JP3615918B2 - Method and apparatus for cleaning reverse osmosis membrane module - Google Patents

Method and apparatus for cleaning reverse osmosis membrane module Download PDF

Info

Publication number
JP3615918B2
JP3615918B2 JP27538997A JP27538997A JP3615918B2 JP 3615918 B2 JP3615918 B2 JP 3615918B2 JP 27538997 A JP27538997 A JP 27538997A JP 27538997 A JP27538997 A JP 27538997A JP 3615918 B2 JP3615918 B2 JP 3615918B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
water
osmosis membrane
membrane module
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27538997A
Other languages
Japanese (ja)
Other versions
JPH11104636A (en
Inventor
道夫 渡部
正彦 永井
英夫 岩橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27538997A priority Critical patent/JP3615918B2/en
Publication of JPH11104636A publication Critical patent/JPH11104636A/en
Application granted granted Critical
Publication of JP3615918B2 publication Critical patent/JP3615918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、海水やかん水の淡水化などに適用される逆浸透膜モジュールの圧損上昇の回復のための洗浄方法及び装置に関する。
【0002】
【従来の技術】
逆浸透法による淡水化装置では、逆浸透膜モジュールの劣化原因となる濁質・懸濁物質など(以下“懸濁物質など”という)をあらかじめ除去することが必要であり、このための前処理装置を有している。しかしながら、懸濁物質などを完全に除去することは不可能であり、装置の長期間の運用により、逆浸透膜モジュール内には次第に懸濁物質などが付着蓄積し、同モジュールの圧力損失が大きくなってくる。
一般には、この圧損上昇に対しては酸洗浄などの化学洗浄により懸濁物質なを除去したり、通常の原水の流れに対して逆の流れを供給して逆洗する物理的手段により懸濁物質などを除去している。
【0003】
【発明が解決しようとする課題】
前述の懸濁物質などが逆浸透膜モジュール内に付着蓄積した場合、逆洗のような物理的手段による同物質などの除去は多少効果は期待できるものの、その効果は不十分であり、また化学洗浄による除去は有効ではあるが、薬品を用いることから大がかりな対策・処置となる。
本発明は、上記技術水準に鑑み、前処理が不十分であったり、原水の性状に起因して逆浸透モジュールの差圧上昇が大き過ぎる場合の対策として、また化学洗浄の頻度を少なくするための対策として、特に後者の逆洗のような物理的手段の改良手段により逆浸透膜モジュール内の懸濁物質などの排出を行う効率的な洗浄方法及び装置を提供しようとするものである。
【0004】
【課題を解決するための手段】
本発明は、(1)被処理水供給ライン及び濃縮水側の配管を有する逆浸透膜モジュールに、前記被処理水供給ラインとは別個の逆洗水供給ラインを、前記濃縮水側の配管から分岐して含む加圧水供給手段、前記加圧水供給手段へ圧縮空気を供給するために前記逆洗水供給ラインに配置された気体供給手段、及び前記逆浸透膜モジュール内に保有されている水を系外に排出するため前記被処理水供給ラインに配置された原水受入バルブと、前記原水受入バルブとは別個のブローバルブを有することを特徴とする逆浸透膜モジュールの洗浄装置、(2)前記(1)に記載の逆浸透膜モジュールの洗浄装置を用い、前記逆洗水供給ライン及び前記気体供給手段によって供給される加圧された気液二相流を、前記逆浸透膜モジュール内を通過させ前記ブローバルブから排出させることにより前記逆浸透膜モジュールの逆洗を行うことを特徴とする逆浸透膜モジュールの洗浄方法、および(3)被処理水供給ライン及び濃縮水側の配管を有する逆浸透膜モジュールに、前記被処理水供給ラインとは別個の逆洗水供給ラインを、前記濃縮水側の配管から分岐して含む加圧水供給手段、前記逆洗水供給ラインに配置された空気遮断バルブ、及び前記被処理水供給ラインに配置された原水受入バルブと、前記原水受入バルブとは別個のブローバルブとを有する逆浸透膜モジュールの洗浄装置を用い、前記空気遮断バルブ及び前記ブローバルブを開き、かつ前記原水受入バルブを閉じることによって前記逆浸透膜モジュール内に保有されている水の1/2以上を系外に排出するとともに排出された水を空気によって置換し、次に前記加圧水供給手段によって前記逆浸透膜モジュール内に逆洗水を送り込むことにより前記逆浸透膜モジュール内に逆洗水及び空気が共存する加圧状態とし、さらに一気に前記ブローバルブを開き、かつ前記原水受入バルブを閉じることにより気液2相流の状態で洗浄液を排出させて前記逆浸透膜モジュールの逆洗を行ったのち、前記空気遮断バルブ及びブローバルブを閉じ前記原水受入バルブを開くことを特徴とする逆浸透膜モジュールの洗浄方法である。
【0005】
(作用)
逆浸透膜モジュールは一般的に、内側に懸濁物質などを含有する原水が通過する中空糸が多数集まった構造のものであるが、この中空糸型逆浸透膜モジュールの圧力損失は、中空糸の外側に付着物が詰まり、中空糸間の空間が狭くなって流れを阻害することで生じている。原水中の懸濁物質などの一部はそのまま濃縮水側に流れ出るものもあるが、一部は中空糸に付着したり、中空糸間に堆積したりしている。この付着・堆積した懸濁物質などは単なる逆洗では流れが逆になるだけであり、中空糸間に堆積した一部は流れにそって排出されるが、圧損を回復させるには至らない。
【0006】
気液2相流または加圧した液体に加圧した気体を断続的に供給した逆洗流の場合は、逆浸透モジュール内の中空糸間の流通状態がガスと液が混合した状態で通りぬけるため、流れが不均一となり、中空糸膜面を振動させることになる。この物理的な変動により付着物がゆすられ、中空糸膜面から剥がされることにより、効果的な懸濁物質などの排出を可能とするものである。
【0007】
【実施例】
以下、本発明の逆浸透膜モジュールの洗浄方法及び装置の具体例をあげると共に、従来の同モジュールの逆洗による具体例をあげ、本発明方法及び装置の効果を明らかにする。
なお、本発明における「逆洗」とは、逆浸透膜モジュール内を被処理液が通過する場合に、逆浸透膜を通過せずに濃縮された濃縮水が逆浸透膜モジュール内を流れる流路にそって、前記濃縮水の流れ方向と逆方向に洗浄水を流すことにより、逆浸透膜モジュールの膜に付着した物を除去し排出することを意味する。すなわち、本発明で用いる意味の「逆洗」は、逆浸透膜モジュールの膜自体を通る生産水の流れとは逆方向に、逆浸透膜自体に洗浄水を通過させて逆浸透膜を洗浄するものではない。本発明における「逆洗」の場合の洗浄水の流れについては実施例を用いて以下でさらに具体的に説明する
【0008】
(比較例)
先ず、一般的な海水の淡水化における逆浸透膜モジュールの周辺の構成を図3に示す。図3において、原水受入ライン1から取り入れられた原水は、原水受入バルブ2を経由して原水供給ポンプ3により高圧、例えば50〜70kg/cmGに加圧され、配管4により接続された逆浸透膜モジュール5に送られる。この逆浸透膜モジュール5は酢酸セルロース等の中空糸型や合成膜製のスパイラル型などが一般には使用されるが、ここでは径:10インチの酢酸セルロース中空糸型エレメントを採用した。淡水化された生産水は生産水ライン6を経由して生産水貯槽7に製品として回収される。この際の生産水の水質は、逆浸透膜の圧力や回収率に影響されることから、原水供給ポンプ3の設定流量と濃縮水(ブライン)側の配管8に配置された圧力調整バルブ9の開度により、圧力や回収率を調整している。
【0009】
(実施例1)
以下、本発明の一実施例を図1によって説明する。図1における実験では逆浸透膜モジュールとして、径:10インチの酢酸セルロース中空糸型エレメントを採用し、約1m/hの生産水が製造できる装置を用いた。図1は空気の断続投入による逆洗を行った実施例を示したもので、図1において、図3と同一部位には同一符号を付してあるので、説明は省略する。濃縮水(ブライン)側の配管8を分岐し、逆洗水用供給バルブ10を介し、逆洗ポンプ12と、逆浸透膜モジュール5の入口配管4に逆洗用ブローバルブ11を設置し、逆洗が可能な構成とした。さらに、逆洗水が供給されるラインには空気遮断バルブ13とコンプレッサ14を設置し、逆洗水中に空気を断続的に供給できるようにした。
【0010】
以上の構成により、逆浸透膜モジュール5の圧損が大きくなった時には、原水供給ポンプ3を停止し、原水供給バルブ2と圧力調整バルブ9を閉とし、逆洗用ブローバルブ11を開とした状態で逆洗ポンプ12を起動し圧力3〜4kg/cm2Gで、1〜2m3/hで逆洗通水を行い、同時にコンプレッサ14を起動し空気遮断バルブ13の断続的な開閉により、6〜7kg/cm2Gの圧力で空気を断続的に3回供給した。この操作により、逆洗水である原海水は、逆洗ポンプ12から逆洗水用供給バルブ10を通り、逆浸透膜モジュール5から濃縮水を流す濃縮水側配管8を通って逆浸透膜モジュール内に流れ込み、配管4を通って逆洗用ブローバルブ11から排出される。さらに上述のようにコンプレッサ14から逆洗ラインに空気を供給した場合は、逆洗水及び空気が混合された混合物が逆洗水用供給バルブ10、さらには濃縮水側配管8を通って逆浸透膜モジュール5に流れ込み、逆洗用ブローバルブ11を通って排出される。ここで、逆浸透膜モジュール5から排出される濃縮水は、逆浸透膜モジュール5内において逆浸透膜を通過せずに流れ出るものである。したがって、本発明の洗浄装置は、濃縮水の流れる配管を濃縮水とは逆方向に上記洗浄水を流すものであるから、洗浄水は濃縮水の流れと逆の流路を通って逆浸透膜モジュール5内を流れるものであり、逆浸透膜モジュールの膜を通過して生産水が流れる経路と逆方向に洗浄水が流れるのではない。実験では逆洗通水のみではブロー排水は透明な状態であったが、空気の断続投入により排水は濁質分により濁り、差圧の上昇の原因となっていた逆浸透膜モジュール付着物の排出・除去ができた。この実施例の効果を後述の表1に比較例と共に示す。
【0011】
(実施例2)
本発明の他の実施例を図2によって説明する。図2は実施例1とは異なる断続加圧・ブローにより逆洗を行った実施例を示すものである。なお、図2において、図1と同一部位には同一符号が付してある。逆洗の実施要領としては、原水供給ポンプ3の停止後、原水受入バルブ2を閉、空気遮断バルブ13と逆洗用ブローバルブ11を開とし、逆浸透膜モジュール5内に保有している水をこれらの両バルブ13,11口より系外へ1/2以上ブローし、その後両バルブ13,11とも閉めた状態で逆洗ポンプ12を起動し、逆洗水を逆浸透膜モジュール5内に送り込み加圧の状態とした。その後、逆洗用ブローバルブ11を一気に開とし、気液2相流の状態で排出した。この場合の逆洗水の流れを説明すると、上述のように逆浸透膜モジュール5内に保有されている水の1/2以上を系外にブローして排出した状態とするが、このとき空気遮断バルブ13は開いているので逆浸透膜モジュール5内には排出された水に代わって空気が入る。その後、バルブ13及び11を閉めた状態で、逆洗ポンプ12から逆洗水(原海水)が送り出される。逆洗水は逆洗水用供給バルブ10を通り、濃縮水側配管8を通って逆浸透膜モジュール5内へ流入し、逆浸透膜モジュール5内部が加圧された状態になる。上記実施例1で説明したとおり、生産水は逆浸透膜を通過して得られるものであるのに対し、濃縮水は逆浸透膜モジュールの膜を通過しない経路を流路とするものであるから、この濃縮水の流路を通って濃縮水と逆の方向に流れる洗浄水は、逆浸透膜自体を通過するものではない。上記のとおり逆浸透膜モジュール内の1/2以上の水は予め系外に排出され、前記モジュール内には前記排出された分の水に代わって空気が入っている。そこにバルブ13及び11を閉めた状態で逆洗水を逆浸透膜モジュール5内に送り込むことにより、図2の装置において逆浸透膜モジュール5内は洗浄水及び空気が共存し、かつ加圧された状態になる。さらにその状態で一気に逆洗用ブローバルブ11を開にすることにより、洗浄水及び空気が混合した状態の気液2相流が逆浸透膜モジュール5内を通過し、逆洗用ブローバルブ11から排出される。この際の排水も濁っており、この操作を3〜5回のくり返しで有効な濁質分の排出が可能であった。
【0012】
表1に排水中の懸濁物質などをSSと表示し、前記比較例及び実施例1,2の結果の一例を示す。試験は原水(海水、SS:1ppm)を72時間運転後の逆浸透膜モジュールを対象として行った。逆洗は各例に示す条件でそれぞれ5回(1回の操作は排水が20リットルまでに達する時間とした)行った。
【表1】

Figure 0003615918
上記表1より、本発明方法による懸濁物質などの排出除去は従来法(比較例)より優れていることが確認された。
【0013】
表2には逆洗後の逆浸透膜モジュール差圧の測定結果の一例を示した。
【表2】
Figure 0003615918
逆浸透膜モジュールの差圧は72時間の連続運転により0.2〜0.3kg/cmG上昇し、0.6kg/cmGとなったが、実施例1による逆洗操作の場合、0.4kg/cmGまで低下させることができた。また実施例2の操作でも0.6kg/cmGから、0.3kg/cmGまで低下させることができたが、通常の逆洗操作だけでは、ほとんど差圧の低減効果は認められず、効果は0.1kg/cmG未満であった。
【0014】
【発明の効果】
本発明方法及び装置によれば、逆浸透膜モジュールの懸濁物質などの逆洗が従来法に比較して効果的に行え、その工業的効果が極めて優れたものである。
【図面の簡単な説明】
【図1】本発明の逆浸透膜モジュールの逆洗方法及び装置の一実施例を示す概略図。
【図2】本発明の逆浸透膜モジュールの逆洗方法の他の実施例を示す概略図。
【図3】逆浸透膜モジュールの従来の逆洗方法及び装置の一例を示す概略図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cleaning method and apparatus for recovering an increase in pressure loss of a reverse osmosis membrane module applied to desalination of seawater or brine.
[0002]
[Prior art]
In the desalination equipment using the reverse osmosis method, it is necessary to remove in advance turbidity / suspension materials (hereinafter referred to as “suspension materials”) that cause deterioration of the reverse osmosis membrane module. I have a device. However, it is impossible to completely remove suspended solids, etc., and due to long-term operation of the device, suspended solids gradually accumulate and accumulate in the reverse osmosis membrane module, resulting in a large pressure loss of the module. It becomes.
In general, suspended by a physical means of backwashing by supplying a flow of inverse to chemical or remove etc. suspended matter by washing, ordinary raw water flow, such as acid cleaning for this rise of pressure loss Remove turbid substances.
[0003]
[Problems to be solved by the invention]
When the suspended substances mentioned above adhere and accumulate in the reverse osmosis membrane module, removal of the same substances by physical means such as backwashing can be expected to be somewhat effective, but the effect is insufficient and Although removal by washing is effective, using chemicals is a major measure and measure.
In view of the above-mentioned technical level, the present invention is intended to reduce the frequency of chemical cleaning as a countermeasure when the pretreatment is insufficient or the increase in the differential pressure of the reverse osmosis module is too large due to the properties of raw water. As a countermeasure against the above, it is an object of the present invention to provide an efficient cleaning method and apparatus for discharging suspended substances in the reverse osmosis membrane module by means of improving physical means such as the latter backwashing.
[0004]
[Means for Solving the Problems]
The present invention (1) to the reverse osmosis membrane module having a pipe of the water to be treated supply line and the retentate side, wherein a separate backwash water supply line to the water to be treated supply line, piping of the concentrated water side Pressure water supply means branched and contained, gas supply means arranged in the backwash water supply line for supplying compressed air to the pressurized water supply means, and water retained in the reverse osmosis membrane module A cleaning apparatus for a reverse osmosis membrane module , comprising: a raw water receiving valve disposed in the treated water supply line for discharge to the outside; and a blow valve separate from the raw water receiving valve , (2) Using the reverse osmosis membrane module cleaning device according to 1), the pressurized gas-liquid two-phase flow supplied by the backwash water supply line and the gas supply means is allowed to pass through the reverse osmosis membrane module. Above The method of cleaning a reverse osmosis membrane module and performing backwashing of the reverse osmosis membrane module by emissions from Robarubu, and (3) reverse osmosis membrane module having a pipe of the water to be treated supply line and the retentate side in the separate backwash water supply line to the water to be treated supply line, the pressurized water supply means including branching from the concentrated water side piping, arranged air shutoff valve to the backwash water supply line, and wherein the raw water receiving valve disposed in the water to be treated supply line, wherein the raw water receiving valve using the cleaning device of the reverse osmosis membrane module having a separate blow valve, open the air shut-off valve and the blow valve, and the discharged water as well as discharged from the system for more than half of the water is held in the reverse osmosis membrane module by closing the raw water receiving valve Next, the backwash water is fed into the reverse osmosis membrane module by the pressurized water supply means so that the backwash water and air coexist in the reverse osmosis membrane module. -out valve opens, and after the backwash of the reverse osmosis membrane module was drained washings were Tsu line in a state of gas-liquid two-phase flow by closing the raw water receiving valve, closing the air shut-off valve and blow valve A method for cleaning a reverse osmosis membrane module, wherein the raw water receiving valve is opened .
[0005]
(Function)
A reverse osmosis membrane module generally has a structure in which a large number of hollow fibers through which raw water containing suspended substances and the like pass are collected inside. The pressure loss of this hollow fiber type reverse osmosis membrane module is This is caused by clogging with deposits on the outside of the fiber, and the space between the hollow fibers is narrowed to inhibit the flow. Some of the suspended matter in the raw water flows out to the concentrated water as it is, but some adhere to the hollow fibers or accumulate between the hollow fibers. The flow of adhering / deposited suspended matter is merely reversed by backwashing, and a part of the accumulated between the hollow fibers is discharged along the flow, but the pressure loss is not recovered.
[0006]
In the case of gas-liquid two-phase flow or backwash flow in which pressurized gas is intermittently supplied to the pressurized liquid, the flow state between the hollow fibers in the reverse osmosis module passes through in a state where the gas and liquid are mixed. Therefore, the flow becomes non-uniform and the hollow fiber membrane surface is vibrated. By this physical variation, the deposit is shaken and peeled off from the hollow fiber membrane surface, thereby enabling effective discharge of suspended substances and the like.
[0007]
【Example】
Hereinafter, specific examples of the method and apparatus for cleaning the reverse osmosis membrane module of the present invention will be given, and specific examples of the conventional backwashing of the module will be given to clarify the effects of the method and apparatus of the present invention.
In the present invention, “backwashing” refers to a flow path in which concentrated water concentrated in the reverse osmosis membrane module passes through the reverse osmosis membrane module when the liquid to be treated passes through the reverse osmosis membrane module. Accordingly, it is meant that the substances adhering to the membrane of the reverse osmosis membrane module are removed and discharged by flowing wash water in a direction opposite to the flow direction of the concentrated water. That is, “backwashing” in the meaning used in the present invention is to wash the reverse osmosis membrane by passing the washing water through the reverse osmosis membrane itself in the direction opposite to the flow of the production water passing through the membrane itself of the reverse osmosis membrane module. It is not a thing. The flow of the washing water in the case of “back washing” in the present invention will be described in more detail below using examples .
[0008]
(Comparative example)
First, FIG. 3 shows a configuration around a reverse osmosis membrane module in general seawater desalination. In FIG. 3, the raw water taken from the raw water receiving line 1 is pressurized to a high pressure, for example, 50 to 70 kg / cm 2 G by the raw water supply pump 3 via the raw water receiving valve 2, and connected in reverse by the pipe 4. It is sent to the osmotic membrane module 5. The reverse osmosis membrane module 5 is generally a hollow fiber type such as cellulose acetate or a spiral type made of a synthetic membrane. Here, a cellulose acetate hollow fiber type element having a diameter of 10 inches is employed. The desalinated production water is collected as a product in the production water storage tank 7 via the production water line 6. Since the quality of the production water at this time is affected by the pressure and recovery rate of the reverse osmosis membrane, the set flow rate of the raw water supply pump 3 and the pressure adjustment valve 9 disposed in the pipe 8 on the concentrated water (brine) side. The pressure and recovery rate are adjusted according to the opening.
[0009]
Example 1
An embodiment of the present invention will be described below with reference to FIG. In the experiment in FIG. 1, a cellulose acetate hollow fiber type element having a diameter of 10 inches was used as a reverse osmosis membrane module, and an apparatus capable of producing about 1 m 3 / h of production water was used. FIG. 1 shows an embodiment in which backwashing is performed by intermittently supplying air. In FIG. 1, the same parts as those in FIG. A pipe 8 on the concentrated water (brine) side is branched, and a backwash pump 12 and a backwash blow valve 11 are installed in the inlet pipe 4 of the reverse osmosis membrane module 5 via a backwash water supply valve 10. It was set as the structure which can be washed. Furthermore, an air shutoff valve 13 and a compressor 14 are installed in the line to which the backwash water is supplied so that air can be intermittently supplied into the backwash water.
[0010]
With the above configuration, when the pressure loss of the reverse osmosis membrane module 5 becomes large, the raw water supply pump 3 is stopped, the raw water supply valve 2 and the pressure adjustment valve 9 are closed, and the backwash blow valve 11 is opened. The backwash pump 12 is activated at a pressure of 3-4 kg / cm 2 G and backwash water is run at 1-2 m 3 / h. At the same time, the compressor 14 is activated and the air shut-off valve 13 is intermittently opened and closed, Air was intermittently supplied three times at a pressure of ˜7 kg / cm 2 G. By this operation, the raw seawater which is the backwash water passes through the backwash water supply valve 10 from the backwash pump 12 and passes through the concentrated water side pipe 8 through which the concentrated water flows from the reverse osmosis membrane module 5. It flows into the interior and is discharged from the backwash blow valve 11 through the pipe 4. Further, when air is supplied from the compressor 14 to the backwash line as described above, the mixture of the backwash water and air is reverse osmosis through the backwash water supply valve 10 and further through the concentrated water side pipe 8. It flows into the membrane module 5 and is discharged through the backwash blow valve 11. Here, the concentrated water discharged from the reverse osmosis membrane module 5 flows out in the reverse osmosis membrane module 5 without passing through the reverse osmosis membrane. Therefore, the cleaning device of the present invention is configured to flow the cleaning water in a direction opposite to the concentrated water through the pipe through which the concentrated water flows. The washing water does not flow in the direction opposite to the path through which the product water flows through the membrane of the reverse osmosis membrane module . In the experiment, blow drainage was transparent only with backwash water, but the drainage became turbid due to turbidity due to intermittent input of air, and the discharge of reverse osmosis membrane module deposits that caused an increase in differential pressure was discharged.・ Removal was possible. The effect of this example is shown in Table 1 described later together with a comparative example.
[0011]
(Example 2)
Another embodiment of the present invention will be described with reference to FIG. FIG. 2 shows an embodiment in which backwashing is performed by intermittent pressurization / blowing different from that in the first embodiment. In FIG. 2, the same parts as those in FIG. As a procedure for backwashing, after the raw water supply pump 3 is stopped, the raw water receiving valve 2 is closed, the air shutoff valve 13 and the backwashing blow valve 11 are opened, and the water stored in the reverse osmosis membrane module 5 is retained. Then, the backwash pump 12 is started in a state where both the valves 13 and 11 are closed, and the backwash water is put into the reverse osmosis membrane module 5. It was in the state of in-feed pressurization. Thereafter, the backwash blow valve 11 was opened at once and discharged in a gas-liquid two-phase flow state. The flow of backwash water in this case will be explained. As described above, 1/2 or more of the water retained in the reverse osmosis membrane module 5 is blown out of the system and discharged. Since the shutoff valve 13 is open, air enters the reverse osmosis membrane module 5 in place of the discharged water. Thereafter, backwash water (raw seawater) is sent out from the backwash pump 12 with the valves 13 and 11 closed. The backwash water passes through the backwash water supply valve 10 and flows into the reverse osmosis membrane module 5 through the concentrated water side pipe 8, and the reverse osmosis membrane module 5 is pressurized. As explained in Example 1 above, the produced water is obtained by passing through the reverse osmosis membrane, whereas the concentrated water has a flow path that does not pass through the membrane of the reverse osmosis membrane module. The wash water that flows in the opposite direction of the concentrated water through the flow path of the concentrated water does not pass through the reverse osmosis membrane itself. As described above, half or more of the water in the reverse osmosis membrane module is discharged out of the system in advance, and the module contains air instead of the discharged water. By feeding backwash water into the reverse osmosis membrane module 5 with the valves 13 and 11 closed, the wash water and air coexist in the reverse osmosis membrane module 5 in the apparatus of FIG. It becomes a state. Further, by opening the backwash blow valve 11 in this state at once, the gas-liquid two-phase flow in which the wash water and the air are mixed passes through the reverse osmosis membrane module 5, and from the backwash blow valve 11. Discharged . The drainage at this time was also turbid, and it was possible to discharge turbid components effectively by repeating this operation 3 to 5 times.
[0012]
Table 1 shows suspended substances in waste water as SS, and shows an example of the results of the comparative example and Examples 1 and 2. The test was conducted on a reverse osmosis membrane module after running raw water (seawater, SS: 1 ppm) for 72 hours. Backwashing was performed five times under the conditions shown in each example (one operation was the time required for the drainage to reach 20 liters).
[Table 1]
Figure 0003615918
From Table 1 above, it was confirmed that the discharge and removal of suspended substances and the like by the method of the present invention was superior to the conventional method (comparative example).
[0013]
Table 2 shows an example of the measurement result of the reverse osmosis membrane module differential pressure after backwashing.
[Table 2]
Figure 0003615918
Differential pressure reverse osmosis membrane module increases 0.2~0.3kg / cm 2 G by continuous operation for 72 hours, but became 0.6 kg / cm 2 G, when the backwash operation according to Example 1, It could be reduced to 0.4 kg / cm 2 G. And from 0.6 kg / cm 2 G in the procedure of Example 2, but it could be reduced to 0.3 kg / cm 2 G, the only normal backwash operation, little effect of reducing the differential pressure observed The effect was less than 0.1 kg / cm 2 G.
[0014]
【The invention's effect】
According to the method and apparatus of the present invention, the backwashing of the suspended material of the reverse osmosis membrane module can be performed more effectively than the conventional method, and the industrial effect is extremely excellent.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one embodiment of a reverse osmosis membrane module backwashing method and apparatus of the present invention.
FIG. 2 is a schematic view showing another embodiment of the method for backwashing the reverse osmosis membrane module of the present invention.
FIG. 3 is a schematic view showing an example of a conventional backwashing method and apparatus for a reverse osmosis membrane module.

Claims (3)

被処理水供給ライン及び濃縮水側の配管を有する逆浸透膜モジュールに、前記被処理水供給ラインとは別個の逆洗水供給ラインを、前記濃縮水側の配管から分岐して含む加圧水供給手段、前記加圧水供給手段へ圧縮空気を供給するために前記逆洗水供給ラインに配置された気体供給手段、及び前記逆浸透膜モジュール内に保有されている水を系外に排出するため前記被処理水供給ラインに配置された原水受入バルブと、前記原水受入バルブとは別個のブローバルブを有することを特徴とする逆浸透膜モジュールの洗浄装置。The reverse osmosis membrane module having a pipe of the water to be treated supply line and the retentate side, wherein a separate backwash water supply line to the water to be treated supply line, pressurized water supply including branching from the concentrated water side piping Means for supplying compressed air to the pressurized water supply means, gas supply means arranged in the backwash water supply line, and water to be stored in the reverse osmosis membrane module for discharging the water outside the system. An apparatus for cleaning a reverse osmosis membrane module , comprising: a raw water receiving valve disposed in a treated water supply line; and a blow valve separate from the raw water receiving valve . 請求項1に記載の逆浸透膜モジュールの洗浄装置を用い、前記逆洗水供給ライン及び前記気体供給手段によって供給される加圧された気液二相流を、前記逆浸透膜モジュール内を通過させ前記ブローバルブから排出させることにより前記逆浸透膜モジュールの逆洗を行うことを特徴とする逆浸透膜モジュールの洗浄方法。Using the reverse osmosis membrane module cleaning device according to claim 1, the pressurized gas-liquid two-phase flow supplied by the backwash water supply line and the gas supply means passes through the reverse osmosis membrane module. The reverse osmosis membrane module is backwashed by discharging the blow valve from the blow valve. 被処理水供給ライン及び濃縮水側の配管を有する逆浸透膜モジュールに、前記被処理水供給ラインとは別個の逆洗水供給ラインを、前記濃縮水側の配管から分岐して含む加圧水供給手段、前記逆洗水供給ラインに配置された空気遮断バルブ、及び前記被処理水供給ラインに配置された原水受入バルブと、前記原水受入バルブとは別個のブローバルブとを有する逆浸透膜モジュールの洗浄装置を用い、前記空気遮断バルブ及び前記ブローバルブを開き、かつ前記原水受入バルブを閉じることによって前記逆浸透膜モジュール内に保有されている水の1/2以上を系外に排出するとともに排出された水を空気によって置換し、次に前記加圧水供給手段によって前記逆浸透膜モジュール内に逆洗水を送り込むことにより前記逆浸透膜モジュール内に逆洗水及び空気が共存する加圧状態とし、さらに一気に前記ブローバルブを開き、かつ前記原水受入バルブを閉じることにより気液2相流の状態で洗浄液を排出させて前記逆浸透膜モジュールの逆洗を行ったのち、前記空気遮断バルブ及びブローバルブを閉じ前記原水受入バルブを開くことを特徴とする逆浸透膜モジュールの洗浄方法。The reverse osmosis membrane module having a pipe of the water to be treated supply line and the retentate side, wherein a separate backwash water supply line to the water to be treated supply line, pressurized water supply including branching from the concentrated water side piping A reverse osmosis membrane module comprising: a means, an air shut-off valve arranged in the backwash water supply line, a raw water receiving valve arranged in the treated water supply line, and a blow valve separate from the raw water receiving valve using the cleaning apparatus, said-out air shutoff valve and the blow valve open, and thereby discharged to the outside of the system more than half of the water is held in the reverse osmosis membrane module by closing the raw water receiving valve The discharged water is replaced with air, and then backwash water is fed into the reverse osmosis membrane module by the pressurized water supply means, thereby entering the reverse osmosis membrane module. A pressurized state where washing water and air coexist, further stretch the-out of the blow valve open, and opposite of said reverse osmosis membrane module was drained washing liquid in a state of gas-liquid two-phase flow by closing the raw water receiving valve After the washing Tsu line, the method of cleaning a reverse osmosis membrane module, characterized in that opening the raw water receiving valve closing the air shut-off valve and blow valve.
JP27538997A 1997-10-08 1997-10-08 Method and apparatus for cleaning reverse osmosis membrane module Expired - Fee Related JP3615918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27538997A JP3615918B2 (en) 1997-10-08 1997-10-08 Method and apparatus for cleaning reverse osmosis membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27538997A JP3615918B2 (en) 1997-10-08 1997-10-08 Method and apparatus for cleaning reverse osmosis membrane module

Publications (2)

Publication Number Publication Date
JPH11104636A JPH11104636A (en) 1999-04-20
JP3615918B2 true JP3615918B2 (en) 2005-02-02

Family

ID=17554823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27538997A Expired - Fee Related JP3615918B2 (en) 1997-10-08 1997-10-08 Method and apparatus for cleaning reverse osmosis membrane module

Country Status (1)

Country Link
JP (1) JP3615918B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6945257B2 (en) 1997-06-23 2005-09-20 Princeton Trade & Technology Method for cleaning hollow tubing and fibers
US6454871B1 (en) * 1997-06-23 2002-09-24 Princeton Trade & Technology, Inc. Method of cleaning passageways using a mixed phase flow of gas and a liquid
EP1492614A1 (en) * 2002-04-10 2005-01-05 Bucher-Guyer AG Cross-flow filtration installation
JP4765874B2 (en) * 2006-09-28 2011-09-07 栗田工業株式会社 Membrane module cleaning method
US7862660B2 (en) 2007-01-12 2011-01-04 Princeton Trade & Technology, Inc. Device and method for fluid dynamics cleaning of constrained spaces
CN102015078A (en) * 2008-04-14 2011-04-13 栗田工业株式会社 Method of operating reverse osmosis membrane module
US8114221B2 (en) 2008-09-30 2012-02-14 Princeton Trade & Technology, Inc. Method and composition for cleaning tubular systems employing moving three-phase contact lines
CN105084465B (en) * 2015-08-27 2018-03-30 佛山市美的清湖净水设备有限公司 Reverse osmosis water purification system and wastewater discharge control method thereof
KR20220081711A (en) * 2020-12-09 2022-06-16 주식회사 경동나비엔 Water softener system

Also Published As

Publication number Publication date
JPH11104636A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
EP0725669B1 (en) Method and apparatus for recovering water from a sewer main
EP1704911B1 (en) Method for cleaning a separation membrane in a membrane bioreactor system
HU222408B1 (en) Method and system and portable unit for water-purification and producing drinking water
JPH11156166A (en) Cleaning method for hollow fiber membrane module
WO2004106697A1 (en) Apparatus and method for treating injection fluid
RU2440180C2 (en) Method processing detergents and device to this end
JP2004216263A (en) Hollow fiber membrane filter and its operation method
US20190001277A1 (en) Method and apparatus for treating commercial and industrial laundry wastewater
US4255255A (en) Tubular membrane separation process and apparatus therefor
JP3615918B2 (en) Method and apparatus for cleaning reverse osmosis membrane module
US20090057223A1 (en) Apparatus and method for treating injection fluid
EP0669159A1 (en) Back wash method for filtration modules using internally pressurized hollow fibers
JPH10109095A (en) Water purifying treatment device
JP5141855B2 (en) Membrane separator
JPH05154356A (en) Membrane filter module
JP7101453B2 (en) Cleaning method of ceramic filtration membrane, filtration membrane device and filtration container
JPH11244852A (en) Desalination device and back washing method of filter used for desalination device
KR100503783B1 (en) Two-way alternate backwashing method and equipment of hollow-fiber membrane module, and drinking water treatment equipment using the same
US4923609A (en) Method and apparatus for purifying liquids employing a particulate filter and a membrane
JP2006231264A (en) Cleaning method of membrane filter module
JP2000005517A (en) Washing method of long filament filter
JPH0623240A (en) Operation method of hollow fiber membrane filter
JPH0999226A (en) Washing method of membrane
Obaid et al. Practical solutions to problems experienced in open seawater RO plants operating on the Arabian Gulf
JPH11262767A (en) System for highly treating sewage secondary treated water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees