JP4649529B1 - Membrane treatment equipment - Google Patents

Membrane treatment equipment Download PDF

Info

Publication number
JP4649529B1
JP4649529B1 JP2009228265A JP2009228265A JP4649529B1 JP 4649529 B1 JP4649529 B1 JP 4649529B1 JP 2009228265 A JP2009228265 A JP 2009228265A JP 2009228265 A JP2009228265 A JP 2009228265A JP 4649529 B1 JP4649529 B1 JP 4649529B1
Authority
JP
Japan
Prior art keywords
water
pressure
concentrated water
dissolved
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009228265A
Other languages
Japanese (ja)
Other versions
JP2011072939A (en
Inventor
政隆 日高
みさき 隅倉
秀之 田所
剛 武本
晃治 陰山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009228265A priority Critical patent/JP4649529B1/en
Application granted granted Critical
Publication of JP4649529B1 publication Critical patent/JP4649529B1/en
Publication of JP2011072939A publication Critical patent/JP2011072939A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

【課題】特別な動力を要することなく、被分離物質の濁質成分を除去するための微細気泡を発生可能な膜処理設備を提供することを課題とする。
【解決手段】原水W0をRO膜処理装置1へ送水する高圧ポンプ2と、RO膜処理装置1で原水W0から分離される濃縮水W2が流れる濃縮水流路11と、濃縮水流路11に備わって濃縮水W2にオゾンガスを混合するオゾン混合器3と、オゾンガスが溶解した濃縮水W2を所定の設定圧力で排出する圧力調整装置4と、圧力調整装置4から排出された濃縮水W2を反応槽5に減圧放出してマイクロバブルを発生するマイクロバブル発生ノズル6と、を備えて構成され、マイクロバブルによって、濃縮水W2に含まれる被分離物質の濁質成分を濃縮水W2から分離する膜処理設備とする。そして、圧力調整装置4では、オゾンガスを濃縮水W2に溶解するとともに、濃縮水流路11を流れる濃縮水W2の圧力を一定に保持する。
【選択図】図1
An object of the present invention is to provide a membrane treatment facility capable of generating fine bubbles for removing turbid components of a substance to be separated without requiring special power.
A high-pressure pump 2 that feeds raw water W0 to an RO membrane treatment device 1, a concentrated water passage 11 through which concentrated water W2 separated from the raw water W0 in the RO membrane treatment device 1 flows, and a concentrated water passage 11 are provided. An ozone mixer 3 that mixes ozone gas into the concentrated water W2, a pressure adjusting device 4 that discharges the concentrated water W2 in which the ozone gas is dissolved at a predetermined set pressure, and a concentrated water W2 discharged from the pressure adjusting device 4 And a microbubble generating nozzle 6 for generating microbubbles under reduced pressure, and a membrane treatment facility for separating turbid components of a substance to be separated contained in the concentrated water W2 from the concentrated water W2 by microbubbles And In the pressure adjusting device 4, ozone gas is dissolved in the concentrated water W <b> 2 and the pressure of the concentrated water W <b> 2 flowing through the concentrated water channel 11 is kept constant.
[Selection] Figure 1

Description

本発明は、海水の淡水化や下水の再生処理に使用される膜処理設備に関する。   The present invention relates to a membrane treatment facility used for seawater desalination and sewage regeneration treatment.

海水の淡水化や下水の再生処理には、例えば非特許文献1に記載される逆浸透膜(RO膜)法がよく知られている。
また、非特許文献2には、海水を淡水化する典型的なフローが示されている。
For desalination of seawater and sewage regeneration, for example, the reverse osmosis membrane (RO membrane) method described in Non-Patent Document 1 is well known.
Non-Patent Document 2 shows a typical flow for desalinating seawater.

非特許文献2によると、原水である海水は、前処理設備で塩素や凝集剤が添加された後に砂ろ過され、高圧ポンプでRO膜モジュールに送られる。
RO膜モジュールでは、クロスフロー方式で原水(海水)の一部がRO膜を透過して淡水として回収される。
According to Non-Patent Document 2, seawater, which is raw water, is subjected to sand filtration after chlorine and a flocculant are added in a pretreatment facility, and sent to an RO membrane module with a high-pressure pump.
In the RO membrane module, a part of the raw water (seawater) passes through the RO membrane and is recovered as fresh water by the cross flow method.

一方、RO膜を透過しない海水は、塩分や有機物などの被分離被分解物質が濃縮された濃縮水として排水される。濃縮水は、例えば非特許文献1に示されるように、海洋環境を保全するため排水処理施設を経由して海洋に放出される。   On the other hand, seawater that does not permeate the RO membrane is drained as concentrated water enriched with substances to be separated such as salt and organic matter. For example, as shown in Non-Patent Document 1, the concentrated water is discharged to the ocean via a wastewater treatment facility in order to preserve the marine environment.

また、非特許文献2には、下水を再生処理する典型的なフローも示されている。
例えば、畜産によって生ずる下水(畜産排水)が、生物処理、精密ろ過膜(MF膜)からなる前処理設備を通った後にRO膜を透過する処理水とRO膜を透過しない濃縮水に分離された後、濃縮水は醗酵処理後に堆肥として環境に戻される。
Non-Patent Document 2 also shows a typical flow for reprocessing sewage.
For example, sewage (livestock wastewater) generated by livestock is separated into treated water that permeates the RO membrane and concentrated water that does not permeate the RO membrane after passing through pretreatment equipment consisting of biological treatment and microfiltration membrane (MF membrane). Later, the concentrated water is returned to the environment as compost after fermentation.

例えば、特許文献1によると、RO膜を利用する処理設備においては、海水の淡水化や下水の再生処理に用いられる高圧ポンプの吐出圧力が5.5〜7.0MPaであり、RO膜の圧力損失が最大で0.3MPaであることから、RO膜によって分離される濃縮水は5.2〜6.7MPaの圧力がかかった状態にある。   For example, according to Patent Document 1, in a processing facility using an RO membrane, the discharge pressure of a high-pressure pump used for seawater desalination or sewage regeneration treatment is 5.5 to 7.0 MPa, and the pressure of the RO membrane Since the maximum loss is 0.3 MPa, the concentrated water separated by the RO membrane is in a state where a pressure of 5.2 to 6.7 MPa is applied.

そこで、RO膜で分離される濃縮水の圧力を高圧ポンプの駆動力に利用する方法が非特許文献2に示されている。非特許文献2に示される方法によると、濃縮水の圧力の100%を高圧ポンプの駆動力に利用することは困難であり、濃縮水の圧力の90%が高圧ポンプの駆動力に利用される場合、当該圧力が高圧ポンプの駆動力に利用された後であっても、濃縮水は、0.5〜0.6MPaの残圧を有すると考えられる。   Therefore, Non-Patent Document 2 discloses a method of using the pressure of concentrated water separated by the RO membrane as the driving force of the high-pressure pump. According to the method shown in Non-Patent Document 2, it is difficult to use 100% of the pressure of the concentrated water for the driving force of the high-pressure pump, and 90% of the pressure of the concentrated water is used for the driving force of the high-pressure pump. In this case, the concentrated water is considered to have a residual pressure of 0.5 to 0.6 MPa even after the pressure is used for the driving force of the high-pressure pump.

ところで、RO膜処理による海水の淡水化や下水の再生処理では、非特許文献1に示すように、外的要因によって生ずる膜の性能低下(ファウリング)防止が課題であり、そのためには、原水の前処理による固形物、コロイド、微生物及び有機物の除去が有効である。
そこで、特許文献2には、原水中の微生物(細菌等)、有機物等を除去するため、海水の淡水化に用いられるRO膜モジュールの前段、または下水の再生処理における前処理のMF膜の前段に、空気、オゾンガスの微細気泡を発生する微細気泡発生装置を配設する技術が開示されている。
この微細気泡発生装置として、散気管と攪拌翼を組み合わせたものや、超音波を用いるものが記載され、直径が100μm以下の微細気泡を発生する。
By the way, in seawater desalination and sewage regeneration treatment by RO membrane treatment, as shown in Non-Patent Document 1, prevention of membrane performance degradation (fouling) caused by external factors is an issue. It is effective to remove solids, colloids, microorganisms and organic substances by pretreatment.
Therefore, in Patent Document 2, in order to remove microorganisms (bacteria and the like), organic matter, etc. in the raw water, the pre-stage of the RO membrane module used for seawater desalination or the pre-treatment of the MF membrane for pretreatment in the sewage regeneration treatment Further, a technique for disposing a fine bubble generating device that generates fine bubbles of air or ozone gas is disclosed.
As this fine bubble generating device, a combination of a diffuser tube and a stirring blade and a device using ultrasonic waves are described, and fine bubbles having a diameter of 100 μm or less are generated.

また、特許文献3には、砂ろ過、限外ろ過膜(UF膜)を有する前処理設備において、UF膜に原水を送り込むためのポンプを用いて、UF膜処理用の貯水槽に微細気泡を発生させる技術が開示されている。そして、この微細気泡で、例えば、イソプロピルアルコール等の低分子有機物を原水から蒸発させて除去している。   Further, in Patent Document 3, in a pretreatment facility having sand filtration and an ultrafiltration membrane (UF membrane), a fine bubble is introduced into a storage tank for UF membrane treatment using a pump for feeding raw water into the UF membrane. Techniques for generating are disclosed. And with these fine bubbles, for example, low molecular organic substances such as isopropyl alcohol are removed from the raw water by evaporation.

また、特許文献4には、前処理装置として、ろ過装置の後段でRO膜処理装置の前段に、接触槽と微細気泡発生装置を配設する技術が開示されている。特許文献4に示される微細気泡発生装置はエゼクタ型であり、オゾンガスを吹き込んで微細気泡を発生し、原水中の汚濁物質や不溶性凝縮物を凝集させて回収する。この微細気泡発生装置は直径が300μm以下の微細気泡を発生できる。   Further, Patent Document 4 discloses a technique in which a contact tank and a fine bubble generating device are disposed as a pretreatment device in the subsequent stage of the filtration device and in the previous stage of the RO membrane treatment device. The fine bubble generator shown in Patent Document 4 is an ejector type, which generates fine bubbles by blowing ozone gas, and aggregates and collects pollutants and insoluble condensates in raw water. This fine bubble generator can generate fine bubbles having a diameter of 300 μm or less.

また、特許文献5には、貯水槽の水面上方にホッパを配設して水面の高さを上下に変化させて、水面上に浮遊分離するスカムを貯水槽外に排出する技術が開示されている。   Patent Document 5 discloses a technique in which a hopper is disposed above the water surface of the water storage tank, the height of the water surface is changed up and down, and the scum that floats and separates on the water surface is discharged out of the water storage tank. Yes.

微細気泡のうち、直径が50μm前後のものをマイクロバブルと称する。非特許文献3に示されるように、マイクロバブルは、直径の大きな気泡に比べて比表面積が大きく上昇速度が小さいため、液体中における気体の溶解度が高い。
また、非特許文献4に示されるように、マイクロバブルは、気泡の上昇と気泡界面が物質を吸着する特性による浮上分離効果を有する。
そこで、例えば、濃縮水に含まれて濁質成分となる固形浮遊物をRO膜によって濃縮水から分離するとともに、濃縮水から分離した固形浮遊物をマイクロバブルの浮上分離効果で水面に浮上させ、例えば、特許文献5に示されるホッパで除去することが実施されている。
Among the fine bubbles, those having a diameter of around 50 μm are referred to as microbubbles. As shown in Non-Patent Document 3, since microbubbles have a large specific surface area and a low rising speed compared to bubbles having a large diameter, the solubility of gas in liquid is high.
Further, as shown in Non-Patent Document 4, microbubbles have a floating separation effect due to the property that bubbles rise and the bubble interface adsorbs a substance.
Therefore, for example, the solid suspended matter contained in the concentrated water and becoming a turbid component is separated from the concentrated water by the RO membrane, and the solid suspended matter separated from the concentrated water is floated on the water surface by the floating separation effect of the microbubbles, For example, removal with a hopper shown in Patent Document 5 is performed.

特開2001−46842号公報JP 2001-46842 A 特開2007−245003号公報JP 2007-24503 A 特開2009−95774号公報JP 2009-95774 A 特開平11−207394号公報JP 11-207394 A 特開2009−34558号公報JP 2009-34558 A

「膜の劣化とファウリング対策」、株式会社エヌ・ティー・エス、3−7頁、324−335頁、417−421頁、2008年“Membrane degradation and countermeasures for fouling”, NTT Co., Ltd., pages 3-7, 324-335, 417-421, 2008 「膜を利用した新しい水処理」、株式会社エヌ・ティー・エス、303−316頁、2000年“New Water Treatment Using Membrane”, NTS, pp. 303-316, 2000 「水の特性と新しい利用技術」、株式会社エヌ・ティー・エス、142−146頁、2004年“Characteristics of Water and New Utilization Technology”, NTS Corporation, pages 142-146, 2004 「マイクロバブルの世界」、ケイ・ブックス192、株式会社工業調査会、111−121頁、2006年“The World of Micro Bubbles”, K. Books 192, Industrial Research Institute, Inc., 111-121, 2006

しかしながら、例えば特許文献2に開示される技術では、微細気泡の発生に攪拌翼や超音波発生装置が必要なため、これらを駆動するための動力が必要になることから、RO膜処理設備の運転コストが増大するという問題がある。   However, for example, in the technique disclosed in Patent Document 2, since a stirring blade and an ultrasonic generator are necessary for generating fine bubbles, power for driving these is required, and thus the operation of the RO membrane treatment facility is performed. There is a problem that the cost increases.

また、例えば特許文献3に開示される技術では、UF膜処理用のポンプを利用して微細気泡を発生させているが、そのポンプの流量は、UF膜処理に供給する流量に微細気泡発生に同伴する液相流量が加わるため、ポンプの駆動に必要な動力が増大するという問題がある。   Further, for example, in the technology disclosed in Patent Document 3, fine bubbles are generated using a pump for UF membrane treatment, but the flow rate of the pump is reduced to the flow rate supplied to the UF membrane treatment. Since the accompanying liquid phase flow rate is added, there is a problem that the power required for driving the pump increases.

また、例えば特許文献4に開示される技術では、膜処理の高圧ポンプの水流で微細気泡発生用のエゼクタを駆動しているため、膜処理に要する動力に加えてエゼクタ駆動に要する動力が必要になり、ポンプの駆動に必要な動力が増大するという問題がある。   For example, in the technique disclosed in Patent Document 4, since the ejector for generating fine bubbles is driven by the water flow of the membrane processing high-pressure pump, the power required for driving the ejector is required in addition to the power required for the membrane processing. Thus, there is a problem that the power required for driving the pump increases.

以上のように、特許文献2〜4に開示される微細気泡を発生する技術は、RO膜処理に必要な動力に加えて、微細気泡を発生するための特別な動力が必要になるという問題がある。   As described above, the technique for generating fine bubbles disclosed in Patent Documents 2 to 4 has a problem that special power for generating fine bubbles is required in addition to power required for RO membrane treatment. is there.

そこで、本発明は、特別な動力を要することなく、被分離物質の濁質成分を除去するための微細気泡を発生可能な膜処理設備を提供することを課題とする。   Then, this invention makes it a subject to provide the membrane processing equipment which can generate | occur | produce the fine bubble for removing the turbid component of a to-be-separated substance, without requiring special power.

前記課題を解決するため本発明は、RO膜処理装置から排出される濃縮水の圧力を利用して微細気泡を発生する膜処理設備とする。   In order to solve the above-described problems, the present invention provides a membrane treatment facility that generates fine bubbles by using the pressure of concentrated water discharged from an RO membrane treatment apparatus.

本発明によると、特別な動力を要することなく、被分離物質の濁質成分を除去するための微細気泡を発生可能な膜処理設備を提供できる。   According to the present invention, it is possible to provide a membrane treatment facility capable of generating fine bubbles for removing turbid components of a material to be separated without requiring special power.

第1の実施形態に係る膜処理設備の構成を示す図である。It is a figure which shows the structure of the film processing equipment which concerns on 1st Embodiment. (a)は、背圧弁を備える圧力調整装置の構成を示す図、(b)は、圧力伝送器を備える圧力調整装置の構成を示す図である。(A) is a figure which shows the structure of a pressure regulator provided with a back pressure valve, (b) is a figure which shows the structure of a pressure regulator provided with a pressure transmitter. 第1の実施形態に係る反応槽の構造を示す側面図である。It is a side view which shows the structure of the reaction tank which concerns on 1st Embodiment. 濁質除去ホッパによってスカムが反応槽から排出される状態を示す図であり、(a)は、水位が上昇している状態を示す図、(b)は、スカムが濁質除去ホッパに取り込まれる状態を示す図である。It is a figure which shows the state from which a scum is discharged | emitted from a reaction tank by a turbidity removal hopper, (a) is a figure which shows the state which the water level is rising, (b) is a scum taken in by a turbidity removal hopper It is a figure which shows a state. 第2の実施形態に係る膜処理設備の構成を示す図である。It is a figure which shows the structure of the film processing equipment which concerns on 2nd Embodiment. 第3の実施形態に係る膜処理設備の構成を示す図である。It is a figure which shows the structure of the film processing equipment which concerns on 3rd Embodiment. 第3の実施形態に係る反応槽の構造を示す側面図である。It is a side view which shows the structure of the reaction tank which concerns on 3rd Embodiment. 第4の実施形態に係る膜処理設備の構成を示す図である。It is a figure which shows the structure of the film processing equipment which concerns on 4th Embodiment. 第5の実施形態に係る膜処理設備の構成を示す図である。It is a figure which shows the structure of the film processing equipment which concerns on 5th Embodiment.

《第1の実施形態》
以下、本発明の第1の実施形態について、適宜図を参照して詳細に説明する。
図1に示す、第1の実施形態に係る膜処理設備100は、例えば、海水を淡水化する淡水化装置を構成する。
原水W0となる海水は、前処理装置16Aにおいて、塩素や凝集剤が添加されて砂ろ過される前処理が施された後に高圧ポンプ(ポンプ)2の上流に備わる混合器(上流混合器9)を経由して原水流路35を流れ、高圧ポンプ2で5.5〜7.0MPaに加圧されてRO膜処理装置(膜処理装置)1に送水(圧送)される。
RO膜処理装置1に送水された原水W0の一部はRO膜処理装置1に備わるRO膜を透過して被分離物質が除去され、被分離物質を含まない処理水W1が生成される。
この処理水W1は、処理水流路10を介して膜処理設備100から淡水として取り出される。
なお、RO膜処理装置1のRO膜を透過するときに原水W0から除去される被分離物質は、塩分、有機物、微生物、菌類、ホウ素、濁質成分となる固形浮遊物など、原水W0である海水に含まれる物質である。
<< First Embodiment >>
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
The membrane treatment facility 100 according to the first embodiment shown in FIG. 1 constitutes a desalination apparatus that desalinates seawater, for example.
Seawater to be the raw water W0 is a premixer (upstream mixer 9) provided upstream of the high-pressure pump (pump) 2 after being subjected to a pretreatment in which chlorine or a flocculant is added and sand filtered in the pretreatment device 16A. , Flows through the raw water flow path 35, is pressurized to 5.5 to 7.0 MPa by the high-pressure pump 2, and is fed (pressure-fed) to the RO membrane treatment apparatus (membrane treatment apparatus) 1.
Part of the raw water W0 sent to the RO membrane treatment apparatus 1 permeates the RO membrane provided in the RO membrane treatment apparatus 1 to remove the substance to be separated, and the treated water W1 not containing the substance to be separated is generated.
This treated water W1 is taken out as fresh water from the membrane treatment facility 100 via the treated water flow path 10.
In addition, the to-be-separated substance removed from raw | natural water W0 when permeate | transmitting the RO membrane of RO membrane treatment apparatus 1 is raw | natural water W0, such as a solid suspended matter used as a salt content, organic substance, microorganisms, fungi, boron, and a turbid component. It is a substance contained in seawater.

一方、RO膜を透過しない原水W0は、被分離物質を含む濃縮水W2となって、RO膜処理装置1から排出される。
濃縮水W2は、RO膜処理装置1での圧力損失が最大0.3MPa程度であることから、5.2〜6.7MPaの圧力でRO膜処理装置1から排出され、その圧力の一部が高圧ポンプ2の駆動に利用される。そして濃縮水W2は、0.5〜0.3MPaの圧力がかかった状態で濃縮水流路11を流れてガス混合器(オゾン混合器3)に流入し、オゾン発生器7で発生したオゾンガスが混合される。オゾン混合器3は、例えば、濃縮水W2の圧力でオゾンガスを混合するエゼクタ形式のものが好ましい。
On the other hand, the raw water W0 that does not pass through the RO membrane becomes the concentrated water W2 containing the substance to be separated and is discharged from the RO membrane treatment apparatus 1.
The concentrated water W2 is discharged from the RO membrane treatment apparatus 1 at a pressure of 5.2 to 6.7 MPa because a pressure loss in the RO membrane treatment apparatus 1 is about 0.3 MPa at maximum, and a part of the pressure is discharged. It is used for driving the high-pressure pump 2. The concentrated water W2 flows through the concentrated water flow path 11 under a pressure of 0.5 to 0.3 MPa, flows into the gas mixer (ozone mixer 3), and the ozone gas generated by the ozone generator 7 is mixed. Is done. The ozone mixer 3 is preferably an ejector type that mixes ozone gas with the pressure of the concentrated water W2, for example.

エゼクタ形式のオゾン混合器3は、例えば、オゾン発生器7に備わる図示しないブロアによる圧力に加えて、濃縮水流路11を流れるときの圧力からエゼクタ絞り部を流れる際に発生する圧力降下でオゾンガスを吸引し、濃縮水W2に混合する構成とすればよい。
この構成によってオゾン混合器3は、濃縮水W2が濃縮水流路11を流れるときの圧力で、オゾンガスを濃縮水W2に混合することができる。又は、ブロアを増設してオゾンガスを加圧して混合することも可能である。
For example, the ejector type ozone mixer 3 generates ozone gas by a pressure drop generated when flowing through the ejector constriction section from the pressure when flowing through the concentrated water flow path 11 in addition to the pressure of a blower (not shown) provided in the ozone generator 7. What is necessary is just to make it the structure which attracts | sucks and mixes with the concentrated water W2.
With this configuration, the ozone mixer 3 can mix ozone gas with the concentrated water W2 at a pressure when the concentrated water W2 flows through the concentrated water flow path 11. Alternatively, it is possible to add a blower and pressurize and mix ozone gas.

そして、オゾン混合器3でオゾンガスが混合された濃縮水W2は圧力がかかった状態で濃縮水流路11を流れて圧力調整装置4に流入する。
圧力調整装置4には、濃縮水W2にオゾンガスを溶解するための溶解水槽4aが備わる。濃縮水W2は溶解水槽4aに流入して、濃縮水流路11を流れるときの圧力で溶解水槽4aの内部圧力が加圧される。
なお、濃縮水W2の圧力の一部を高圧ポンプ2の駆動に利用する方法は、例えば、前記した非特許文献2に示される技術を利用すればよい。
Then, the concentrated water W2 mixed with ozone gas in the ozone mixer 3 flows through the concentrated water flow path 11 in a state where pressure is applied, and flows into the pressure adjusting device 4.
The pressure adjusting device 4 includes a dissolved water tank 4a for dissolving ozone gas in the concentrated water W2. The concentrated water W2 flows into the dissolved water tank 4a, and the internal pressure of the dissolved water tank 4a is increased by the pressure when flowing through the concentrated water channel 11.
In addition, what is necessary is just to utilize the technique shown in above-mentioned nonpatent literature 2, for the method of utilizing a part of pressure of the concentrated water W2 for the drive of the high pressure pump 2, for example.

圧力調整装置4は、濃縮水W2と混合しているオゾンガスを濃縮水W2に溶解させて、オゾンガスが溶解した濃縮水W2を所定の設定圧力で排出する装置である。
第1の実施形態に係る圧力調整装置4は、溶解水槽4aの内部圧力を、ポンプ等の動力を使用せず、濃縮水W2が濃縮水流路11を流れるときの圧力(残圧)で加圧し、オゾンガスが濃縮水W2に溶解するように構成されている。
さらに圧力調整装置4は、オゾンガスが溶解した濃縮水W2を溶解水槽4aの内部圧力で排出するように構成されている。
The pressure adjusting device 4 is a device that dissolves ozone gas mixed with the concentrated water W2 in the concentrated water W2, and discharges the concentrated water W2 in which the ozone gas is dissolved at a predetermined set pressure.
The pressure adjusting device 4 according to the first embodiment pressurizes the internal pressure of the dissolved water tank 4a with the pressure (residual pressure) when the concentrated water W2 flows through the concentrated water channel 11 without using power such as a pump. The ozone gas is configured to dissolve in the concentrated water W2.
Furthermore, the pressure adjusting device 4 is configured to discharge the concentrated water W2 in which the ozone gas is dissolved at the internal pressure of the dissolved water tank 4a.

RO膜処理装置1で0.5〜0.3MPaの残圧がかかった状態で濃縮水流路11からオゾン混合器3を経て溶解水槽4aに流入した濃縮水W2は、混合しているオゾンガスの一部が溶解して、図2の(a)に示すように液相部4Lを形成し、濃縮水W2に溶解せずに残存するオゾンガスが気相部4Gを形成する。   The concentrated water W2 flowing into the dissolved water tank 4a from the concentrated water flow path 11 through the ozone mixer 3 in a state where a residual pressure of 0.5 to 0.3 MPa is applied in the RO membrane treatment apparatus 1 is one of the ozone gases being mixed. The part dissolves to form the liquid phase part 4L as shown in FIG. 2A, and the ozone gas remaining without being dissolved in the concentrated water W2 forms the gas phase part 4G.

また、図2の(a)に示すように、圧力調整装置4の溶解水槽4aには調圧器4bが備わり、溶解水槽4aの内部を所定の内部圧力に維持するように構成される。
調圧器4bには、液相部4Lの水位下降で開弁するエアベント14と気相部4Gの圧力上昇で開弁する背圧弁15が備わっている。
エアベント14は気相部4Gのオゾンガス量が所定量を超えて液相部4Lの水位が所定水位より下降した場合に開弁して気相部4Gのオゾンガスを排出し、液相部4Lの水位を上昇させる。また、背圧弁15は、気相部4Gの圧力が予め設定される所定の内部圧力以上になると開弁して気相部4Gのオゾンガスを排出し、溶解水槽4aの内部を所定の内部圧力に維持する。
このように、調圧器4bは溶解水槽4a内の液相部4Lの水位を所定水位に維持し、溶解水槽4a内を所定の内部圧力に維持する機能を有する。
Moreover, as shown to (a) of FIG. 2, the dissolved water tank 4a of the pressure regulator 4 is equipped with the pressure regulator 4b, and it is comprised so that the inside of the dissolved water tank 4a may be maintained at a predetermined internal pressure.
The pressure regulator 4b includes an air vent 14 that opens when the water level of the liquid phase portion 4L drops and a back pressure valve 15 that opens when the pressure of the gas phase portion 4G increases.
When the amount of ozone gas in the gas phase portion 4G exceeds a predetermined amount and the water level in the liquid phase portion 4L falls below the predetermined water level, the air vent 14 opens to discharge the ozone gas in the gas phase portion 4G, and the water level in the liquid phase portion 4L. To raise. Further, the back pressure valve 15 opens when the pressure of the gas phase portion 4G becomes equal to or higher than a predetermined internal pressure set in advance, discharges ozone gas in the gas phase portion 4G, and sets the inside of the dissolved water tank 4a to a predetermined internal pressure. maintain.
Thus, the pressure regulator 4b has a function of maintaining the water level of the liquid phase portion 4L in the dissolved water tank 4a at a predetermined water level and maintaining the inside of the dissolved water tank 4a at a predetermined internal pressure.

調圧器4bの調圧によってエアベント14又は背圧弁15を介して溶解水槽4aから排出されたオゾンガスは、オゾン流路12を流れ、原水流路35に備わる上流混合器9で原水W0に混合される。そして、オゾンガスの酸化作用によって、原水W0に含まれる有機物を分解除去するとともに原水W0に含まれる微生物(主に細菌)を殺菌する。   The ozone gas discharged from the dissolved water tank 4a through the air vent 14 or the back pressure valve 15 by pressure regulation of the pressure regulator 4b flows through the ozone channel 12 and is mixed with the raw water W0 by the upstream mixer 9 provided in the raw water channel 35. . Then, by oxidizing the ozone gas, organic substances contained in the raw water W0 are decomposed and removed, and microorganisms (mainly bacteria) contained in the raw water W0 are sterilized.

なお、例えば、図2の(b)に示すように、背圧弁15(図2の(a)参照)の代わりに、圧力伝送器40と、濃縮水流路11に配設されて溶解水槽4aから排出される濃縮水W2の流量を調整する流量調整弁11aと、流量調整弁11aの弁開度を調節するアクチュエータ11bが備わる調圧器4bとしてもよい。
流量調整弁11aは、弁開度によって濃縮水流路11を流れる濃縮水W2の流量を調整可能な弁装置で、アクチュエータ11bによって弁開度が調節される構成とする。
アクチュエータ11bは、圧力伝送器40が計測する溶解水槽4a内部の圧力に応じて流量調整弁11aの弁開度を調節する機能を有し、溶解水槽4a内部の圧力が所定の内部圧力以上の場合は流量調整弁11aの弁開度を大きくする。溶解水槽4aからの濃縮水W2の排出量が増加して溶解水槽4a内部の圧力が低下する。
一方、アクチュエータ11bは、溶解水槽4a内部の圧力が所定の内部圧力未満の場合は流量調整弁11aの弁開度を小さくする。溶解水槽4aからの濃縮水W2の排出量が減少し、濃縮水流路11から流入する濃縮水W2の圧力によって溶解水槽4a内部の圧力が上昇する。アクチュエータ11bは、電動式、油圧式、ガス駆動式などであればよく、その構成は限定されない。
このような構成の調圧器4bであっても、溶解水槽4a内を所定の内部圧力に維持できる。
For example, as shown in FIG. 2 (b), instead of the back pressure valve 15 (see FIG. 2 (a)), the pressure transmitter 40 and the concentrated water flow path 11 are disposed in the dissolved water tank 4a. It is good also as the pressure regulator 4b provided with the flow volume adjustment valve 11a which adjusts the flow volume of the concentrate W2 discharged | emitted, and the actuator 11b which adjusts the valve opening degree of the flow volume adjustment valve 11a.
The flow rate adjusting valve 11a is a valve device that can adjust the flow rate of the concentrated water W2 flowing through the concentrated water flow path 11 according to the valve opening, and the valve opening is adjusted by the actuator 11b.
The actuator 11b has a function of adjusting the valve opening degree of the flow rate adjusting valve 11a according to the pressure inside the dissolved water tank 4a measured by the pressure transmitter 40, and the pressure inside the dissolved water tank 4a is equal to or higher than a predetermined internal pressure. Increases the valve opening of the flow regulating valve 11a. The discharge amount of the concentrated water W2 from the dissolved water tank 4a increases and the pressure inside the dissolved water tank 4a decreases.
On the other hand, the actuator 11b reduces the valve opening degree of the flow rate adjusting valve 11a when the pressure inside the dissolved water tank 4a is less than a predetermined internal pressure. The discharge amount of the concentrated water W2 from the dissolved water tank 4a decreases, and the pressure inside the dissolved water tank 4a increases due to the pressure of the concentrated water W2 flowing from the concentrated water channel 11. The actuator 11b may be an electric type, a hydraulic type, a gas drive type, etc., and its configuration is not limited.
Even with the pressure regulator 4b having such a configuration, the inside of the dissolved water tank 4a can be maintained at a predetermined internal pressure.

圧力調整装置4の溶解水槽4aでオゾンガスが溶解した濃縮水W2は、溶解水槽4aの内部圧力に等しい水圧がかかった状態で圧力調整装置4から排出され、図1に示す濃縮水流路11を流れてマイクロバブル発生ノズル6に流入する。すなわち、溶解水槽4aの内部圧力を所定の設定圧力として濃縮水W2が圧力調整装置4から排出され、マイクロバブル発生ノズル6には、溶解水槽4aの内部圧力に等しい水圧(所定の設定圧力)で濃縮水W2が流入する。   The concentrated water W2 in which the ozone gas is dissolved in the dissolved water tank 4a of the pressure adjusting device 4 is discharged from the pressure adjusting device 4 in a state where a water pressure equal to the internal pressure of the dissolved water tank 4a is applied, and flows through the concentrated water channel 11 shown in FIG. Then flows into the microbubble generating nozzle 6. That is, the concentrated water W2 is discharged from the pressure adjusting device 4 with the internal pressure of the dissolved water tank 4a as a predetermined set pressure, and the microbubble generating nozzle 6 is supplied with a water pressure (predetermined set pressure) equal to the internal pressure of the dissolved water tank 4a. Concentrated water W2 flows in.

マイクロバブル発生ノズル6は、所定の設定圧力に加圧された状態の濃縮水W2を反応槽5Aに減圧放出するノズルであり、第1の実施形態においては、オゾンガスが溶解して所定の設定圧力に加圧されている濃縮水W2を、反応槽5Aの雰囲気圧力まで減圧してオゾンマイクロバブルを発生する。   The microbubble generating nozzle 6 is a nozzle that discharges the concentrated water W2 pressurized to a predetermined set pressure to the reaction tank 5A under reduced pressure. In the first embodiment, the ozone gas is dissolved and the predetermined set pressure is released. The concentrated water W2 being pressurized is reduced to the atmospheric pressure of the reaction tank 5A to generate ozone microbubbles.

本願発明者らの実験によると、溶解水槽4aの内部圧力が0.15MPa未満になるとオゾンガスが濃縮水W2に充分に溶解しないことが確認された。
したがって、溶解水槽4aは、充分な量のオゾンガスを濃縮水W2に溶解するため、内部圧力が0.15MPa以上に維持されることが好適である。
また、溶解水槽4aでオゾンガスが溶解した濃縮水W2を図1に示す反応槽5Aに送水する(圧送する)ため、溶解水槽4aの内部圧力を、濃縮水W2が濃縮水流路11を流れるときの圧力以下で、且つ、反応槽5Aの雰囲気圧力以上に維持することが好適である。
溶解水槽4aの内部圧力、すなわち、濃縮水W2が圧力調整装置4から排出されるときの所定の設定圧力は、マイクロバブル発生ノズル6での減圧発泡量を増加するため、濃縮水流路11を流れる濃縮水W2の圧力以下で反応槽5Aの雰囲気圧力以上、且つ、0.15MPa以上であることが好適である。
According to the experiments by the inventors of the present application, it was confirmed that the ozone gas was not sufficiently dissolved in the concentrated water W2 when the internal pressure of the dissolved water tank 4a was less than 0.15 MPa.
Accordingly, the dissolved water tank 4a is preferably maintained at an internal pressure of 0.15 MPa or more in order to dissolve a sufficient amount of ozone gas in the concentrated water W2.
Further, since the concentrated water W2 in which the ozone gas is dissolved in the dissolved water tank 4a is sent (pressure-fed) to the reaction tank 5A shown in FIG. 1, the internal pressure of the dissolved water tank 4a is changed when the concentrated water W2 flows through the concentrated water channel 11. It is preferable to maintain the pressure below the pressure and above the atmospheric pressure in the reaction vessel 5A.
The internal pressure of the dissolved water tank 4a, that is, the predetermined set pressure when the concentrated water W2 is discharged from the pressure adjusting device 4 increases the amount of vacuum foaming at the microbubble generating nozzle 6, and thus flows through the concentrated water channel 11. It is preferable that the pressure is equal to or lower than the pressure of the concentrated water W2 and equal to or higher than the atmospheric pressure of the reaction tank 5A and equal to or higher than 0.15 MPa.

オゾンマイクロバブルは、直径が約50μm前後の微細気泡で、比表面積が大きく上昇速度が小さいため液体中における気体の溶解度が高い。また、気泡界面が物質を吸着する特性と気泡が上昇する特性によって浮上分離効果を有する。
そこで、反応槽5Aでは、オゾンマイクロバブルの浮上分離効果を利用して濃縮水W2に含まれる被分離物質の濁質成分(固形浮遊物)をオゾンマイクロバブルに吸着させて浮上させ、濃縮水W2と濁質成分を分離(浮上分離)する。
The ozone microbubble is a fine bubble having a diameter of about 50 μm, and has a high specific surface area and a low rising speed, and therefore has high gas solubility in the liquid. In addition, the bubble interface has a floating separation effect due to the property of adsorbing substances and the property of rising bubbles.
Therefore, in the reaction tank 5A, the suspended matter (solid suspended matter) of the substance to be separated contained in the concentrated water W2 is adsorbed and floated on the ozone microbubbles using the floating separation effect of the ozone microbubbles, and the concentrated water W2 is floated. And turbid components are separated (floating separation).

図3に側面視で内部構造を示すように、反応槽5Aは、マイクロバブル発生ノズル6が接続される流入口5aと排水流路13が接続される排出口5bが対向する面に形成される箱状部材である。   As shown in the side view in FIG. 3, the reaction tank 5A is formed on the surface where the inlet 5a to which the microbubble generating nozzle 6 is connected and the outlet 5b to which the drainage channel 13 is connected are opposed to each other. It is a box-shaped member.

反応槽5Aの内部は、例えば、流入口5aの側から排出口5bの側に向かって、3枚の仕切板17a,17b,17cで4つの領域(流入口5aの側から第1領域51、第2領域52、第3領域53、第4領域54)に区分されている。   The inside of the reaction tank 5A is, for example, four regions (first region 51 from the inlet 5a side, from the inlet 5a side) from the inlet 5a side to the outlet 5b side by three partition plates 17a, 17b, and 17c. A second region 52, a third region 53, and a fourth region 54).

最も流入口5a側の仕切板17aは、流入口5aの側に第1領域51を形成するとともに第1領域51と隣接する第2領域52を区分する。仕切板17aの上部と下部は開放され、第1領域51と第2領域52が上部と下部で連通している。
最も排出口5b側の仕切板17cは、排出口5bの側に第4領域54を形成するとともに第4領域54と隣接する第3領域53を区分する。仕切板17cの上部と下部は開放され、第3領域53と第4領域54が上部と下部で連通している。
また、仕切板17aと仕切板17cの間に配設される仕切板17bは、第2領域52と第3領域53を区分する。仕切板17bは上部のみが開放されて、第2領域52と第3領域53が上部で連通している。
The partition plate 17a closest to the inflow port 5a forms a first region 51 on the inflow port 5a side and partitions a second region 52 adjacent to the first region 51. The upper and lower portions of the partition plate 17a are opened, and the first region 51 and the second region 52 communicate with each other at the upper and lower portions.
The partition plate 17c closest to the discharge port 5b forms a fourth region 54 on the discharge port 5b side and partitions a third region 53 adjacent to the fourth region 54. The upper and lower portions of the partition plate 17c are opened, and the third region 53 and the fourth region 54 communicate with each other at the upper and lower portions.
Further, the partition plate 17b disposed between the partition plate 17a and the partition plate 17c separates the second region 52 and the third region 53. Only the upper part of the partition plate 17b is opened, and the second region 52 and the third region 53 communicate with each other at the upper part.

排出口5bは第4領域54に開口して排水流路13が接続される。
排水流路13は、第4領域54の濃縮水W2が排水W3として流れる流路であって、排水W3の流れを止めるための排水流路弁20が備わる。排水流路弁20は、制御装置23によって開閉が制御される。
The discharge port 5b opens to the fourth region 54 and is connected to the drainage flow path 13.
The drainage channel 13 is a channel through which the concentrated water W2 in the fourth region 54 flows as the drainage W3, and is provided with a drainage channel valve 20 for stopping the flow of the drainage W3. The drain passage valve 20 is controlled to be opened and closed by the control device 23.

仕切板17a及び仕切板17cの上端部は同じ高さで、且つ、仕切板17bの上端部より高い位置にあり、排出口5bは、仕切板17a及び仕切板17cの上端部と仕切板17bの上端部の間の高さに形成されている。
排出口5bが形成される高さを第1水位WL1、仕切板17a及び仕切板17cの上端部の高さを第2水位WL2とする。第2水位WL2は第1水位WL1より高い水位となる。
The upper ends of the partition plate 17a and the partition plate 17c are at the same height and higher than the upper end portion of the partition plate 17b, and the discharge port 5b is connected to the upper ends of the partition plate 17a and the partition plate 17c and the partition plate 17b. It is formed at a height between the upper end portions.
The height at which the discharge port 5b is formed is the first water level WL1, and the heights of the upper ends of the partition plate 17a and the partition plate 17c are the second water level WL2. The second water level WL2 is higher than the first water level WL1.

また、第2領域52と第3領域53の上方には、濁質除去ホッパ21が備わっている。濁質除去ホッパ21は、例えば、上方が水面に平行に広がって開口部21aが開口している漏斗状を呈する。濁質除去ホッパ21は下方も開口し、下方の開口部には、制御装置23によって開閉が制御される排出弁19を備える排出管18が接続されている。
そして、濁質除去ホッパ21の上方の開口部21aの高さは、第1水位WL1と第2水位WL2の間に設定される。
A turbidity removal hopper 21 is provided above the second region 52 and the third region 53. The turbidity removal hopper 21 has, for example, a funnel shape in which the upper portion extends parallel to the water surface and the opening 21a is opened. The turbidity removal hopper 21 also opens below, and a discharge pipe 18 including a discharge valve 19 whose opening / closing is controlled by the control device 23 is connected to the lower opening.
The height of the opening 21a above the turbidity removal hopper 21 is set between the first water level WL1 and the second water level WL2.

オゾンガスが溶解した濃縮水W2は、マイクロバブル発生ノズル6から反応槽5Aの第1領域51に放出されるとオゾンマイクロバブルを発生するとともに第1領域51から第4領域54に向かって迂流する。
そして、スカム32を第2領域52及び第3領域53の水面に浮上させた後のオゾンマイクロバブルは、反応槽5Aの上方にオゾンガス層Gを形成して排オゾンガスとして溜まる。反応槽5Aには図示しない排オゾン処理装置が備わり、オゾンガス層Gの排オゾンガスが排オゾン処理装置を介して大気に放出され、オゾンガス層Gの圧力はほぼ大気圧に維持される。ここでは、反応槽5Aにおけるオゾンガス層Gの圧力を反応槽5Aの雰囲気圧力と称する。
そして、第1の実施形態において、反応槽5Aの雰囲気圧力は、ほぼ大気圧になる。
When the concentrated water W2 in which the ozone gas is dissolved is discharged from the microbubble generating nozzle 6 to the first region 51 of the reaction vessel 5A, ozone microbubbles are generated and the detoured water flows from the first region 51 toward the fourth region 54. .
The ozone microbubbles after the scum 32 is floated on the water surfaces of the second region 52 and the third region 53 form an ozone gas layer G above the reaction tank 5A and accumulate as exhaust ozone gas. The reaction tank 5A is provided with an exhaust ozone treatment device (not shown). The exhaust ozone gas in the ozone gas layer G is released to the atmosphere through the exhaust ozone treatment device, and the pressure of the ozone gas layer G is maintained at almost atmospheric pressure. Here, the pressure of the ozone gas layer G in the reaction tank 5A is referred to as the atmospheric pressure of the reaction tank 5A.
In the first embodiment, the atmospheric pressure in the reaction vessel 5A is almost atmospheric pressure.

排水流路弁20が開弁した状態の場合、反応槽5A内の水位は、第1水位WL1の高さまで上昇するが、被分離物質の濁質成分が分離した後の濃縮水W2は、第4領域54の排出口5bから排水W3として排水流路13を流れて排水されるため、図3に示すように、反応槽5A内の水位は第1水位WL1より高く上昇しない。
そして、流入口5aから流入する濃縮水W2からオゾンマイクロバブルの浮上分離効果によって分離する濁質成分が、主に第2領域52及び第3領域53の水面にスカム32として堆積する。
When the drainage channel valve 20 is opened, the water level in the reaction tank 5A rises to the height of the first water level WL1, but the concentrated water W2 after the turbid component of the substance to be separated is separated Since the water flows through the drainage flow path 13 as the drainage W3 from the discharge port 5b of the four regions 54, the water level in the reaction tank 5A does not rise higher than the first water level WL1 as shown in FIG.
Then, turbid components separated from the concentrated water W2 flowing in from the inflow port 5a by the floating separation effect of the ozone microbubbles are accumulated mainly as the scum 32 on the water surfaces of the second region 52 and the third region 53.

例えば、制御装置23は、所定の時間間隔で排水流路弁20を閉弁するとともに排出弁19を開弁する。
第4領域54の濃縮水W2は、排水流路13の流れが止められて排水されず、図4の(a)に示すように、反応槽5A内の水位が第1水位WL1以上に上昇する。
そして、図4の(b)に示すように、反応槽5A内の水位が濁質除去ホッパ21の開口部21aの高さに達すると、第2領域52及び第3領域53の水面に堆積されたスカム32は濁質除去ホッパ21に流れ込み、排出管18を流れて反応槽5Aから排出される。
For example, the control device 23 closes the drain passage valve 20 and opens the discharge valve 19 at predetermined time intervals.
The concentrated water W2 in the fourth region 54 is not drained because the flow of the drainage channel 13 is stopped, and the water level in the reaction tank 5A rises to the first water level WL1 or higher as shown in FIG. .
Then, as shown in FIG. 4B, when the water level in the reaction tank 5A reaches the height of the opening 21a of the turbidity removal hopper 21, it is deposited on the water surface of the second region 52 and the third region 53. The scum 32 flows into the turbidity removal hopper 21, flows through the discharge pipe 18, and is discharged from the reaction tank 5A.

なお、制御装置23が排水流路弁20を閉弁して排出弁19を開弁する時間間隔は、例えば、スカム32の堆積速度等に基づいて適宜設定し、スカム32の堆積量が濁質除去ホッパ21の処理能力(スカム32の排出能力)を超えない状態で、制御装置23が排水流路弁20を閉弁して排出弁19を開弁するように構成すればよい。   The time interval at which the control device 23 closes the drainage flow path valve 20 and opens the discharge valve 19 is set as appropriate based on, for example, the deposition rate of the scum 32, and the amount of accumulation of the scum 32 is turbid. What is necessary is just to comprise so that the control apparatus 23 may close the drainage flow path valve 20, and open the discharge valve 19, in the state which does not exceed the processing capacity of the removal hopper 21 (discharge capacity of the scum 32).

そして、制御装置23は、排水流路弁20の閉弁と排出弁19の開弁を所定の設定時間に亘って維持した後、排水流路弁20を開弁するとともに排出弁19を閉弁する。
図3に示すように、第4領域54の濃縮水W2は排水流路13を流れて排水W3として排水され、反応槽5A内の水位が第1水位WL1の高さに維持される。
制御装置23が排水流路弁20の閉弁と排出弁19の開弁を維持する時間は、濁質除去ホッパ21の処理能力等に基づいて適宜設定すればよい。
Then, the control device 23 maintains the closing of the drain passage valve 20 and the opening of the discharge valve 19 for a predetermined set time, and then opens the drain passage valve 20 and closes the discharge valve 19. To do.
As shown in FIG. 3, the concentrated water W2 in the fourth region 54 flows through the drainage flow path 13 and is drained as drainage W3, and the water level in the reaction tank 5A is maintained at the height of the first water level WL1.
What is necessary is just to set suitably the time for which the control apparatus 23 maintains the valve closing of the drainage flow path valve 20 and the valve opening of the discharge valve 19 based on the processing capacity of the turbidity removal hopper 21 or the like.

なお、制御装置23が所定の設定時間ごとに排水流路弁20を閉弁し、排出弁19を開弁する構成のほか、例えば、図示しないスカム検知装置を備え、スカム検知装置が検知するスカム32の堆積量に基づいて、制御装置23が排水流路弁20を閉弁し、排出弁19を開弁する構成としてもよい。
図示しないスカム検知装置は、例えば、前記した特許文献5に記載されるものを利用できる。
In addition to the configuration in which the control device 23 closes the drain passage valve 20 and opens the discharge valve 19 every predetermined set time, for example, a scum that includes a scum detection device (not shown) and is detected by the scum detection device. Based on the accumulation amount of 32, the control device 23 may close the drain flow path valve 20 and open the discharge valve 19.
As the scum detection device (not shown), for example, the one described in Patent Document 5 can be used.

以上のように、図1に示す膜処理設備100は、原水W0となる海水に含まれる被分離物質をRO膜処理装置1及び反応槽5Aで除去することができる。
本実施形態によれば、オゾンマイクロバブルの酸化力で濃縮水W2に含まれる有機物を分解することができ、さらに、オゾンマイクロバブルの浮上分離効果で被分離物質の濁質成分を除去できるので、海水の淡水化にともなって排出される排水W3の水質を向上でき、環境への負荷を軽減できる。
As described above, the membrane treatment facility 100 shown in FIG. 1 can remove the substance to be separated contained in the seawater as the raw water W0 by the RO membrane treatment apparatus 1 and the reaction tank 5A.
According to the present embodiment, the organic matter contained in the concentrated water W2 can be decomposed by the oxidizing power of ozone microbubbles, and further, turbid components of the substance to be separated can be removed by the floating separation effect of the ozone microbubbles. It is possible to improve the water quality of the drainage W3 discharged along with the desalination of seawater, and to reduce the burden on the environment.

また、RO膜処理装置1に流入する前の原水(海水)W0にオゾンガスを混合し、原水W0に含まれる有機物を分解することができるとともに細菌を殺菌できる。
したがって、RO膜処理装置1に備わるRO膜のファウリング(汚染)を防止でき、膜処理設備100の運転コストを低減できるという優れた効果を奏する。
また、特別の動力を用いることなく、RO膜処理装置1(図1参照)から排出された濃縮水W2が濃縮水流路11(図1参照)を流れるときの圧力(残圧)を利用して微細気泡(オゾンマイクロバブル)を発生できるので、エネルギ消費の少ない高い経済性で膜処理設備100(図1参照)を運転できるという優れた効果を奏する。
Moreover, ozone gas can be mixed with the raw water (seawater) W0 before flowing into the RO membrane treatment apparatus 1, so that organic substances contained in the raw water W0 can be decomposed and bacteria can be sterilized.
Therefore, the RO membrane fouling (contamination) of the RO membrane treatment apparatus 1 can be prevented, and the operation cost of the membrane treatment equipment 100 can be reduced.
In addition, by using the pressure (residual pressure) when the concentrated water W2 discharged from the RO membrane treatment apparatus 1 (see FIG. 1) flows through the concentrated water flow path 11 (see FIG. 1) without using special power. Since microbubbles (ozone microbubbles) can be generated, an excellent effect that the membrane treatment facility 100 (see FIG. 1) can be operated with high economic efficiency with low energy consumption is achieved.

《第2の実施形態》
図5を参照して、第2の実施形態について説明する。なお、図5においては、図1に示す膜処理設備100と同じ構成要素には同じ符号を付し、詳細な説明は適宜省略する。
図5に示すように、第2の実施形態に係る膜処理設備101は、原水流路35に上流混合器9(図1参照)が配設されず、前処理装置16Aで前処理された原水W0は高圧ポンプ2で5.5〜7.0MPaに加圧された後にRO膜処理装置1に圧送される。
そして、RO膜処理装置1に圧送された原水W0の一部はRO膜を透過して被分離物質が除去され、被分離物質を含まない処理水W1が生成される。
この処理水W1は処理水流路10を介して膜処理設備101から排出される。
なお、第2の実施形態に係る膜処理設備101は、例えば海水の淡水化装置を構成し、原水W0は海水とする。
<< Second Embodiment >>
A second embodiment will be described with reference to FIG. In FIG. 5, the same components as those in the membrane treatment facility 100 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
As shown in FIG. 5, the membrane treatment facility 101 according to the second embodiment does not include the upstream mixer 9 (see FIG. 1) in the raw water flow path 35, and the raw water pretreated by the pretreatment device 16 </ b> A. W0 is pressurized to 5.5 to 7.0 MPa by the high pressure pump 2 and then fed to the RO membrane treatment apparatus 1.
And a part of raw | natural water W0 pumped by the RO membrane processing apparatus 1 permeate | transmits a RO membrane, a to-be-separated substance is removed, and the treated water W1 which does not contain a to-be-separated substance is produced | generated.
This treated water W1 is discharged from the membrane treatment facility 101 via the treated water flow path 10.
Note that the membrane treatment facility 101 according to the second embodiment configures a seawater desalination apparatus, for example, and the raw water W0 is seawater.

一方、RO膜を透過しない原水W0は、被分離物質を含む濃縮水W2となってRO膜処理装置1から排出される。
RO膜処理装置1での圧力損失は最大0.3MPa程度であることから、濃縮水W2は5.2〜6.7MPaの圧力でRO膜処理装置1から排出され、その圧力の一部が高圧ポンプ2の駆動に利用される。その後、濃縮水W2は、0.5〜0.3MPaの圧力がかかった状態で濃縮水流路11を流れてオゾン混合器3に流入し、オゾン発生器7で発生したオゾンガスが混合された後に圧力調整装置4に流入して溶解水槽4aの内部圧力を加圧する。
On the other hand, the raw water W0 that does not pass through the RO membrane becomes the concentrated water W2 containing the substance to be separated and is discharged from the RO membrane treatment apparatus 1.
Since the maximum pressure loss in the RO membrane treatment apparatus 1 is about 0.3 MPa, the concentrated water W2 is discharged from the RO membrane treatment apparatus 1 at a pressure of 5.2 to 6.7 MPa, and a part of the pressure is high. Used to drive the pump 2. After that, the concentrated water W2 flows through the concentrated water flow path 11 in a state where a pressure of 0.5 to 0.3 MPa is applied, flows into the ozone mixer 3, and the pressure after the ozone gas generated by the ozone generator 7 is mixed. It flows into the adjustment apparatus 4 and pressurizes the internal pressure of the dissolution water tank 4a.

そして、圧力調整装置4に流入した濃縮水W2には、調圧器4bによって内部圧力が所定の設定圧力(濃縮水流路11を流れる濃縮水W2の圧力以下で反応槽5Bの雰囲気圧力以上、且つ、0.15MPa以上)に調整される溶解水槽4aでオゾンガスが溶解する。
このように、第2の実施形態に係る膜処理設備101に備わる圧力調整装置4の溶解水槽4aも第1の実施形態と同様に、濃縮水W2がRO膜処理装置1から排出されるときの圧力(残圧)で加圧され、濃縮水W2にオゾンガスが溶解するように構成される。
また、第2の実施形態に係る反応槽5Bの雰囲気圧力は、第1の実施形態に係る反応槽5A(図1参照)の雰囲気圧力と同様に定義され、ほぼ大気圧になる。
The concentrated water W2 that has flowed into the pressure adjusting device 4 has an internal pressure of a predetermined set pressure (below the pressure of the concentrated water W2 flowing through the concentrated water passage 11 and above the atmospheric pressure of the reaction tank 5B) by the pressure regulator 4b, and The ozone gas is dissolved in the dissolved water tank 4a adjusted to 0.15 MPa or more.
As described above, the dissolved water tank 4a of the pressure adjusting device 4 provided in the membrane treatment facility 101 according to the second embodiment is also used when the concentrated water W2 is discharged from the RO membrane treatment device 1 as in the first embodiment. Pressurized with pressure (residual pressure) and configured to dissolve ozone gas in the concentrated water W2.
Moreover, the atmospheric pressure of the reaction vessel 5B according to the second embodiment is defined similarly to the atmospheric pressure of the reaction vessel 5A (see FIG. 1) according to the first embodiment, and is almost atmospheric pressure.

圧力調整装置4の溶解水槽4aでオゾンガスが溶解した濃縮水W2は、マイクロバブル発生ノズル6で反応槽5Bに減圧放出されてオゾンマイクロバブルが発生し、オゾンマイクロバブルの浮上分離効果によって、濃縮水W2に含まれる被分離物質の濁質成分がスカム32として浮上分離した後、排水W3として排水流路13を流れて排水される。
一方、浮上分離して水面に堆積するスカム32は、反応槽5Bに備わる濁質除去ホッパ21によって反応槽5Bから排出される。
スカム32を濁質除去ホッパ21によって反応槽5Bから排出する方法は、第1の実施形態に係る反応槽5A(図3参照)からスカム32を排出する方法と同じ方法とすればよい。
The concentrated water W2 in which the ozone gas is dissolved in the dissolved water tank 4a of the pressure adjusting device 4 is discharged under reduced pressure into the reaction tank 5B by the microbubble generating nozzle 6 to generate ozone microbubbles, and the concentrated water is generated by the floating separation effect of the ozone microbubbles. After the turbid component of the substance to be separated contained in W2 floats and separates as scum 32, it flows through drainage channel 13 as drainage W3 and is drained.
On the other hand, the scum 32 that floats and accumulates on the water surface is discharged from the reaction tank 5B by the turbidity removal hopper 21 provided in the reaction tank 5B.
The method for discharging the scum 32 from the reaction tank 5B by the turbidity removal hopper 21 may be the same as the method for discharging the scum 32 from the reaction tank 5A according to the first embodiment (see FIG. 3).

第2の実施形態に係る膜処理設備101に備わる反応槽5Bは、図3に示す反応槽5Aとほぼ同じ構成であり、図5に示すように、溶解水槽4aの調圧器4bがオゾン流路12を介して接続される点が異なっている。   The reaction tank 5B provided in the membrane treatment facility 101 according to the second embodiment has substantially the same configuration as the reaction tank 5A shown in FIG. 3, and as shown in FIG. 5, the pressure regulator 4b of the dissolved water tank 4a is an ozone channel. 12 is connected through 12.

第2の実施形態に係る膜処理設備101において、溶解水槽4aに配設される調圧器4bの圧力調整によってエアベント14(図2の(a)参照)又は背圧弁15(図2の(a)参照)から排出されるオゾンガスは、オゾン流路12を流れて反応槽5Bの内部に注入される。
この構成によって、反応槽5Bの溶存オゾン濃度が増加して反応槽5Bにおける濃縮水W2の酸化がさらに促進される。反応槽5B内の濃縮水W2に残存する有機物はさらに分解されるとともに濃縮水W2内に残存する細菌はさらに殺菌され、排水流路13からの排水W3の水質がさらに向上する。
In the membrane treatment facility 101 according to the second embodiment, the air vent 14 (see FIG. 2A) or the back pressure valve 15 (FIG. 2A) is adjusted by adjusting the pressure of the pressure regulator 4b disposed in the dissolved water tank 4a. The ozone gas discharged from the reference) flows through the ozone flow path 12 and is injected into the reaction vessel 5B.
With this configuration, the concentration of dissolved ozone in the reaction tank 5B increases, and the oxidation of the concentrated water W2 in the reaction tank 5B is further promoted. The organic matter remaining in the concentrated water W2 in the reaction tank 5B is further decomposed and the bacteria remaining in the concentrated water W2 are further sterilized, and the quality of the drainage W3 from the drainage channel 13 is further improved.

第2の実施形態に係る膜処理設備101(図5参照)では、オゾンマイクロバブルの酸化力によって濃縮水W2に含まれる被分離物質の有機物を分解できるとともに、オゾンマイクロバブルの浮上分離効果によって濃縮水W2に含まれる被分離物質の濁質成分を除去できるので、海水の淡水化にともなって排出される濃縮水W2の水質を向上することができ、環境への負荷を軽減できる。また、溶解水槽4aから排出されて反応槽5Bに注入されるオゾンガスで、反応槽5B内の濃縮水W2を酸化処理できるので、排水W3として排出される濃縮水W2の水質をさらに向上できるという優れた効果を奏する。
また、特別の動力を用いることなく、RO膜処理装置1(図5参照)から排出された濃縮水W2が濃縮水流路11(図5参照)を流れるときの圧力(残圧)を利用して微細気泡(オゾンマイクロバブル)を発生できるので、エネルギ消費の少ない高い経済性で膜処理設備101を運転できるという優れた効果を奏する。
In the membrane treatment facility 101 (see FIG. 5) according to the second embodiment, the organic matter of the substance to be separated contained in the concentrated water W2 can be decomposed by the oxidizing power of the ozone microbubbles and concentrated by the floating separation effect of the ozone microbubbles. Since the turbid component of the substance to be separated contained in the water W2 can be removed, the quality of the concentrated water W2 discharged along with the desalination of seawater can be improved, and the burden on the environment can be reduced. Moreover, since the concentrated water W2 in the reaction tank 5B can be oxidized with ozone gas discharged from the dissolved water tank 4a and injected into the reaction tank 5B, the quality of the concentrated water W2 discharged as the waste water W3 can be further improved. Has an effect.
Further, the pressure (residual pressure) when the concentrated water W2 discharged from the RO membrane treatment apparatus 1 (see FIG. 5) flows through the concentrated water flow path 11 (see FIG. 5) without using special power is used. Since fine bubbles (ozone microbubbles) can be generated, the membrane processing equipment 101 can be operated with high economic efficiency with low energy consumption.

《第3の実施形態》
図6を参照して、第3の実施形態について説明する。なお、図6においては、図1に示す膜処理設備100と同じ構成要素には同じ符号を付し、詳細な説明は適宜省略する。
図6に示す、第3の実施形態に係る膜処理設備102は、例えば下水再生処理装置を構成し、原水W0は下水(下水処理水)、又は工場廃液等を含んだ産業廃水である。
<< Third Embodiment >>
The third embodiment will be described with reference to FIG. In FIG. 6, the same components as those in the membrane treatment facility 100 shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
The membrane treatment facility 102 according to the third embodiment shown in FIG. 6 constitutes, for example, a sewage regeneration treatment device, and the raw water W0 is industrial wastewater containing sewage (sewage treatment water), factory waste liquid, or the like.

図6に示すように、第3の実施形態に係る膜処理設備102には、最初沈殿池25、生物反応槽嫌気槽26、生物反応槽好気槽27及び最終沈殿池28を含んで構成される前処理装置16Bが備わっている。
生物反応槽嫌気槽26、生物反応槽好気槽27は、原水W0に含まれる有機物を生物分解する機能を有し、生物反応槽を構成する。
As shown in FIG. 6, the membrane treatment facility 102 according to the third embodiment includes a first sedimentation tank 25, a biological reaction tank anaerobic tank 26, a biological reaction tank aerobic tank 27, and a final sedimentation tank 28. A pre-processing device 16B is provided.
The biological reaction tank anaerobic tank 26 and the biological reaction tank aerobic tank 27 have a function of biodegrading organic substances contained in the raw water W0, and constitute a biological reaction tank.

原水W0は、最初沈殿池25を低流速で流れながら浮遊する固形物を沈殿させた後、生物反応槽に流れ込み、含まれる有機物が生物分解される。   The raw water W0 first precipitates a solid substance floating while flowing in the sedimentation basin 25 at a low flow rate, and then flows into the biological reaction tank, and the contained organic matter is biodegraded.

さらに、原水W0は最終沈殿池28に流れ込み、生物反応槽で生物分解に使用した細菌を含んだ汚泥(活性汚泥)を沈殿させて取り除く。
このため、最終沈殿池28の底部には活性汚泥が沈殿する。この活性汚泥は生物分解に利用できる細菌を含んでいることから、その一部を返送汚泥として生物反応槽嫌気槽26に戻して生物分解に再利用し、残った汚泥が余剰汚泥として最終沈殿池28に堆積する。
Further, the raw water W0 flows into the final sedimentation basin 28, and the sludge containing bacteria used for biodegradation in the biological reaction tank (activated sludge) is settled and removed.
For this reason, activated sludge is deposited at the bottom of the final sedimentation tank 28. Since this activated sludge contains bacteria that can be used for biodegradation, a part of it is returned to the biological reaction tank anaerobic tank 26 as return sludge and reused for biodegradation, and the remaining sludge is used as surplus sludge as the final sludge. 28.

このように、前処理装置16Bで前処理されて有機物が生物分解された後の原水W0は、高圧ポンプ2の上流に備わる上流混合器9を経由して原水流路35を流れ、高圧ポンプ2で5.5〜7.0MPaに加圧された後にRO膜処理装置1に圧送される。
そして、RO膜処理装置1に圧送された原水W0の一部はRO膜を透過して被分離物質が除去され、被分離物質を含まない処理水W1が生成される。
この処理水W1は処理水流路10を介して膜処理設備102から排出される。
なお、RO膜処理装置1のRO膜を透過するときに原水W0から除去される被分離物質は、有機物、微生物、菌類、化学物質、濁質成分となる固形浮遊物など、原水W0である下水や産業廃水に含まれる物質である。
Thus, the raw water W0 that has been pretreated by the pretreatment device 16B and biodegraded organic matter flows through the raw water flow path 35 via the upstream mixer 9 provided upstream of the high pressure pump 2, and the high pressure pump 2. After being pressurized to 5.5 to 7.0 MPa, the pressure is fed to the RO membrane processing apparatus 1.
And a part of raw | natural water W0 pumped by the RO membrane processing apparatus 1 permeate | transmits a RO membrane, a to-be-separated substance is removed, and the treated water W1 which does not contain a to-be-separated substance is produced | generated.
This treated water W1 is discharged from the membrane treatment facility 102 via the treated water flow path 10.
In addition, the to-be-separated substance removed from raw | natural water W0 when permeate | transmitting the RO membrane of RO membrane treatment apparatus 1 is the sewage which is raw | natural water W0, such as a solid suspended matter used as an organic substance, microorganisms, fungi, a chemical substance, and a turbid component. And substances contained in industrial wastewater.

一方、RO膜を透過しない原水W0は、被分離物質を含む濃縮水W2となってRO膜処理装置1から排出される。   On the other hand, the raw water W0 that does not pass through the RO membrane becomes the concentrated water W2 containing the substance to be separated and is discharged from the RO membrane treatment apparatus 1.

第3の実施形態に係る膜処理設備102に備わる圧力調整装置4の溶解水槽4aも第1の実施形態と同様に濃縮水W2がRO膜処理装置1から排出されて濃縮水流路11を流れるときの圧力(残圧)で加圧され、濃縮水W2にオゾンガスが溶解するように構成される。   Similarly to the first embodiment, when the concentrated water W2 is discharged from the RO membrane processing apparatus 1 and flows through the concentrated water channel 11 in the dissolved water tank 4a of the pressure adjusting device 4 provided in the membrane treatment facility 102 according to the third embodiment. Pressure (residual pressure) so that the ozone gas is dissolved in the concentrated water W2.

また、調圧器4bの調圧によって溶解水槽4aから排出されたオゾンガスは、第1の実施形態と同様、原水流路35に備わる上流混合器9で原水W0に混合される。そして、オゾンガスの酸化作用によって、原水W0に含まれる有機物を分解除去するとともに原水W0に含まれる細菌を殺菌する。   Moreover, the ozone gas discharged | emitted from the dissolved water tank 4a by the pressure regulation of the pressure regulator 4b is mixed with the raw | natural water W0 with the upstream mixer 9 with which the raw | natural water flow path 35 is provided similarly to 1st Embodiment. And the organic substance contained in raw | natural water W0 is decomposed | disassembled and the bacteria contained in raw | natural water W0 are disinfected by the oxidizing action of ozone gas.

圧力調整装置4の溶解水槽4aでオゾンガスが溶解した濃縮水W2は、マイクロバブル発生ノズル6で反応槽5Cに減圧放出されてオゾンマイクロバブルが発生し、オゾンマイクロバブルの浮上分離効果によって、濃縮水W2に含まれる被分離物質の濁質成分が浮上分離する。   The concentrated water W2 in which the ozone gas is dissolved in the dissolved water tank 4a of the pressure adjusting device 4 is discharged under reduced pressure into the reaction tank 5C by the microbubble generating nozzle 6 to generate ozone microbubbles. The turbid component of the substance to be separated contained in W2 is floated and separated.

図7に側面視で内部構造を示すように、第3の実施形態に係る膜処理設備102(図6参照)に備わる反応槽5Cは、第1の実施形態に係る反応槽5A(図3参照)とほぼ同じ構成であり、第1領域51に余剰汚泥流路31が接続される点、及び、排水流路13(図3参照)の代わりに返流水流路29が排出口5bに接続される点が異なっている。
余剰汚泥流路31は、最終沈殿池28と反応槽5Cの第1領域51を接続する管路で、最終沈殿池28に蓄積している余剰汚泥が原水W0の一部からなる同伴水W4に含まれて余剰汚泥流路31を流れ、第1領域51に流入する。
As shown in the side view in FIG. 7, the reaction tank 5C provided in the membrane treatment facility 102 (see FIG. 6) according to the third embodiment is the same as the reaction tank 5A according to the first embodiment (see FIG. 3). ), And the surplus sludge channel 31 is connected to the first region 51, and the return water channel 29 is connected to the outlet 5b instead of the drain channel 13 (see FIG. 3). Is different.
The surplus sludge flow path 31 is a pipe line connecting the final sedimentation basin 28 and the first region 51 of the reaction tank 5C, and the surplus sludge accumulated in the final sedimentation basin 28 is converted into the accompanying water W4 made up of a part of the raw water W0. It flows through the excess sludge flow path 31 and flows into the first region 51.

最終沈殿池28から余剰汚泥流路31を流れて反応槽5Cの第1領域51に流入する余剰汚泥の成分である有機物は、マイクロバブル発生ノズル6からの減圧放出によって発生するオゾンマイクロバブルの酸化作用で分解され、余剰汚泥に含まれる細菌は、オゾンマイクロバブルの酸化作用で殺菌される。したがって、最終沈殿池28に蓄積する余剰汚泥を反応槽5Cで分解して減らすことができる。
また、余剰汚泥の同伴水W4と濃縮水W2に含まれる被分離物質の濁質成分及び分解されない余剰汚泥は、オゾンマイクロバブルの浮上分離効果によって、主に第2領域52及び第3領域53の水面にスカム32として堆積する。
Organic matter, which is a component of excess sludge flowing from the final sedimentation basin 28 through the excess sludge flow path 31 and flowing into the first region 51 of the reaction tank 5C, is oxidized by ozone microbubbles generated by decompression discharge from the microbubble generation nozzle 6. The bacteria decomposed by the action and contained in the excess sludge are sterilized by the oxidizing action of ozone microbubbles. Therefore, surplus sludge accumulated in the final sedimentation basin 28 can be decomposed and reduced in the reaction tank 5C.
Moreover, the turbid component of the substance to be separated contained in the entrained water W4 and the concentrated water W2 of the excess sludge and the excess sludge that is not decomposed are mainly in the second region 52 and the third region 53 due to the floating separation effect of the ozone microbubbles. Deposits as scum 32 on the water surface.

被分離物質の濁質成分が分離した後の濃縮水W2及び、被分離物質の濁質成分と余剰汚泥が分離した後の同伴水W4は、返流水W5として、第4領域54から返流水流路29に排出される。
図6に示すように、返流水流路29は前処理装置16Bの最初沈殿池25に接続され、反応槽5Cから排出された返流水W5は返流水流路29を流れて最初沈殿池25に流入(返流)する。
Concentrated water W2 after separation of the turbid component of the substance to be separated and entrained water W4 after separation of the turbid component of the substance to be separated and excess sludge are returned from the fourth region 54 as return water W5. It is discharged to the passage 29.
As shown in FIG. 6, the return water flow path 29 is connected to the first settling basin 25 of the pretreatment device 16B, and the return water W5 discharged from the reaction tank 5C flows through the return water flow path 29 to the first settling basin 25. Inflow (return).

また、図7に示すように、反応槽5Cには制御装置23が備わり、濁質除去ホッパ21に接続される排出管18に備わる排出弁19、及び返流水流路29に備わる返流流路弁30を開閉する。   Further, as shown in FIG. 7, the reaction vessel 5 </ b> C is provided with a control device 23, a discharge valve 19 provided in the discharge pipe 18 connected to the turbidity removal hopper 21, and a return flow path provided in the return water flow path 29. The valve 30 is opened and closed.

返流流路弁30が閉弁すると、第4領域54から返流水W5が排出されず、反応槽5C内の水位が第1水位WL1以上に上昇する。そして、反応槽5C内の水位が濁質除去ホッパ21の開口部21aの高さに達すると、第2領域52及び第3領域53の水面に堆積しているスカム32が、濁質除去ホッパ21に流れ込み、排出管18を流れて反応槽5Cから排出される。   When the return flow path valve 30 is closed, the return water W5 is not discharged from the fourth region 54, and the water level in the reaction tank 5C rises above the first water level WL1. When the water level in the reaction tank 5C reaches the height of the opening 21a of the turbidity removal hopper 21, the scum 32 deposited on the water surfaces of the second region 52 and the third region 53 becomes turbidity removal hopper 21. , Flows through the discharge pipe 18 and is discharged from the reaction vessel 5C.

そこで、制御装置23は、所定の時間間隔で返流流路弁30を閉弁するとともに排出弁19を開弁し、堆積するスカム32を濁質除去ホッパ21によって反応槽5Cから排出する。
なお、制御装置23が返流流路弁30を閉弁して排出弁19を開弁する時間間隔は、例えば、スカム32の堆積速度等に基づいて適宜設定し、スカム32の堆積量が濁質除去ホッパ21の処理能力(スカム32の排出能力)を超えない状態で、制御装置23が返流流路弁30を閉弁して排出弁19を開弁するように構成すればよい。
Therefore, the control device 23 closes the return flow path valve 30 and opens the discharge valve 19 at predetermined time intervals, and discharges the accumulated scum 32 from the reaction tank 5C by the turbidity removal hopper 21.
The time interval at which the control device 23 closes the return flow path valve 30 and opens the discharge valve 19 is set as appropriate based on, for example, the deposition rate of the scum 32, and the accumulation amount of the scum 32 is turbid. What is necessary is just to comprise so that the control apparatus 23 may close the return flow path valve 30 and open the discharge valve 19 in the state which does not exceed the processing capacity of the quality removal hopper 21 (discharge capacity of the scum 32).

そして、制御装置23は、返流流路弁30の閉弁と排出弁19の開弁を所定の設定時間に亘って維持した後、返流流路弁30を開弁するとともに排出弁19を閉弁する。
第4領域54の濃縮水W2は返流水W5として返流水流路29を流れて排出され、反応槽5C内の水位が第1水位WL1の高さに維持される。
Then, the control device 23 maintains the return flow passage valve 30 closed and the discharge valve 19 opened for a predetermined set time, and then opens the return flow passage valve 30 and the discharge valve 19. Close the valve.
The concentrated water W2 in the fourth region 54 flows through the return water passage 29 as the return water W5 and is discharged, and the water level in the reaction tank 5C is maintained at the height of the first water level WL1.

制御装置23が返流流路弁30の閉弁と排出弁19の開弁を維持する所定時間は、濁質除去ホッパ21の処理能力等に基づいて適宜設定すればよい。
このように、第3の実施形態に係る反応槽5Cは、制御装置23が返流流路弁30及び排出弁19を開閉して堆積するスカム32を排出する。
The predetermined time during which the control device 23 keeps the return flow passage valve 30 closed and the discharge valve 19 open may be set as appropriate based on the processing capacity of the turbidity removal hopper 21.
Thus, in the reaction tank 5C according to the third embodiment, the control device 23 opens and closes the return flow passage valve 30 and the discharge valve 19 to discharge the scum 32 accumulated.

第3の実施形態に係る膜処理設備102(図6参照)は、反応槽5C(図6参照)で被分離物質の濁質成分が除去されて浄化された返流水W5を最初沈殿池25(図6参照)に返流する構成であり、最終沈殿池28から反応槽5Cに流入する余剰汚泥の同伴水W4を原水W0とともにRO膜処理に利用できる。   The membrane treatment facility 102 (see FIG. 6) according to the third embodiment uses the return water W5 purified by removing the turbid components of the substance to be separated in the reaction tank 5C (see FIG. 6) as the first sedimentation tank 25 ( The surplus sludge entrained water W4 flowing into the reaction tank 5C from the final sedimentation tank 28 can be used for the RO membrane treatment together with the raw water W0.

なお、反応槽5Cで有機物や濁質成分が除去されて浄化された返流水W5を最初沈殿池25に返流せず、膜処理設備102の系外、すなわち、外部環境に排水として排出する構成であってもよい。   Note that the return water W5 purified by removing organic substances and turbid components in the reaction tank 5C is not returned to the settling basin 25 at first, but discharged as waste water to the outside of the membrane treatment facility 102, that is, to the external environment. It may be.

第3の実施形態に係る膜処理設備102(図6参照)によると、オゾンマイクロバブルの酸化力によって最終沈殿池28(図6参照)に蓄積する余剰汚泥を分解できるので余剰汚泥を減量することができる。
また、オゾンマイクロバブルの浮上分離効果によって濃縮水W2に含まれる被分離物質の濁質成分を除去できる。したがって、環境への負荷を軽減できるという優れた効果を奏する。
また、上流混合器9(図6参照)で原水W0にオゾンガスを混合することで、原水W0に含まれる有機物を分解し、且つ、細菌を殺菌できる。したがって、RO膜のファウリングを防止でき、膜処理設備102の運転コストを軽減できるという優れた効果を奏する。
また、特別の動力を用いることなく、RO膜処理装置1(図6参照)から排出された濃縮水W2の圧力(残圧)を利用して微細気泡(オゾンマイクロバブル)を発生できるので、エネルギ消費の少ない高い経済性で膜処理設備102を運転できるという優れた効果を奏する。
According to the membrane treatment facility 102 (see FIG. 6) according to the third embodiment, excess sludge accumulated in the final sedimentation basin 28 (see FIG. 6) can be decomposed by the oxidizing power of ozone microbubbles, so that excess sludge is reduced. Can do.
Moreover, the suspended component of the to-be-separated substance contained in the concentrated water W2 can be removed by the floating separation effect of ozone microbubbles. Therefore, there is an excellent effect that the load on the environment can be reduced.
Moreover, by mixing ozone gas with raw | natural water W0 with the upstream mixer 9 (refer FIG. 6), the organic substance contained in raw | natural water W0 can be decomposed | disassembled and bacteria can be sterilized. Therefore, the RO membrane can be prevented from fouling, and the operation cost of the membrane treatment facility 102 can be reduced.
In addition, fine bubbles (ozone microbubbles) can be generated using the pressure (residual pressure) of the concentrated water W2 discharged from the RO membrane treatment apparatus 1 (see FIG. 6) without using special power. There is an excellent effect that the membrane treatment facility 102 can be operated with high economic efficiency with low consumption.

《第4の実施形態》
図8を参照して、第4の実施形態に係る膜処理設備103を説明する。なお、図8においては、図6に示す膜処理設備102と同じ構成要素には同じ符号を付し、詳細な説明は適宜省略する。
図8に示す、第4の実施形態に係る膜処理設備103は、例えば下水再生処理装置を構成し、原水W0は下水(下水処理水)又は工場廃液等を含んだ産業廃水である。
<< Fourth Embodiment >>
With reference to FIG. 8, the film processing equipment 103 according to the fourth embodiment will be described. In FIG. 8, the same components as those of the membrane treatment facility 102 shown in FIG. 6 are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
The membrane treatment facility 103 according to the fourth embodiment shown in FIG. 8 constitutes, for example, a sewage regeneration treatment device, and the raw water W0 is industrial wastewater containing sewage (sewage treatment water) or factory wastewater.

図8に示すように、第4の実施形態に係る膜処理設備103には、最初沈殿池25、膜分離活性汚泥法によって原水W0を生物処理する活性汚泥処理槽34を含んで膜分離活性汚泥処理装置を構成する前処理装置16Cが備わっている。
さらに、活性汚泥処理槽34には固液分離膜33が備わっている。
As shown in FIG. 8, the membrane treatment facility 103 according to the fourth embodiment includes an activated sludge treatment tank 34 that biologically treats raw water W0 by a first sedimentation basin 25 and a membrane separation activated sludge method. A pre-processing device 16C constituting the processing device is provided.
Further, the activated sludge treatment tank 34 is provided with a solid-liquid separation membrane 33.

原水W0は、最初沈殿池25を低流速で流れながら浮遊する固形物を沈殿させ、その後、活性汚泥処理槽34に流れ込んで膜分離活性汚泥法によって、有機物等が生物分解処理される。そして、固液分離膜33を通過した原水W0は、高圧ポンプ2の上流に備わる上流混合器9を経由して原水流路35を流れ、高圧ポンプ2で5.5〜7.0MPaに加圧された後にRO膜処理装置1に圧送される。
そして、RO膜処理装置1に圧送された原水W0の一部はRO膜を透過して被分離物質が除去され、被分離物質を含まない処理水W1が生成される。
The raw water W0 first precipitates solid matter that flows while flowing through the sedimentation basin 25 at a low flow rate, and then flows into the activated sludge treatment tank 34 to biodegrade organic matter and the like by the membrane separation activated sludge method. And the raw | natural water W0 which passed the solid-liquid separation membrane 33 flows through the raw | natural water flow path 35 via the upstream mixer 9 provided in the upstream of the high pressure pump 2, and is pressurized to 5.5-7.0MPa with the high pressure pump 2 Then, it is pumped to the RO membrane treatment apparatus 1.
And a part of raw | natural water W0 pumped by the RO membrane processing apparatus 1 permeate | transmits a RO membrane, a to-be-separated substance is removed, and the treated water W1 which does not contain a to-be-separated substance is produced | generated.

一方、RO膜を透過しない原水W0は、被分離物質を含む濃縮水W2となってRO膜処理装置1から排出される。   On the other hand, the raw water W0 that does not pass through the RO membrane becomes the concentrated water W2 containing the substance to be separated and is discharged from the RO membrane treatment apparatus 1.

そして、オゾン混合器3でオゾンガスを混合し圧力調整装置4に流入した濃縮水W2には、調圧器4bによって内部圧力が所定の設定圧力(濃縮水流路11を流れる濃縮水W2の圧力以下で反応槽5Cの雰囲気圧力以上、且つ、0.15MPa以上)に調整される溶解水槽4aでオゾンガスが溶解する。
このように、第4の実施形態に係る膜処理設備103に備わる圧力調整装置4の溶解水槽4aも第1の実施形態と同様に濃縮水W2がRO膜処理装置1から排出されるときの圧力(残圧)で加圧され、濃縮水W2にオゾンガスが溶解するように構成される。
The ozone water is mixed in the ozone mixer 3 and the concentrated water W2 flowing into the pressure adjusting device 4 is reacted by the pressure regulator 4b at an internal pressure equal to or lower than a predetermined set pressure (the pressure of the concentrated water W2 flowing through the concentrated water channel 11). The ozone gas is dissolved in the dissolved water tank 4a adjusted to the atmospheric pressure of the tank 5C or more and 0.15 MPa or more.
As described above, the dissolved water tank 4a of the pressure adjusting device 4 provided in the membrane treatment facility 103 according to the fourth embodiment also has a pressure when the concentrated water W2 is discharged from the RO membrane treatment device 1 as in the first embodiment. It is configured such that ozone gas is dissolved in the concentrated water W2 by being pressurized with (residual pressure).

また、調圧器4bの調圧によって溶解水槽4aから排出されたオゾンガスは、第1の実施形態と同様、原水流路35に備わる上流混合器9で原水W0に混合される。そして、オゾンガスの酸化作用によって、原水W0に含まれる有機物を分解除去するとともに原水W0に含まれる細菌を殺菌する。   Moreover, the ozone gas discharged | emitted from the dissolved water tank 4a by the pressure regulation of the pressure regulator 4b is mixed with the raw | natural water W0 with the upstream mixer 9 with which the raw | natural water flow path 35 is provided similarly to 1st Embodiment. And the organic substance contained in raw | natural water W0 is decomposed | disassembled and the bacteria contained in raw | natural water W0 are disinfected by the oxidizing action of ozone gas.

圧力調整装置4の溶解水槽4aでオゾンガスが溶解した濃縮水W2は、マイクロバブル発生ノズル6で反応槽5Cに減圧放出されてオゾンマイクロバブルが発生する。
第4の実施形態に係る膜処理設備103に備わる反応槽5Cは、図7に示すように構成され、オゾンマイクロバブルの浮上分離効果によって濃縮水W2から分離して水面にスカム32として堆積する被分離物質の濁質成分は、濁質除去ホッパ21によって反応槽5Cから排出される。
なお、スカム32を濁質除去ホッパ21によって反応槽5Cから排出する方法は、第3の実施形態に係る反応槽5Cからスカム32を排出する方法と同じ方法とすればよい。
そして、濁質成分が除去された濃縮水W2は、返流水W5として返流水流路29を流れ、前処理装置16Cの最初沈殿池25に流入(返流)する。
Concentrated water W2 in which ozone gas is dissolved in the dissolved water tank 4a of the pressure adjusting device 4 is discharged under reduced pressure into the reaction tank 5C by the microbubble generating nozzle 6 to generate ozone microbubbles.
The reaction tank 5C provided in the membrane treatment facility 103 according to the fourth embodiment is configured as shown in FIG. 7, and is separated from the concentrated water W2 by the floating separation effect of ozone microbubbles and deposited as scum 32 on the water surface. The turbid component of the separated substance is discharged from the reaction tank 5C by the turbidity removal hopper 21.
The method for discharging the scum 32 from the reaction tank 5C by the turbidity removal hopper 21 may be the same as the method for discharging the scum 32 from the reaction tank 5C according to the third embodiment.
Then, the concentrated water W2 from which the turbid components have been removed flows through the return water flow path 29 as the return water W5 and flows into (returns to) the first settling basin 25 of the pretreatment device 16C.

一方、図8に示す活性汚泥処理槽34の固液分離膜33で原水W0から分離された固形物は、汚泥となって活性汚泥処理槽34に堆積する。この汚泥の一部は、活性汚泥として原水W0の生物処理に用いられるが、生物処理に用いられない汚泥は余剰汚泥となって、原水W0の一部からなる同伴水W4に含まれて余剰汚泥流路31を流れ、反応槽5Cの第1領域51(図7参照)に流入する。   On the other hand, the solid substance separated from the raw water W0 by the solid-liquid separation membrane 33 of the activated sludge treatment tank 34 shown in FIG. 8 becomes sludge and accumulates in the activated sludge treatment tank 34. A part of this sludge is used for biological treatment of raw water W0 as activated sludge, but the sludge not used for biological treatment becomes surplus sludge and is contained in accompanying water W4 comprising a part of raw water W0. It flows through the flow path 31 and flows into the first region 51 (see FIG. 7) of the reaction tank 5C.

反応槽5Cに流入した余剰汚泥の成分である有機物は、マイクロバブル発生ノズル6からの減圧放出によって発生するオゾンマイクロバブルの酸化作用で分解され、余剰汚泥に含まれる細菌は、オゾンマイクロバブルの酸化作用で殺菌される。したがって、活性汚泥処理槽34に蓄積する余剰汚泥を反応槽5Cで分解して減量できる。
また、同伴水W4に含まれる被分離物質の濁質成分や分解されない余剰汚泥は、オゾンマイクロバブルの浮上分離作用によって同伴水W4と分離し、主に第2領域52(図7参照)及び第3領域53(図7参照)の水面にスカム32として堆積する。そして、スカム32は、濁質除去ホッパ21によって反応槽5Cから排出される。
The organic matter that is the component of the excess sludge that has flowed into the reaction tank 5C is decomposed by the oxidizing action of ozone microbubbles generated by the reduced pressure release from the microbubble generating nozzle 6, and the bacteria contained in the excess sludge are oxidized by the ozone microbubbles. Sterilized by action. Therefore, excess sludge accumulated in the activated sludge treatment tank 34 can be decomposed and reduced in the reaction tank 5C.
Moreover, the turbid component of the substance to be separated contained in the entrained water W4 and the excess sludge that is not decomposed are separated from the entrained water W4 by the floating separation action of the ozone microbubbles, and mainly the second region 52 (see FIG. 7) and the first The scum 32 is accumulated on the water surface of the three regions 53 (see FIG. 7). The scum 32 is discharged from the reaction tank 5C by the turbidity removal hopper 21.

このように、オゾンマイクロバブルの酸化力で酸化処理され、さらに、余剰汚泥及び被分離物質の濁質成分が分離した同伴水W4は、濃縮水W2とともに返流水W5となって返流水流路29を流れて最初沈殿池25に流入(返流)する。   Thus, the entrained water W4 that has been oxidized by the oxidizing power of the ozone microbubbles and further separated from the excess sludge and the turbid components of the substance to be separated becomes the return water W5 together with the concentrated water W2, and the return water channel 29 And then flows (returns) into the settling basin 25 first.

第4の実施形態に係る膜処理設備103は、活性汚泥処理槽34から反応槽5Cに取り込まれる余剰汚泥の同伴水W4を原水W0とともにRO膜処理に利用できる。   The membrane treatment facility 103 according to the fourth embodiment can use surplus sludge accompanying water W4 taken from the activated sludge treatment tank 34 into the reaction tank 5C together with the raw water W0 for the RO membrane treatment.

なお、第3の実施形態に係る膜処理設備102(図6参照)と同様、反応槽5Cで有機物や濁質成分が除去されて浄化された返流水W5を最初沈殿池25に返流せず、膜処理設備103の系外、すなわち、外部環境に排水として排出する構成であってもよい。   In addition, similarly to the membrane treatment facility 102 (see FIG. 6) according to the third embodiment, the return water W5 purified by removing organic substances and turbid components in the reaction tank 5C is not returned to the first sedimentation basin 25. Alternatively, the wastewater may be discharged as wastewater outside the membrane processing facility 103, that is, to the external environment.

図8に示す、第4の実施形態に係る膜処理設備103によると、オゾンマイクロバブルの酸化力によって活性汚泥処理槽34に蓄積される余剰汚泥を分解できるので余剰汚泥を減量することができる。
また、オゾンマイクロバブルの浮上分離効果によって濃縮水W2に含まれる被分離物質の濁質成分を除去できる。したがって、環境への負荷を軽減できるという優れた効果を奏する。
また、上流混合器9で原水W0にオゾンガスを混合することで、原水W0に含まれる有機物を分解し、細菌を殺菌できるので、RO膜のファウリングを防止できる。これにより、膜処理設備103の運転コストを軽減できるという優れた効果を奏する。
また、特別の動力を用いることなく、RO膜処理装置1(図8参照)から排出された濃縮水W2の圧力(残圧)を利用して微細気泡(オゾンマイクロバブル)を発生できるので、エネルギ消費の少ない高い経済性で膜処理設備103を運転できるという優れた効果を奏する。
According to the membrane treatment facility 103 according to the fourth embodiment shown in FIG. 8, surplus sludge can be reduced because the excess sludge accumulated in the activated sludge treatment tank 34 can be decomposed by the oxidizing power of ozone microbubbles.
Moreover, the suspended component of the to-be-separated substance contained in the concentrated water W2 can be removed by the floating separation effect of ozone microbubbles. Therefore, there is an excellent effect that the load on the environment can be reduced.
Further, by mixing ozone gas with the raw water W0 by the upstream mixer 9, the organic matter contained in the raw water W0 can be decomposed and bacteria can be sterilized, so that fouling of the RO membrane can be prevented. Thereby, there exists an outstanding effect that the operating cost of the membrane treatment equipment 103 can be reduced.
In addition, fine bubbles (ozone microbubbles) can be generated using the pressure (residual pressure) of the concentrated water W2 discharged from the RO membrane treatment apparatus 1 (see FIG. 8) without using special power. There is an excellent effect that the membrane treatment facility 103 can be operated with high economic efficiency with low consumption.

《第5の実施形態》
図9を参照して、第5の実施形態に係る膜処理設備104を説明する。なお、図9においては、図6に示す膜処理設備102と同じ構成要素には同じ符号を付し、詳細な説明は適宜省略する。
図9に示すように、第5の実施形態に係る膜処理設備104は、例えば海水を淡水化する淡水化装置、下水又は工場廃液等を含んだ産業廃水を処理する下水再生処理装置を構成する。そして、海水の淡水化装置を構成する場合、原水W0は海水になり、下水再生処理装置を構成する場合、原水W0は下水(下水処理水)又は産業廃水になる。
<< Fifth Embodiment >>
With reference to FIG. 9, the film processing equipment 104 according to the fifth embodiment will be described. In FIG. 9, the same components as those of the membrane treatment facility 102 shown in FIG. 6 are denoted by the same reference numerals, and detailed description thereof is omitted as appropriate.
As shown in FIG. 9, the membrane treatment facility 104 according to the fifth embodiment constitutes a desalination apparatus for desalinating seawater, a sewage regeneration treatment apparatus for treating industrial wastewater including sewage or factory effluent, for example. . And when comprising the desalination apparatus of seawater, raw | natural water W0 turns into seawater, and when comprising a sewage reproduction | regeneration processing apparatus, raw | natural water W0 turns into sewage (sewage treated water) or industrial wastewater.

図9に示すように、第5の実施形態に係る膜処理設備104には、貯水槽39、砂ろ過装置36、ろ過ポンプ38を含んで構成される前処理装置16Dが備わっている。
原水W0は、貯水槽39に一時貯水され、浮遊する固形物が沈殿除去される。そして、ろ過ポンプ38によって砂ろ過装置36に送水(圧送)される。
As shown in FIG. 9, the membrane treatment facility 104 according to the fifth embodiment includes a pretreatment device 16 </ b> D configured to include a water storage tank 39, a sand filtration device 36, and a filtration pump 38.
The raw water W0 is temporarily stored in the water storage tank 39, and the floating solid matter is removed by precipitation. Then, water is fed (pressure fed) to the sand filtration device 36 by the filtration pump 38.

砂ろ過装置36に送水された原水W0は、砂ろ過されて固形物等が除去された後、高圧ポンプ2の上流に備わる上流混合器9を経由して原水流路35を流れ、高圧ポンプ2で5.5〜7.0MPaに加圧された後にRO膜処理装置1に圧送される。
そして、RO膜処理装置1に圧送された原水W0の一部はRO膜を透過して被分離物質が除去され、被分離物質を含まない処理水W1が生成される。
この処理水W1は処理水流路10を介して膜処理設備104から排出される。
The raw water W0 sent to the sand filter 36 is sand-filtered to remove solids and the like, and then flows through the raw water flow path 35 via the upstream mixer 9 provided upstream of the high-pressure pump 2. After being pressurized to 5.5 to 7.0 MPa, the pressure is fed to the RO membrane processing apparatus 1.
And a part of raw | natural water W0 pumped by the RO membrane processing apparatus 1 permeate | transmits a RO membrane, a to-be-separated substance is removed, and the treated water W1 which does not contain a to-be-separated substance is produced | generated.
This treated water W1 is discharged from the membrane treatment facility 104 via the treated water flow path 10.

一方、RO膜を透過しない原水W0は、被分離物質を含む濃縮水W2となってRO膜処理装置1から排出される。   On the other hand, the raw water W0 that does not pass through the RO membrane becomes the concentrated water W2 containing the substance to be separated and is discharged from the RO membrane treatment apparatus 1.

そして、圧力調整装置4に流入した濃縮水W2には、調圧器4bによって内部圧力が所定の設定圧力(濃縮水流路11を流れる濃縮水W2の圧力以下で反応槽5Dの雰囲気圧力以上、且つ、0.15MPa以上)に調整される溶解水槽4aでオゾンガスが溶解する。
このように、第5の実施形態に係る膜処理設備104に備わる圧力調整装置4の溶解水槽4aも第1の実施形態と同様に濃縮水W2がRO膜処理装置1から排出されるときの圧力(残圧)で加圧され、濃縮水W2にオゾンガスが溶解するように構成される。
Then, the concentrated water W2 that has flowed into the pressure adjusting device 4 has an internal pressure of not less than a predetermined set pressure (below the pressure of the concentrated water W2 flowing through the concentrated water passage 11 and above the atmospheric pressure of the reaction tank 5D) by the pressure regulator 4b, and The ozone gas is dissolved in the dissolved water tank 4a adjusted to 0.15 MPa or more.
As described above, the dissolved water tank 4a of the pressure adjusting device 4 provided in the membrane treatment facility 104 according to the fifth embodiment also has a pressure when the concentrated water W2 is discharged from the RO membrane treatment device 1 as in the first embodiment. It is configured such that ozone gas is dissolved in the concentrated water W2 by being pressurized with (residual pressure).

また、調圧器4bの調圧によって溶解水槽4aから排出されたオゾンガスは、第1の実施形態と同様、原水流路35に備わる上流混合器9で原水W0に混合される。そして、オゾンガスの酸化作用によって、原水W0に含まれる有機物を分解除去するとともに原水W0に含まれる細菌を殺菌する。   Moreover, the ozone gas discharged | emitted from the dissolved water tank 4a by the pressure regulation of the pressure regulator 4b is mixed with the raw | natural water W0 with the upstream mixer 9 with which the raw | natural water flow path 35 is provided similarly to 1st Embodiment. And the organic substance contained in raw | natural water W0 is decomposed | disassembled and the bacteria contained in raw | natural water W0 are disinfected by the oxidizing action of ozone gas.

圧力調整装置4の溶解水槽4aでオゾンガスが溶解した濃縮水W2は、マイクロバブル発生ノズル6で反応槽5Dに減圧放出されてオゾンマイクロバブルが発生する。
第5の実施形態に係る膜処理設備104に備わる反応槽5Dは、図7に示す反応槽5Cとほぼ同じ構成であるが、余剰汚泥流路31の替わりに洗浄排水流路(逆洗流路37)が接続され、第1領域51と砂ろ過装置36(図9参照)が逆洗流路37で接続される。
The concentrated water W2 in which the ozone gas is dissolved in the dissolved water tank 4a of the pressure adjusting device 4 is discharged under reduced pressure into the reaction tank 5D by the microbubble generating nozzle 6 to generate ozone microbubbles.
The reaction tank 5D provided in the membrane treatment facility 104 according to the fifth embodiment has substantially the same configuration as the reaction tank 5C shown in FIG. 7, but a washing drainage channel (backwashing channel) instead of the excess sludge channel 31. 37) is connected, and the first region 51 and the sand filtration device 36 (see FIG. 9) are connected by the backwash channel 37.

砂ろ過装置36内には、原水W0を砂ろ過したときに原水W0から分離する被分離物質の濁質成分が蓄積することから、蓄積する濁質成分を除去してろ過機能を維持するために、図示しない逆洗ポンプで原水W0の流れを反転して砂ろ過装置36を洗浄(逆洗)する。逆洗流路37は、砂ろ過装置36を逆洗した後の洗浄排水(逆洗排水W6)を反応槽5Dの第1領域51(図7参照)に送水するための流路であり、この構成によって砂ろ過装置36の逆洗で生じる逆洗排水W6を反応槽5Dに導入できる。
この逆洗排水W6には、砂ろ過装置36で原水W0から除去されて蓄積されている有機物や被分離物質が含まれている。
In the sand filtration device 36, when the raw water W0 is sand-filtered, the turbid component of the substance to be separated that separates from the raw water W0 accumulates. Therefore, in order to remove the accumulated turbid component and maintain the filtration function The sand filter 36 is washed (backwashed) by reversing the flow of the raw water W0 with a backwash pump (not shown). The backwash flow path 37 is a flow path for feeding the washing wastewater (backwash wastewater W6) after backwashing the sand filtration device 36 to the first region 51 (see FIG. 7) of the reaction tank 5D. Depending on the configuration, the backwash waste water W6 generated by backwashing the sand filtration device 36 can be introduced into the reaction tank 5D.
The backwash waste water W6 contains organic substances and substances to be separated that have been removed from the raw water W0 by the sand filter 36 and accumulated.

反応槽5Dに流入した逆洗排水W6に含まれる有機物は、マイクロバブル発生ノズル6からの減圧放出によって発生するオゾンマイクロバブルの酸化作用によって分解される。また、濃縮水W2及び逆洗排水W6に含まれる被分離物質の濁質成分は、オゾンマイクロバブルの浮上分離効果によって浮上分離して水面にスカム32として堆積し、濁質除去ホッパ21によって反応槽5Dから排出される。
このように、オゾンマイクロバブルの酸化力で酸化処理され、さらに、被分離物質の濁質成分が分離されて浄化された濃縮水W2及び逆洗排水W6は、返流水W5となって返流水流路29を流れ、前処理装置16Dの貯水槽39に流入(返流)する。
なお、スカム32を濁質除去ホッパ21によって反応槽5Dから排出する方法は、第3の実施形態に係る反応槽5C(図7参照)からスカム32を排出する方法と同じ方法とすればよい。
The organic matter contained in the backwash waste water W6 that has flowed into the reaction tank 5D is decomposed by the oxidizing action of ozone microbubbles generated by the reduced pressure discharge from the microbubble generating nozzle 6. Further, the turbid component of the substance to be separated contained in the concentrated water W2 and the backwash waste water W6 is floated and separated by the floating separation effect of the ozone microbubbles and deposited as scum 32 on the water surface. Discharged from 5D.
As described above, the concentrated water W2 and the backwash waste water W6, which are oxidized by the oxidizing power of the ozone microbubbles and further separated and purified from the turbid components of the substance to be separated, become the return water W5 as the return water flow. It flows through the passage 29 and flows into (returns to) the water storage tank 39 of the pretreatment device 16D.
The method for discharging the scum 32 from the reaction tank 5D by the turbidity removal hopper 21 may be the same as the method for discharging the scum 32 from the reaction tank 5C according to the third embodiment (see FIG. 7).

第5の実施形態に係る膜処理設備104は、砂ろ過装置36を逆洗するときの逆洗排水W6を原水W0とともにRO膜処理に利用できる。   The membrane treatment facility 104 according to the fifth embodiment can use the backwash waste water W6 when the sand filtration device 36 is backwashed together with the raw water W0 for the RO membrane treatment.

なお、第4の実施形態に係る膜処理設備103(図8参照)と同様、反応槽5Dで浄化された返流水W5を貯水槽39に返流せず、膜処理設備104の系外、すなわち、外部環境に排水として放出する構成であってもよい。   Note that, similarly to the membrane treatment facility 103 (see FIG. 8) according to the fourth embodiment, the return water W5 purified in the reaction tank 5D is not returned to the water tank 39, that is, outside the system of the membrane treatment equipment 104, that is, The structure may be a discharge to the external environment as waste water.

第5の実施形態に係る膜処理設備104(図9参照)によると、オゾンマイクロバブルの酸化力によって逆洗排水W6及び濃縮水W2に含まれる有機物を分解し、オゾンマイクロバブルの浮上分離効果によって被分離物質の濁質成分を除去できる。
また、オゾンマイクロバブルの浮上分離効果によって濃縮水W2に含まれる被分離物質の濁質成分を除去できる。したがって、環境への負荷を軽減できるという優れた効果を奏する。また、上流混合器9(図9参照)で原水W0にオゾンガスを混合することで、原水W0に含まれる有機物を分解し、且つ、細菌を殺菌することができ、RO膜のファウリングを防止できる。これにより、膜処理設備104の運転コストを軽減できるという優れた効果を奏する。
また、特別の動力を用いることなく、RO膜処理装置1(図9参照)から排出された濃縮水W2が濃縮水流路11(図9参照)を流れるときの圧力(残圧)を利用して微細気泡(オゾンマイクロバブル)を発生できるので、エネルギ消費の少ない高い経済性で膜処理設備104を運転できるという優れた効果を奏する。
According to the membrane treatment facility 104 (see FIG. 9) according to the fifth embodiment, the organic matter contained in the backwash waste water W6 and the concentrated water W2 is decomposed by the oxidizing power of the ozone microbubbles, and the floating separation effect of the ozone microbubbles is achieved. The turbid component of the substance to be separated can be removed.
Moreover, the suspended component of the to-be-separated substance contained in the concentrated water W2 can be removed by the floating separation effect of ozone microbubbles. Therefore, there is an excellent effect that the load on the environment can be reduced. Moreover, by mixing ozone gas with the raw water W0 in the upstream mixer 9 (see FIG. 9), organic substances contained in the raw water W0 can be decomposed, bacteria can be sterilized, and RO membrane fouling can be prevented. . Thereby, there exists an outstanding effect that the operating cost of the membrane treatment equipment 104 can be reduced.
Further, the pressure (residual pressure) when the concentrated water W2 discharged from the RO membrane treatment device 1 (see FIG. 9) flows through the concentrated water flow path 11 (see FIG. 9) without using special power is used. Since fine bubbles (ozone microbubbles) can be generated, the membrane processing equipment 104 can be operated with high economic efficiency with low energy consumption.

1 RO膜処理装置(膜処理装置)
2 高圧ポンプ(ポンプ)
3 オゾン混合器(ガス混合器)
4 圧力調整装置
4a 溶解水槽
4b 調圧器
5A〜5D 反応槽
6 マイクロバブル発生ノズル
7 オゾン発生器
9 上流混合器
11 濃縮水流路
11a 流量調整弁
11b アクチュエータ
16A〜16D 前処理装置
25 最初沈殿池
26 生物反応槽嫌気槽(生物反応槽)
27 生物反応槽好気槽(生物反応槽)
28 最終沈殿池
29 返流水流路
31 余剰汚泥流路
33 固液分離膜
34 活性汚泥処理槽
37 逆洗流路(洗浄排水流路)
100〜104 膜処理設備
W0 原水
W1 処理水
W2 濃縮水
W3 排水
W4 同伴水
W5 返流水
W6 逆洗排水(洗浄排水)
1 RO membrane treatment equipment (membrane treatment equipment)
2 High-pressure pump (pump)
3 Ozone mixer (gas mixer)
DESCRIPTION OF SYMBOLS 4 Pressure regulator 4a Dissolution water tank 4b Pressure regulator 5A-5D Reaction tank 6 Micro bubble generation nozzle 7 Ozone generator 9 Upstream mixer 11 Concentrated water flow path 11a Flow control valve 11b Actuator 16A-16D Pretreatment apparatus 25 First sedimentation basin 26 Biology Reaction tank anaerobic tank (biological reaction tank)
27 Biological reaction tank Aerobic tank (biological reaction tank)
28 Final sedimentation basin 29 Return water channel 31 Excess sludge channel 33 Solid-liquid separation membrane 34 Activated sludge treatment tank 37 Backwash channel (wash drainage channel)
100 to 104 Membrane treatment facility W0 Raw water W1 Treated water W2 Concentrated water W3 Drainage W4 Entrained water W5 Return water W6 Backwash drainage (wash drainage)

Claims (29)

原水を加圧して膜処理装置へ送水するポンプと、
前記膜処理装置で前記原水から除去される被分離物質を含む濃縮水が流れる濃縮水流路と、
前記濃縮水流路に備わって前記濃縮水にガスを混合するガス混合器と、
前記ガスが溶解した後の前記濃縮水を所定の設定圧力で排出する圧力調整装置と、
前記圧力調整装置から排出された前記濃縮水を反応槽に減圧放出してマイクロバブルを発生するマイクロバブル発生ノズルと、を備えて構成され、
前記反応槽内で、前記マイクロバブルによって前記濃縮水に含まれる前記被分離物質の濁質成分を当該濃縮水から分離する膜処理設備であって、
前記圧力調整装置は、前記ガス混合器で前記ガスが混合した前記濃縮水が流入する溶解水槽を有し、前記濃縮水流路を流れる前記濃縮水の圧力で前記溶解水槽の内部圧力を加圧して前記ガスを当該濃縮水に溶解し、前記溶解水槽の内部圧力を前記設定圧力として前記ガスが溶解した後の前記濃縮水を排出し、
前記マイクロバブル発生ノズルは、前記ガスが溶解して前記圧力調整装置から排出されて前記設定圧力で流入する前記濃縮水を前記反応槽に減圧放出することを特徴とする膜処理設備。
A pump that pressurizes the raw water and sends it to the membrane treatment device;
A concentrated water flow path through which concentrated water containing a material to be separated removed from the raw water by the membrane treatment apparatus flows;
A gas mixer provided in the concentrated water flow path for mixing gas with the concentrated water;
A pressure adjusting device for discharging the concentrated water after the gas is dissolved at a predetermined set pressure;
A microbubble generating nozzle that discharges the concentrated water discharged from the pressure adjusting device under reduced pressure into a reaction tank to generate microbubbles,
In the reaction tank, a membrane treatment facility for separating turbid components of the substance to be separated contained in the concentrated water from the concentrated water by the microbubbles,
The pressure adjusting device has a dissolved water tank into which the concentrated water mixed with the gas in the gas mixer flows , and pressurizes the internal pressure of the dissolved water tank with the pressure of the concentrated water flowing through the concentrated water channel. Dissolving the gas in the concentrated water, discharging the concentrated water after the gas is dissolved with the internal pressure of the dissolved water tank as the set pressure,
The microbubble generation nozzle discharges the concentrated water, which is discharged from the pressure regulator and flows at the set pressure, into the reaction tank under reduced pressure, after the gas is dissolved .
前記所定の設定圧力は、前記濃縮水流路を流れる前記濃縮水の圧力以下で前記反応槽の雰囲気圧力以上、且つ、0.15MPa以上であることを特徴とする請求項1に記載の膜処理設備。   2. The membrane treatment equipment according to claim 1, wherein the predetermined set pressure is equal to or lower than a pressure of the concentrated water flowing through the concentrated water flow path and equal to or higher than an atmospheric pressure of the reaction tank and equal to or higher than 0.15 MPa. . 前記圧力調整装置は、前記溶解水槽の内部圧力を前記所定の設定圧力に維持する調圧器を含んでなることを特徴とする請求項1又は請求項2に記載の膜処理設備。 The pressure adjusting device, the film treatment facility according to the internal pressure before Symbol dissolved aquarium to claim 1 or claim 2, characterized in that it comprises a pressure regulator to maintain the predetermined set pressure. 前記調圧器は、前記濃縮水に溶解しないで残存する前記ガスを前記溶解水槽から排出して当該溶解水槽の内部圧力を前記所定の設定圧力に維持し、
前記溶解水槽から排出された前記ガスを、前記ポンプの上流に備わる上流混合器で前記原水に混合することを特徴とする請求項3に記載の膜処理設備。
The pressure regulator discharges the gas remaining without being dissolved in the concentrated water from the dissolved water tank to maintain the internal pressure of the dissolved water tank at the predetermined set pressure,
The membrane treatment facility according to claim 3, wherein the gas discharged from the dissolved water tank is mixed with the raw water by an upstream mixer provided upstream of the pump.
前記調圧器は、前記濃縮水に溶解しないで残存する前記ガスを前記溶解水槽から排出して当該溶解水槽の内部圧力を前記所定の設定圧力に維持し、
前記溶解水槽から排出された前記ガスを、前記反応槽に注入することを特徴とする請求項3に記載の膜処理設備。
The pressure regulator discharges the gas remaining without being dissolved in the concentrated water from the dissolved water tank to maintain the internal pressure of the dissolved water tank at the predetermined set pressure,
The film processing facility according to claim 3, wherein the gas discharged from the dissolved water tank is injected into the reaction tank.
前記調圧器は、前記溶解水槽から排出される前記濃縮水の流量を調整する流量調整弁と、前記流量調整弁の弁開度を調節するアクチュエータを備え、
前記アクチュエータが、前記溶解水槽の内部圧力に応じて前記流量調整弁の弁開度を調節して当該溶解水槽の内部圧力を前記所定の設定圧力に維持することを特徴とする請求項3に記載の膜処理設備。
The pressure regulator includes a flow rate adjustment valve that adjusts the flow rate of the concentrated water discharged from the dissolved water tank, and an actuator that adjusts the valve opening of the flow rate adjustment valve,
The said actuator adjusts the valve opening degree of the said flow regulating valve according to the internal pressure of the said dissolution water tank, and maintains the internal pressure of the said dissolution water tank at the said predetermined setting pressure, The said predetermined pressure is characterized by the above-mentioned. Membrane processing equipment.
前記ガスはオゾンガスであることを特徴とする請求項1乃至請求項6のいずれか1項に記載の膜処理設備。   The film processing facility according to claim 1, wherein the gas is ozone gas. 海水の淡水化装置を構成し、前記原水が海水であり、前記膜処理装置で前記原水から前記被分離物質が除去されて生成される処理水が淡水であることを特徴とする請求項1乃至請求項7のいずれか1項に記載の膜処理設備。   2. A seawater desalination apparatus, wherein the raw water is seawater, and the treated water generated by removing the substance to be separated from the raw water by the membrane treatment apparatus is freshwater. The film processing facility according to claim 7. 前処理装置で生物処理された原水を加圧して膜処理装置へ送水するポンプと、
前記膜処理装置で前記原水から除去される被分離物質を含む濃縮水が流れる濃縮水流路と、
前記濃縮水流路に備わって前記濃縮水にガスを混合するガス混合器と、
前記ガスが溶解した後の前記濃縮水を所定の設定圧力で排出する圧力調整装置と、
前記圧力調整装置から排出された前記濃縮水を反応槽に減圧放出してマイクロバブルを発生するマイクロバブル発生ノズルと、
前記原水の一部からなる同伴水が前記前処理装置で発生する余剰汚泥を含んで当該前処理装置から前記反応槽まで流れる余剰汚泥流路と、を備えて構成され、
前記反応槽内で、前記マイクロバブルによって前記濃縮水に含まれる前記被分離物質の濁質成分を当該濃縮水から分離するとともに、前記同伴水に含まれる前記被分離物質の濁質成分と前記余剰汚泥を当該同伴水から分離し、
前記濁質成分が分離した後の前記濃縮水と、前記濁質成分及び前記余剰汚泥が分離した後の前記同伴水と、を排水として前記反応槽から排出する膜処理設備であって、
前記圧力調整装置は、前記ガス混合器で前記ガスが混合した前記濃縮水が流入する溶解水槽を有し、前記濃縮水流路を流れる前記濃縮水の圧力で前記溶解水槽の内部圧力を加圧して前記ガスを当該濃縮水に溶解し、前記溶解水槽の内部圧力を前記設定圧力として前記ガスが溶解した後の前記濃縮水を排出し、
前記マイクロバブル発生ノズルは、前記ガスが溶解して前記圧力調整装置から排出されて前記設定圧力で流入する前記濃縮水を前記反応槽に減圧放出することを特徴とする膜処理設備。
A pump that pressurizes the raw water biologically treated in the pretreatment device and feeds it to the membrane treatment device;
A concentrated water flow path through which concentrated water containing a material to be separated removed from the raw water by the membrane treatment apparatus flows;
A gas mixer provided in the concentrated water flow path for mixing gas with the concentrated water;
A pressure adjusting device for discharging the concentrated water after the gas is dissolved at a predetermined set pressure;
A microbubble generating nozzle that discharges the concentrated water discharged from the pressure adjusting device under reduced pressure into a reaction tank to generate microbubbles;
A surplus sludge flow path in which the entrained water consisting of a part of the raw water contains surplus sludge generated in the pretreatment device and flows from the pretreatment device to the reaction tank, and
In the reaction tank, the turbid component of the substance to be separated contained in the concentrated water is separated from the concentrated water by the microbubbles, and the turbid component of the substance to be separated contained in the entrained water and the surplus Separating sludge from the accompanying water,
A membrane treatment facility for discharging the concentrated water after the turbid component is separated, and the entrained water after the turbid component and the excess sludge are separated from the reaction tank as waste water,
The pressure adjusting device has a dissolved water tank into which the concentrated water mixed with the gas in the gas mixer flows , and pressurizes the internal pressure of the dissolved water tank with the pressure of the concentrated water flowing through the concentrated water channel. Dissolving the gas in the concentrated water, discharging the concentrated water after the gas is dissolved with the internal pressure of the dissolved water tank as the set pressure,
The microbubble generation nozzle discharges the concentrated water, which is discharged from the pressure regulator and flows at the set pressure, into the reaction tank under reduced pressure, after the gas is dissolved .
前記反応槽と前記前処理装置を接続する返流水流路をさらに備え、
前記排水として前記反応槽から排出される前記濃縮水と前記同伴水を、前記返流水流路で前記前処理装置に返流することを特徴とする請求項9に記載の膜処理設備。
It further comprises a return water flow path connecting the reaction vessel and the pretreatment device,
The membrane treatment facility according to claim 9, wherein the concentrated water and the entrained water discharged from the reaction tank as the waste water are returned to the pretreatment device through the return water flow path.
前記前処理装置は、最初沈殿池、生物反応槽、及び最終沈殿池を含んで構成され、前記余剰汚泥は、前記最終沈殿池に堆積する汚泥からなることを特徴とする請求項9又は請求項10に記載の膜処理設備。   The pretreatment apparatus includes an initial sedimentation basin, a biological reaction tank, and a final sedimentation basin, and the excess sludge is composed of sludge accumulated in the final sedimentation basin. 10. The membrane treatment facility according to 10. 前記前処理装置は、最初沈殿池、及び固液分離膜を備える活性汚泥処理槽を含んで構成される膜分離活性汚泥処理装置で、前記余剰汚泥は、前記活性汚泥処理槽に堆積する汚泥からなることを特徴とする請求項9又は請求項10に記載の膜処理設備。   The pretreatment device is a membrane separation activated sludge treatment device including an activated sludge treatment tank including a first sedimentation basin and a solid-liquid separation membrane, and the excess sludge is obtained from sludge accumulated in the activated sludge treatment tank. The film processing equipment according to claim 9 or 10, wherein: 前記所定の設定圧力は、前記濃縮水流路を流れる前記濃縮水の圧力以下で前記反応槽の雰囲気圧力以上、且つ、0.15MPa以上であることを特徴とする請求項9乃至請求項12のいずれか1項に記載の膜処理設備。   13. The method according to claim 9, wherein the predetermined set pressure is equal to or lower than the pressure of the concentrated water flowing through the concentrated water flow path and equal to or higher than an atmospheric pressure of the reaction tank and equal to or higher than 0.15 MPa. 2. The membrane treatment facility according to claim 1. 前記圧力調整装置は、前記溶解水槽の内部圧力を前記所定の設定圧力に維持する調圧器を含んでなることを特徴とする請求項9乃至請求項13のいずれか1項に記載の膜処理設備。 The pressure adjusting device, the film treatment according to the internal pressure before Symbol dissolved water tank in any one of claims 9 to 13, characterized in that it comprises a pressure regulator to maintain the predetermined set pressure Facility. 前記調圧器は、前記濃縮水に溶解しないで残存する前記ガスを前記溶解水槽から排出して当該溶解水槽の内部圧力を前記所定の設定圧力に維持し、
前記溶解水槽から排出された前記ガスを、前記ポンプの上流に備わる上流混合器で前記原水に混合することを特徴とする請求項14に記載の膜処理設備。
The pressure regulator discharges the gas remaining without being dissolved in the concentrated water from the dissolved water tank to maintain the internal pressure of the dissolved water tank at the predetermined set pressure,
The membrane treatment facility according to claim 14, wherein the gas discharged from the dissolved water tank is mixed with the raw water by an upstream mixer provided upstream of the pump.
前記調圧器は、前記濃縮水に溶解しないで残存する前記ガスを前記溶解水槽から排出して当該溶解水槽の内部圧力を前記所定の設定圧力に維持し、
前記溶解水槽から排出された前記ガスを、前記反応槽に注入することを特徴とする請求項14に記載の膜処理設備。
The pressure regulator discharges the gas remaining without being dissolved in the concentrated water from the dissolved water tank to maintain the internal pressure of the dissolved water tank at the predetermined set pressure,
The film processing facility according to claim 14, wherein the gas discharged from the dissolved water tank is injected into the reaction tank.
前記調圧器は、前記溶解水槽から排出される前記濃縮水の流量を調整する流量調整弁と、前記流量調整弁の弁開度を調節するアクチュエータを備え、
前記アクチュエータが、前記溶解水槽の内部圧力に応じて前記流量調整弁の弁開度を調節して当該溶解水槽の内部圧力を前記所定の設定圧力に維持することを特徴とする請求項14に記載の膜処理設備。
The pressure regulator includes a flow rate adjustment valve that adjusts the flow rate of the concentrated water discharged from the dissolved water tank, and an actuator that adjusts the valve opening of the flow rate adjustment valve,
The said actuator adjusts the valve opening degree of the said flow regulating valve according to the internal pressure of the said dissolution water tank, and maintains the internal pressure of the said dissolution water tank at the said predetermined setting pressure, It is characterized by the above-mentioned. Membrane processing equipment.
前記ガスはオゾンガスであることを特徴とする請求項9乃至請求項17のいずれか1項に記載の膜処理設備。   The film processing facility according to claim 9, wherein the gas is ozone gas. 下水再生処理装置を構成し、前記原水が下水処理水で、前記膜処理装置で前記原水から前記被分離物質が除去されて生成される処理水が再生水であることを特徴とする請求項9乃至請求項18のいずれか1項に記載の膜処理設備。   10. A sewage regeneration treatment apparatus, wherein the raw water is treated sewage water, and the treated water generated by removing the substance to be separated from the raw water by the membrane treatment apparatus is reclaimed water. The film processing equipment according to claim 18. 産業廃水の再生処理装置を構成し、前記原水が産業廃水で、前記膜処理装置で前記原水から前記被分離物質が除去されて生成される処理水が再生水であることを特徴とする請求項9乃至請求項18のいずれか1項に記載の膜処理設備。   An industrial wastewater regeneration treatment device is configured, wherein the raw water is industrial wastewater, and the treated water generated by removing the substance to be separated from the raw water by the membrane treatment device is reclaimed water. The film processing equipment according to any one of claims 18 to 18. 前処理装置で砂ろ過された原水を加圧して膜処理装置へ送水するポンプと、
前記膜処理装置で前記原水から除去される被分離物質を含む濃縮水が流れる濃縮水流路と、
前記濃縮水流路に備わって前記濃縮水にガスを混合するガス混合器と、
前記ガスが溶解した後の前記濃縮水を所定の設定圧力で排出する圧力調整装置と、
前記圧力調整装置から排出された前記濃縮水を反応槽に減圧放出してマイクロバブルを発生するマイクロバブル発生ノズルと、
前記前処理装置を前記原水の一部で洗浄した後の洗浄排水が当該前処理装置から前記反応槽まで流れる洗浄排水流路と、を備えて構成され、
前記反応槽内で、前記マイクロバブルによって前記濃縮水に含まれる前記被分離物質の濁質成分を当該濃縮水から分離するとともに、前記洗浄排水に含まれる前記被分離物質の濁質成分を当該洗浄排水から分離し、
前記濁質成分が分離した後の前記濃縮水と前記洗浄排水を排水として前記反応槽から排出する膜処理設備であって、
前記圧力調整装置は、前記ガス混合器で前記ガスが混合した前記濃縮水が流入する溶解水槽を有し、前記濃縮水流路を流れる前記濃縮水の圧力で前記溶解水槽の内部圧力を加圧して前記ガスを当該濃縮水に溶解し、前記溶解水槽の内部圧力を前記設定圧力として前記ガスが溶解した後の前記濃縮水を排出し、
前記マイクロバブル発生ノズルは、前記ガスが溶解して前記圧力調整装置から排出されて前記設定圧力で流入する前記濃縮水を前記反応槽に減圧放出することを特徴とする膜処理設備。
A pump that pressurizes the raw water that has been sand-filtered by the pretreatment device and feeds it to the membrane treatment device;
A concentrated water flow path through which concentrated water containing a material to be separated removed from the raw water by the membrane treatment apparatus flows;
A gas mixer provided in the concentrated water flow path for mixing gas with the concentrated water;
A pressure adjusting device for discharging the concentrated water after the gas is dissolved at a predetermined set pressure;
A microbubble generating nozzle that discharges the concentrated water discharged from the pressure adjusting device under reduced pressure into a reaction tank to generate microbubbles;
A washing drainage channel after washing the pretreatment device with a portion of the raw water flows from the pretreatment device to the reaction tank,
In the reaction vessel, the microbubbles separate the turbid component of the substance to be separated contained in the concentrated water from the concentrated water, and the turbid component of the substance to be separated contained in the washing waste water is washed. Separated from wastewater,
A membrane treatment facility for discharging the concentrated water and the washing waste water from the reaction tank as waste water after the turbid component is separated;
The pressure adjusting device has a dissolved water tank into which the concentrated water mixed with the gas in the gas mixer flows , and pressurizes the internal pressure of the dissolved water tank with the pressure of the concentrated water flowing through the concentrated water channel. Dissolving the gas in the concentrated water, discharging the concentrated water after the gas is dissolved with the internal pressure of the dissolved water tank as the set pressure,
The microbubble generation nozzle discharges the concentrated water, which is discharged from the pressure regulator and flows in at the set pressure, into the reaction tank under reduced pressure, after the gas is dissolved .
前記反応槽と前記前処理装置を接続する返流水流路をさらに備え、
前記排水として前記反応槽から排出される前記濃縮水と前記洗浄排水を、前記返流水流路で前記前処理装置に返流することを特徴とする請求項21に記載の膜処理設備。
It further comprises a return water flow path connecting the reaction vessel and the pretreatment device,
The membrane treatment facility according to claim 21, wherein the concentrated water and the washing wastewater discharged from the reaction tank as the wastewater are returned to the pretreatment device through the return water flow path.
前記所定の設定圧力は、前記濃縮水流路を流れる前記濃縮水の圧力以下で前記反応槽の雰囲気圧力以上、且つ、0.15MPa以上であることを特徴とする請求項21又は請求項22に記載の膜処理設備。   The predetermined set pressure is equal to or lower than the pressure of the concentrated water flowing through the concentrated water flow path and is equal to or higher than the atmospheric pressure of the reaction tank and equal to or higher than 0.15 MPa. Membrane processing equipment. 前記圧力調整装置は、前記溶解水槽の内部圧力を前記所定の設定圧力に維持する調圧器を含んでなることを特徴とする請求項21乃至請求項23のいずれか1項に記載の膜処理設備。 The pressure adjusting device, the film treatment according to the internal pressure before Symbol dissolved aquarium to any one of claims 21 to claim 23, characterized in that it comprises a pressure regulator to maintain the predetermined set pressure Facility. 前記調圧器は、前記濃縮水に溶解しないで残存する前記ガスを前記溶解水槽から排出して当該溶解水槽の内部圧力を前記所定の設定圧力に維持し、
前記溶解水槽から排出された前記ガスを、前記ポンプの上流に備わる上流混合器で前記原水に混合することを特徴とする請求項24に記載の膜処理設備。
The pressure regulator discharges the gas remaining without being dissolved in the concentrated water from the dissolved water tank to maintain the internal pressure of the dissolved water tank at the predetermined set pressure,
The membrane treatment facility according to claim 24, wherein the gas discharged from the dissolved water tank is mixed with the raw water by an upstream mixer provided upstream of the pump.
前記調圧器は、前記濃縮水に溶解しないで残存する前記ガスを前記溶解水槽から排出して当該溶解水槽の内部圧力を前記所定の設定圧力に維持し、
前記溶解水槽から排出された前記ガスを、前記反応槽に注入することを特徴とする請求項24に記載の膜処理設備。
The pressure regulator discharges the gas remaining without being dissolved in the concentrated water from the dissolved water tank to maintain the internal pressure of the dissolved water tank at the predetermined set pressure,
The film processing equipment according to claim 24, wherein the gas discharged from the dissolved water tank is injected into the reaction tank.
前記調圧器は、前記溶解水槽から排出される前記濃縮水の流量を調整する流量調整弁と、前記流量調整弁の弁開度を調節するアクチュエータを備え、
前記アクチュエータが、前記溶解水槽の内部圧力に応じて前記流量調整弁の弁開度を調節して当該溶解水槽の内部圧力を前記所定の設定圧力に維持することを特徴とする請求項24に記載の膜処理設備。
The pressure regulator includes a flow rate adjustment valve that adjusts the flow rate of the concentrated water discharged from the dissolved water tank, and an actuator that adjusts the valve opening of the flow rate adjustment valve,
The said actuator adjusts the valve opening degree of the said flow regulating valve according to the internal pressure of the said dissolution water tank, and maintains the internal pressure of the said dissolution water tank at the said predetermined setting pressure, It is characterized by the above-mentioned. Membrane processing equipment.
前記ガスはオゾンガスであることを特徴とする請求項21乃至請求項27のいずれか1項に記載の膜処理設備。   The film processing facility according to any one of claims 21 to 27, wherein the gas is ozone gas. 下水再生処理装置を構成し、前記原水が下水処理水で、前記膜処理装置で前記原水から前記被分離物質が除去されて生成される処理水が再生水であることを特徴とする請求項21乃至請求項28のいずれか1項に記載の膜処理設備。   22. A sewage regeneration treatment apparatus, wherein the raw water is sewage treated water, and the treated water generated by removing the substance to be separated from the raw water by the membrane treatment apparatus is reclaimed water. The membrane treatment facility according to any one of claims 28.
JP2009228265A 2009-09-30 2009-09-30 Membrane treatment equipment Expired - Fee Related JP4649529B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009228265A JP4649529B1 (en) 2009-09-30 2009-09-30 Membrane treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009228265A JP4649529B1 (en) 2009-09-30 2009-09-30 Membrane treatment equipment

Publications (2)

Publication Number Publication Date
JP4649529B1 true JP4649529B1 (en) 2011-03-09
JP2011072939A JP2011072939A (en) 2011-04-14

Family

ID=43836104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009228265A Expired - Fee Related JP4649529B1 (en) 2009-09-30 2009-09-30 Membrane treatment equipment

Country Status (1)

Country Link
JP (1) JP4649529B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
CN116395917A (en) * 2023-06-08 2023-07-07 金科环境股份有限公司 Short-process salt-containing wastewater treatment method and system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999087B2 (en) * 2012-02-21 2016-09-28 東レ株式会社 Water treatment apparatus and water treatment method
KR101253673B1 (en) * 2012-12-27 2013-04-11 롯데건설 주식회사 Waste water treatment apparatus
EP2777803A1 (en) * 2013-03-15 2014-09-17 KSM Water GmbH System for cleaning a membrane
JP6957044B2 (en) * 2019-05-20 2021-11-02 株式会社環境開発技研 Waste liquid treatment method and waste liquid treatment equipment used for it
JP7349754B1 (en) 2022-04-19 2023-09-25 株式会社流機エンジニアリング Processed liquid purification system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889959A (en) * 1994-09-27 1996-04-09 Kurita Water Ind Ltd Water purification device
JPH11221584A (en) * 1998-02-04 1999-08-17 Hitachi Ltd Pressurized ozone treating system and device
AP2005003301A0 (en) * 2002-10-08 2005-06-30 Water Standard Co Llc Mobile desalination plants and systems, and methofds for producing desalinated water
JP2008279335A (en) * 2007-05-09 2008-11-20 Toray Ind Inc Apparatus and method for water reclamation

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body
CN116395917A (en) * 2023-06-08 2023-07-07 金科环境股份有限公司 Short-process salt-containing wastewater treatment method and system
CN116395917B (en) * 2023-06-08 2023-10-20 金科环境股份有限公司 Short-process salt-containing wastewater treatment method and system

Also Published As

Publication number Publication date
JP2011072939A (en) 2011-04-14

Similar Documents

Publication Publication Date Title
JP4649529B1 (en) Membrane treatment equipment
US8910799B2 (en) Integrated membrane system for distributed water treatment
CN100420634C (en) Installation and method for the purification of an aqueous effluent by means of oxidation and membrane filtration
KR20080109860A (en) Hybrid membrane module, system and process for treatment of industrial wastewater
JP5908186B2 (en) Water treatment method and water treatment apparatus using membrane
KR20120069587A (en) Membrane bioreactor (mbr) and moving bed bioreactor (mbbr) configurations for wastewater treatment system
JP2011088053A (en) Equipment and method for desalination treatment
US20070158276A1 (en) Method and Apparatus for Sequenced Batch Advanced Oxidation Wastewater Treatment
JP2009172462A (en) Water quality modifying apparatus, water treating system, and recycling system of drainage
JP2015077530A (en) Water production method and water production device
JP6184541B2 (en) Sewage treatment apparatus and sewage treatment method using the same
JP2006082024A (en) Biological treatment apparatus
JP5982239B2 (en) Liquid processing equipment
JP2010046602A (en) Method of treating oil-containing waste water
JP2014000495A (en) Sewage treatment apparatus, and sewage treatment method using the same
JP6613323B2 (en) Water treatment apparatus and water treatment method
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP5587223B2 (en) Combined desalination system
JPH10323674A (en) Organic matter-containing water treatment apparatus
JP2014100627A (en) Membrane treatment apparatus and solid-liquid separation method
JP5250684B2 (en) Seawater desalination method and seawater desalination apparatus
JP5999087B2 (en) Water treatment apparatus and water treatment method
JP4933679B1 (en) Seawater desalination method and seawater desalination apparatus
JP5269331B2 (en) Waste water treatment equipment
KR101779119B1 (en) Ballast water treatment system and method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4649529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees