPの上昇速度と水回収率を
調べ、結果を表1に示した。
The rate of increase of the transmembrane pressure difference ΔP was used to determine the degree of membrane fouling (kPa / day), and the rate of increase of the transmembrane pressure difference ΔP and the water recovery rate when filtration was continued for 14 days. And the results are shown in Table 1.

【0035】比較例1 実施例1において、逆洗時にエアの導入を行わなかった
こと以外は同様にして濾過を行い、同様に膜間差圧ΔP
の上昇速度と水回収率を調べ、結果を表1に示した。
Comparative Example 1 Filtration was carried out in the same manner as in Example 1 except that air was not introduced at the time of backwashing.
The rise rate of water and the water recovery rate were examined, and the results are shown in Table 1.

【0036】比較例2 実施例1において、エアの導入を逆洗水の導入後に行
い、通水20min、逆洗水導入45sec、エア導入
45secとしたこと以外は同様にして濾過を行い、同
様に膜間差圧ΔPの上昇速度と水回収率を調べ、結果を
表1に示した。
Comparative Example 2 In Example 1, filtration was carried out in the same manner as in Example 1 except that the introduction of air was carried out after the introduction of the backwash water, and that the flow of water was 20 minutes, the introduction of the backwash water was 45 sec, and the introduction of air was 45 sec. The rate of increase of the transmembrane pressure ΔP and the water recovery rate were examined, and the results are shown in Table 1.

【0037】[0037]

【表1】 [Table 1]

【0038】表1より明らかなように、逆洗水のみでエ
ア導入を行わなかった比較例1ではΔPの上昇速度は
7.40kPa/dayであり、極めて短時間でΔPが
上昇し、約1週間程度で薬品洗浄が必要となった。逆洗
水導入後エア導入を行った比較例2では、ガス洗浄効果
によりΔP上昇速度は0.67kPa/dayと小さく
なり、薬品洗浄まで濾過を継続できる日数は約100日
と見積られた。しかし、この比較例2では、逆洗時間が
長く、水回収率が2%低下した。
As is evident from Table 1, in Comparative Example 1 in which only the backwash water was not used, and the air was not introduced, the rate of increase of ΔP was 7.40 kPa / day, and ΔP increased in a very short time. Chemical cleaning was required in about a week. In Comparative Example 2 in which air was introduced after the introduction of the backwash water, the ΔP increasing rate was reduced to 0.67 kPa / day due to the gas cleaning effect, and the number of days that filtration could be continued until the chemical cleaning was estimated to be about 100 days. However, in Comparative Example 2, the backwashing time was long, and the water recovery rate was reduced by 2%.

【0039】これに対して、逆洗時にガス導入を行った
実施例1ではΔPの上昇速度は0.01kPa/day
と極めて小さくなり、薬品洗浄まで濾過を継続できる日
数は1年以上に延長するものと見積れた。
On the other hand, in Example 1 in which gas was introduced during backwashing, the rate of increase of ΔP was 0.01 kPa / day.
It was estimated that the number of days that filtration could be continued until chemical cleaning would be extended to one year or more.

【0040】これは、実施例1では、逆洗水の流速U
=0.6m/secと、エアの流速U=0.4m/s
ecとで、U+U=0.6+0.4=1.0m/s
ecの実質流速が得られることにより、高い剪断剥離効
果で膜面の汚染物が効果的に除去されることによるもの
と考えられる。
The reason for this is that in the example 1, the flow velocity U L backwash water
= 0.6 m / sec, and the air flow rate U G = 0.4 m / s
In the ec, U L + U G = 0.6 + 0.4 = 1.0m / s
It is considered that by obtaining a substantial flow rate of ec, contaminants on the film surface are effectively removed by a high shearing separation effect.

【0041】[0041]

【発明の効果】以上詳述した通り、本発明の膜分離装置
及びその逆洗方法によれば、逆洗時に逆洗水を導入する
と共に膜の一次側に気体を導入することにより、気液界
面の急速な移動による高い剪断作用を発現させることが
でき、これにより膜面に付着した汚染物を効率的に剥離
除去することができる。
As described above in detail, according to the membrane separation apparatus and the backwashing method of the present invention, the backwash water is introduced at the time of backwash and the gas is introduced into the primary side of the membrane, so that the gas-liquid A high shearing action due to the rapid movement of the interface can be exhibited, and contaminants attached to the film surface can be efficiently peeled and removed.

【0042】従って、高い逆洗効果が得られることか
ら、薬品洗浄間隔を大幅に延長することができ、しかも
逆洗に要する時間及び逆洗水量を大幅に低減することが
できる。
Accordingly, since a high backwashing effect can be obtained, the chemical cleaning interval can be greatly extended, and the time required for backwashing and the amount of backwash water can be greatly reduced.

【0043】本発明では、このような効果的な逆洗をバ
ルブ操作のみで容易に実施することができ、既存の膜分
離装置への適用も極めて容易である。
In the present invention, such an effective backwash can be easily carried out only by operating a valve, and application to an existing membrane separation apparatus is extremely easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の膜分離装置及び逆洗方法の実施の形態
を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a membrane separation device and a backwashing method of the present invention.

【図2】膜面の汚染物の剥離作用を説明する模式的な断
面図である。
FIG. 2 is a schematic cross-sectional view illustrating an action of removing contaminants on a film surface.

【符号の説明】[Explanation of symbols]

1 原水槽 2 膜モジュール 3 透過水槽 4 コンプレッサ 10 膜 10A 一次側 10B 二次側 DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Membrane module 3 Permeate tank 4 Compressor 10 Membrane 10A Primary side 10B Secondary side

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 63/06 B01D 63/06 63/10 63/10 C02F 1/44 C02F 1/44 H K (72)発明者 松渓 直樹 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 Fターム(参考) 4D006 GA03 GA06 GA07 HA01 HA18 HA21 HA61 JA51A JA53A JA55A JA57A JA67A KC03 KC14 PA01 PB03 PB08 PC63──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01D 63/06 B01D 63/06 63/10 63/10 C02F 1/44 C02F 1/44 H K (72) Inventor Naoki Matsukei 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo F-term in Kurita Kogyo Co., Ltd. 4D006 GA03 GA06 GA07 HA01 HA18 HA21 HA61 JA51A JA53A JA55A JA57A JA67A KC03 KC14 PA01 PB03 PB08 PC63

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 分離膜の一方の側に原水を供給し、他方
の側から透過水を得る内圧中空糸型、管状型、又はスパ
イラル型の膜分離装置において、 該分離膜の原水側の一端から気体を直接導入する手段
と、該分離膜の透過水側に逆洗水を導入する手段と、該
分離膜の原水側の、前記気体導入手段と離れた他端側に
設けられた気液排出手段とを有し、逆洗水と気体とを同
時に供給して分離膜を洗浄可能としたことを特徴とする
膜分離装置。
1. An internal pressure hollow fiber type, tubular type or spiral type membrane separation device for supplying raw water to one side of a separation membrane and obtaining permeated water from the other side, wherein one end of the separation membrane on the raw water side is provided. Means for directly introducing a gas from the membrane, means for introducing backwash water to the permeated water side of the separation membrane, and gas-liquid provided at the other end of the raw water side of the separation membrane that is separated from the gas introduction means. A membrane separation device, comprising: a discharge means; and supplying backwash water and gas simultaneously to enable the separation membrane to be washed.
【請求項2】 分離膜の一方の側に原水を供給し、他方
の側から透過水を得る内圧中空糸型、管状型、又はスパ
イラル型の膜分離装置を逆洗する方法において、 該分離膜の原水側の一端から気体を直接導入すると共
に、これと併行して、該分離膜の透過水側に逆洗水を導
入し、該分離膜の原水側の、前記気体導入手段と離れた
他端側に設けられた気液排出手段から逆洗水と気体とを
排出することを特徴とする膜分離装置の逆洗方法。
2. A method for backwashing an internal pressure hollow fiber type, tubular type or spiral type membrane separation apparatus in which raw water is supplied to one side of a separation membrane and permeate is obtained from the other side. A gas is directly introduced from one end of the raw water side, and backwash water is introduced into the permeated water side of the separation membrane in parallel therewith, and the raw water side of the separation membrane is separated from the gas introduction means. A backwash method for a membrane separation device, comprising discharging backwash water and gas from gas-liquid discharge means provided on an end side.
JP2001050614A 2001-02-26 2001-02-26 Membrane separation apparatus and its backwashing method Pending JP2002248324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001050614A JP2002248324A (en) 2001-02-26 2001-02-26 Membrane separation apparatus and its backwashing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001050614A JP2002248324A (en) 2001-02-26 2001-02-26 Membrane separation apparatus and its backwashing method

Publications (1)

Publication Number Publication Date
JP2002248324A true JP2002248324A (en) 2002-09-03

Family

ID=18911545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001050614A Pending JP2002248324A (en) 2001-02-26 2001-02-26 Membrane separation apparatus and its backwashing method

Country Status (1)

Country Link
JP (1) JP2002248324A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351247A (en) * 2003-05-27 2004-12-16 Yanmar Co Ltd Portable type sewage treatment unit and construction method of this portable type sewage treatment unit
JP2006263584A (en) * 2005-03-24 2006-10-05 Ngk Insulators Ltd Method for cleaning membrane filtration apparatus
JP2006272256A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Membrane separation apparatus and membrane separation method
JP2006272255A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Membrane separation apparatus and membrane separation method
JP2007528290A (en) * 2004-03-10 2007-10-11 デグレマン Membrane filter cleaning method and apparatus for carrying out the method
JP2007289940A (en) * 2006-03-29 2007-11-08 Toray Ind Inc Washing method of hollow fiber membrane module
KR100800453B1 (en) 2007-01-31 2008-02-04 주식회사 클로랜드 Water treatment apparatus using the hollow fiber membrane module
CN106975358A (en) * 2017-05-18 2017-07-25 深圳市微润灌溉技术有限公司 With the tubular type membrane separator and cleaning method of tubular film material manufacture
US9873088B2 (en) 2011-05-17 2018-01-23 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US10800808B2 (en) 2008-09-02 2020-10-13 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
CN115228298A (en) * 2022-07-19 2022-10-25 金科环境股份有限公司 Rolled membrane system and gas-liquid two-phase cleaning method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351247A (en) * 2003-05-27 2004-12-16 Yanmar Co Ltd Portable type sewage treatment unit and construction method of this portable type sewage treatment unit
JP2007528290A (en) * 2004-03-10 2007-10-11 デグレマン Membrane filter cleaning method and apparatus for carrying out the method
JP2006263584A (en) * 2005-03-24 2006-10-05 Ngk Insulators Ltd Method for cleaning membrane filtration apparatus
JP2006272256A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Membrane separation apparatus and membrane separation method
JP2006272255A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Membrane separation apparatus and membrane separation method
JP2007289940A (en) * 2006-03-29 2007-11-08 Toray Ind Inc Washing method of hollow fiber membrane module
KR100800453B1 (en) 2007-01-31 2008-02-04 주식회사 클로랜드 Water treatment apparatus using the hollow fiber membrane module
US10800808B2 (en) 2008-09-02 2020-10-13 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US10981949B2 (en) 2008-09-02 2021-04-20 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US11884701B2 (en) 2008-09-02 2024-01-30 Merck Millipore Ltd. Chromatography membranes, devices containing them, and methods of use thereof
US9873088B2 (en) 2011-05-17 2018-01-23 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US10195567B2 (en) 2011-05-17 2019-02-05 Natrix Separations Inc. Layered tubular membranes for chromatography, and methods of use thereof
US10874990B2 (en) 2011-05-17 2020-12-29 Merck Millipore Ltd. Layered tubular membranes for chromatography, and methods of use thereof
CN106975358A (en) * 2017-05-18 2017-07-25 深圳市微润灌溉技术有限公司 With the tubular type membrane separator and cleaning method of tubular film material manufacture
CN115228298A (en) * 2022-07-19 2022-10-25 金科环境股份有限公司 Rolled membrane system and gas-liquid two-phase cleaning method thereof

Similar Documents

Publication Publication Date Title
EP1704911B1 (en) Method for cleaning a separation membrane in a membrane bioreactor system
JP3198923B2 (en) Cleaning method of membrane
JP4903113B2 (en) Water treatment system and operation method thereof
JP2005288442A (en) Method for washing membrane module
JP2002248324A (en) Membrane separation apparatus and its backwashing method
JPH08243361A (en) Membrane separation device
JPH09122460A (en) Cleaning method for membrane module
JP2002361054A (en) Method for washing membrane filtration apparatus
AU2012324220B2 (en) Fresh water generation system
KR100473532B1 (en) Purifying system for hollow yarn membran and operation method of the purifying system
JP2011041907A (en) Water treatment system
JP2008246424A (en) Cleaning method of hollow fiber membrane module and hollow fiber membrane filtering apparatus
JP2011104504A (en) Washing method of water treatment facility
JPS644802B2 (en)
JP3473465B2 (en) Cleaning method of membrane
JP2005143379A (en) Method and apparatus for recovering microorganism
JP2007203144A (en) Water treatment method and water treatment equipment
JP5319583B2 (en) Membrane filtration device backwashing method
JP2002346347A (en) Method and apparatus for filtration
KR20170125172A (en) maintenance cleaning system using saturated solution of carbon dioxide in RO filtration process and maintenance cleaning system using the same
JP2017176951A (en) Method for cleaning separation membrane module
JP2005046762A (en) Water treatment method and water treatment apparatus
WO2012157668A1 (en) Filtration apparatus and method for washing filtration apparatus
JPH04225805A (en) Method for solid-liquid separation and apparatus therefor
JP2006218341A (en) Method and apparatus for treating water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602