JPS6210720B2 - - Google Patents

Info

Publication number
JPS6210720B2
JPS6210720B2 JP54063706A JP6370679A JPS6210720B2 JP S6210720 B2 JPS6210720 B2 JP S6210720B2 JP 54063706 A JP54063706 A JP 54063706A JP 6370679 A JP6370679 A JP 6370679A JP S6210720 B2 JPS6210720 B2 JP S6210720B2
Authority
JP
Japan
Prior art keywords
membrane
liquid
organic wastewater
denitrification
permeable membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54063706A
Other languages
Japanese (ja)
Other versions
JPS55155798A (en
Inventor
Katsuyuki Kataoka
Teruyoshi Tsukamoto
Yasunari Kojima
Iwao Seto
Itsuhito Ikebukuro
Yoshitaka Matsuo
Takayuki Suzuki
Toshihiro Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP6370679A priority Critical patent/JPS55155798A/en
Publication of JPS55155798A publication Critical patent/JPS55155798A/en
Publication of JPS6210720B2 publication Critical patent/JPS6210720B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、し尿などの濃厚有機性廃水の処理方
法に関し、とくに、生物学的な脱窒素、脱リン、
BOD除去方法と、物理化学的な脱リン、BOD除
去、固液分離方法とを、新規な態様で有機的に結
合させることによつて、し尿などの濃厚有機性廃
水を最も合理的な方法で処理する方法に関するも
のである。 従来のし尿処理プロセスにおける主要な問題点
は、 生物学的硝化脱窒素法、活性汚泥法などの生
物処理工程においては、し尿中のリン酸(600
〜1000mg/が通常の値)および色度成分がほ
とんど除去できないので、生物処理水に対して
硫酸ばん土、塩化第2鉄、または消石灰などの
リン酸イオンおよび色度成分に作用して不溶性
沈殿を生成する無機凝集剤を添加して除去する
必要があり、し尿の20倍希釈生物処理水に対し
て、例えば硫酸ばん土では500〜1000mg/と多
量に必要とし、その結果、難脱水性の無機スラ
ツジの発生量が多量になり、スラツジの処理処
分が大きな問題点になつており、しかも最近普
及しつつあるコンポスト化においても、無機ス
ラツジの混入は好ましくない。 従来の一般的方法ではし尿に対し、10〜20倍
の希釈水を要するので、希釈水源の確保に難点
のあるし尿処理場では、希釈水不足に悩まされ
ている。 無機スラツジの発生量を少なくしようとすれ
ば、その当然の結果として、処理水中の色度、
リン酸が増加してしまう。 本発明は、従来色度の除去およびリン酸の除去
には、必然的に要するとの固定観念的にとらえら
れていた硫酸ばん土、塩化第2鉄などの無機スラ
ツジを多量に発生する無機凝集剤の添加を全く不
要とするか、あるいは従来より格段に減少せし
め、しかも、色度、リン酸の除去率が従来法より
向上するという、一見したところ矛盾するよう
な、大きな効果を得ることが可能な方法を提供す
ることを目的とするものである。 すなわち、本発明は、生物学的硝化脱窒素工程
の前段に嫌気性発酵工程を設け、これらの工程を
経た流出液と余剰汚泥との混合液に少なくともカ
チオン性高分子凝集剤を含む凝集剤を添加して脱
水処理し、該脱水分離液をさらに透過膜により処
理することを特徴とするものである。 次に、本発明の構成における重要な点を説明す
れば、 まず、後述する生物学的脱リンおよび硝化脱
窒素工程をなるべく低希釈率、理想的には無希
釈状態で操作する。 このようにすることによつて、生物学的脱リ
ン硝化脱窒素工程流出水を全量、透過膜、脱水
機で処理することが、現実的に可能となるので
あり、もし従来のようにし尿を10〜20倍に希釈
して生物処理すると、処理水量が膨大になり、
透過膜で処理することはその膜面積、運転動力
が著しく大きなものとなり、ランニングコスト
的に適用が困難になるのである。 このように、本発明では処理水量が従来より
1/10〜1/20となるので、透過膜の適用が容易に
なり、硫酸ばん土のような無機凝集剤を使用せ
ずに、色度成分の大部分を透過膜で過除去で
きる。したがつて、難脱水性の無機スラツジが
発生しないという著しい利点が得られる。 しかしながら、透過膜では、リン酸除去が完
全でないので、本発明者らは、当初膜処理の適
用の意義が少いと考えていたが、本発明者ら
は、この矛盾を解決するために、鋭意検討を進
めた結果生物学的硝化脱窒素法の前段に嫌気性
発酵工程を設け、そこに、返送汚泥を滞留せし
め、微生物類が液中のリンを過剰摂取する機能
を旺盛にする生物学的脱リン法を適用するとい
う考えに到達し、生物学的脱リンプロセスと透
過膜との結合プロセスとも言うべき新らしい概
念によつて、上記の矛盾点を解決することが出
来た。 さらに、透過膜に流入する液中の色度成分、
COD,BOD成分の濃度を低下させ、膜のフラ
ツクスを向上させる方法を検討した結果、生物
学的脱リンを含む硝化脱窒素工程流出水に、該
生物処理工程の余剰汚泥とを混和せしめた混合
スラリーに、カチオン性高分子凝集剤を添加し
て、脱水機に流入せしめ、脱水ケーキと脱水分
離液とにわけるという、いわば汚泥処理工程を
水処理工程内にもちこむ方法を検討した。(従
来は、余剰汚泥は水処理系統とは全く別系統で
処理されている。) この結果、従来は余剰汚泥の脱水のための前
処理としての凝集にのみ使用されているカチオ
ン性高分子凝集剤によつて生物学的脱リン、硝
化脱窒素工程から流出する液中のコロイド状色
度成分、SS,BOD,COD、有機性―Nなど
が、余剰汚泥と共に凝集して、脱水ケーキとし
て排出されるという現象を見出し、透過膜流入
水中の色度成分を著しく低減化せしむる方法を
確立した。 さらに除去対象物質を濃縮分離するだけで、
凝集沈殿のように固形物として除去することが
ない膜分離プロセスで常に問題となる膜側に残
留する濃縮液の処分に、全く新らしい方法を確
立した。 すなわち、透過膜の濃縮液は従来は、蒸発、
焼却などの方法で処分していたのであるが、こ
の方法では燃費が著しく高いものとなり、コス
トアツプを招くため、本発明においては、透過
膜側濃縮液を、脱水機に流入する混合スラリー
液中に返送し、混和させ、その液にカチオン性
高分子凝集剤を添加することにつて濃縮液中の
高分子量の色度成分を、前記生物工程余剰汚泥
と共凝集させて除去するという新らしい方法を
採用した。 この結果、透過膜側濃縮液の処分に蒸発、焼却
などの熱エネルギーを多量に浪費する方法を採用
する必要がなくなり、プロセスが著るしく合理化
された。 なお、本発明で使用する透過膜としては選択透
過性の低い逆浸透膜乃至マイクロポーラス膜と
し、特に限外過膜(UF膜)乃至マイクロポー
ラス膜が好ましい。 さらに本発明における新しい概念を適用した一
実施態様を第1図を参照しつつ説明する。 まず、し尿などの濃厚有機性廃水1を嫌気発酵
部2に導入する。この嫌気発酵部2には、固液分
離部3から汚泥4が返送され、ここで原水と活性
汚泥とを嫌気的条件下で接触滞留させることによ
り、活性汚泥中の微生物類はリンを過剰摂取する
機能が旺盛となり、後続する硝化部において好気
的条件下で液側からリンを過剰に摂取する。 嫌気発酵部2の次には、生物学的脱窒素部5が
配置され、循環硝化液6中のNO2―N,NO3―N
(NOx―N)と略記)中の酸素源を利用して、脱
窒素菌が硝酸呼吸を行ないつつ、原液中のBOD
成分を有機炭素源として高速にNOx―N→N2
の還元反応が行われる。また脱窒素部5に後続し
て硝化部7が設けられ、脱窒素部5流出液中の
NH4―N、および残留BODがNOx―Nに酸化あ
るいは除去され、またリンの過剰摂取がなされ
る。 また図示しなかつたが、高度の窒素除去を望む
場合は硝化部7の次に第2脱窒素部および再曝気
部を設けてもよいことは当然である。 なお、生物学的硝化脱窒素プロセスとしては、
図示した硝化液循環法の他に、脱窒素部硝化部の
くりかえしからなるプロセスの脱窒素部に原液を
ステツプ式に分注する、いわゆるステツプ方式を
採用することも問題なく可能であり、また、脱窒
素部において、弱い曝気を行なう、いわゆる好気
的脱窒素法を、採用することも当然可能である。 次に、固液分離部3は、通常の重力沈殿を採用
することも可能であるが、生物学的脱リン機能を
くみこんだ、生物学的硝化脱窒素プロセスの場合
は固液分離部3の滞留時間が長いと嫌気的になり
やすく、リンが処理水中にリークするので、より
短時間に固液分離可能な浮上分離法あるいは遠心
濃縮法を採用することが好ましい。 しかして、固液分離部3からの分離水8と余剰
汚泥9との混合液10に、カチオン性高分子凝集
剤11を添加して、遠心脱水機、ロールプレス型
脱水機などの脱水機12によつて、脱水ケーキ1
3と脱水分離液14を得る。脱水分離液14は、
前述した如く、カチオン性高分子凝集剤による汚
泥との共凝集によつて、コロイド状の色度、
BOD,COD、有機性―Nなどが除去されてお
り、かなり清澄になつているので、透過膜、例え
ばUF膜15による処理が容易になり、フラツク
スも向上する。 このUF膜15処理によつて、処理水質は放流
可能となる場合がほとんどであるが、さらに高度
の処理を要する場合は、このあとに活性炭吸着を
行なえばよい。 なお、脱水機12の前に添加されるカチオン性
高分子凝集剤11は、一部が脱水分離液14中に
残留してくるがこの残留ポリマーはUF膜15に
よつて完全に除去され、放流水中に含まれなくな
り魚類への毒性が強いといわれるカチオン性ポリ
マーの使用も何ら問題がなくなるという点も本発
明の重要な長所の一つである。 一方、UF膜の濃縮液16は、脱水機流入混合
液10にリサイクル混合されて、前述の如くカチ
オン性高分子凝集剤11の添加を受け、凝集され
たのち、脱水機12に流入する。この過程で、
UF膜濃縮液16中の高分子側の溶解性成分は、
共凝集を受け、脱水ケーキ中に移行するので、
UF膜濃縮液16の濃度が無限に増加することな
く、ある一定値でバランスすることが確認されて
いる。 また、生物学的脱リン、硝化、脱窒素工程の固
液分離部3の分離液8には、生物学的脱リンによ
つて除去しきれなかつた少量のリン酸が含まれて
いるので、これを除去するために、脱水機の前で
添加されるカチオン性高分子凝集剤に硫酸ばん
土、塩化第2鉄などの無機凝集剤を併用したり、
脱水機分離液14に対し、前記無機凝集剤17を
添加してフロツク形成したのち直接UF膜15で
処理する方法も効果的な方法である。 リン酸の除去に要する無機凝集剤の所要量はリ
ン酸の濃度によつて決定されるので、従来法では
極めて多量(数千ppm)の無機凝集剤注入率を
必要とするのに対し、本発明では生物学的脱リン
と凝集UF膜による物理化学的方法とを結合した
ので、無機凝集剤所要量は格段に少なくて済む。
UF膜の処理水18はそのまま放流されるか、必
要ならばさらにオゾン、活性炭吸着などの処理を
行なつたのち放流される。 以上のような構成からなる本発明によつて、次
のような工業上重要な利益を得ることが可能とな
る。 希釈水を必要としないで放流可能な水質が得
られる。 生物学的脱リン工程と透過膜工程とを結合さ
せ、リンおよび色度成分の明確な除去機能分担
を達成したので、難脱水性の無機スラツジが発
生しないか、極めて少量になる。 透過膜濃縮液の合理的な処分方法を確立し、
膜処理の適用を大幅なコストアツプを招くこと
なく可能にした。 従来、余剰汚泥の脱水に利用されたいたカチ
オン性高分子凝集剤を、液の清澄化にも利用で
きるようになし、透過膜供給原水の水質を向上
せしめ、フラツクスの増加を可能にした。 無希釈か、またはそれに近い低希釈倍率を採
用できる結果、生物学的脱リン、硝化、脱窒素
工程において、発生する発酵熱の液温上昇効果
を効率的に利用でき、外部加熱を必要とせずに
槽内を30〜35℃に容易に維持できるので、微生
物によるリンの取り込み、吐き出し速度、およ
び硝化、脱窒素速度が向上する。この結果施設
のコンパクト化が可能になる。 生物学的脱リン工程の固液分離に重力沈降以
外の加圧浮上法、遠心濃縮などの分離速度の大
きな方法を採用すれば、リンをとりこんだ微生
物が、嫌気的雰囲気にさらされないので、固液
分離部でのリンの吐き出しがおきず処理水中に
リンがリークするおそれがない。 次に本発明の一実施例を実験結果にもとづいて
説明する。 実施例 表―1のような水質を有する除渣し尿を原液と
して第1図の本発明フローにもとづいて実験し
た。
The present invention relates to a method for treating concentrated organic wastewater such as human waste, particularly biological denitrification, dephosphorization,
By organically combining BOD removal methods, physicochemical dephosphorization, BOD removal, and solid-liquid separation methods in a novel manner, concentrated organic wastewater such as human waste can be treated in the most rational manner. It concerns the method of processing. The main problem with conventional human waste treatment processes is that in biological treatment processes such as biological nitrification and denitrification methods and activated sludge methods, phosphoric acid (600%
~1000mg/) and chromaticity components can hardly be removed, so sulfuric acid, ferric chloride, or slaked lime act on phosphate ions and chromaticity components to form insoluble precipitates in biologically treated water. It is necessary to add and remove an inorganic flocculant that produces sulfuric acid, and for example, sulfuric acid soil requires a large amount of 500 to 1000 mg / 20 times diluted biologically treated water, and as a result, it is difficult to dewater. The amount of inorganic sludge generated has increased, and the treatment and disposal of the sludge has become a major problem.Moreover, even in composting, which has recently become popular, the mixing of inorganic sludge is undesirable. Conventional methods require 10 to 20 times more dilution water than human waste, so human waste treatment plants, which have difficulty securing dilution water sources, are suffering from a shortage of dilution water. As a natural result of trying to reduce the amount of inorganic sludge generated, the chromaticity of the treated water,
Phosphoric acid will increase. The present invention is an inorganic coagulation method that generates a large amount of inorganic sludge such as sulfuric acid chloride and ferric chloride, which was traditionally considered to be necessary for removing chromaticity and phosphoric acid. It is possible to achieve the seemingly contradictory effects of eliminating the need for the addition of additives or significantly reducing the amount of additives compared to conventional methods, and improving the chromaticity and removal rate of phosphoric acid compared to conventional methods. The purpose is to provide a possible method. That is, in the present invention, an anaerobic fermentation process is provided before the biological nitrification and denitrification process, and a flocculant containing at least a cationic polymer flocculant is added to the mixture of the effluent and excess sludge that has passed through these processes. It is characterized in that it is added and dehydrated, and the dehydrated separated liquid is further processed through a permeable membrane. Next, important points in the configuration of the present invention will be explained. First, the biological dephosphorization and nitrification/denitrification steps described below are operated at a dilution rate as low as possible, ideally in a non-diluted state. By doing this, it becomes realistically possible to treat all of the effluent from the biological dephosphorization, nitrification, and denitrification process using a permeable membrane and a dehydrator. When diluted 10 to 20 times and subjected to biological treatment, the amount of treated water becomes enormous.
Treatment using a permeable membrane requires a significantly large membrane area and operating power, making it difficult to apply in terms of running costs. In this way, the amount of water to be treated with the present invention is lower than that of the conventional method.
Since it is 1/10 to 1/20, it is easy to apply a permeable membrane, and most of the chromaticity components can be excessively removed by the permeable membrane without using an inorganic flocculant such as sulfuric acid. Therefore, a significant advantage is obtained that no inorganic sludge, which is difficult to dewater, is generated. However, since phosphoric acid removal is not complete with a permeable membrane, the present inventors initially thought that the application of membrane treatment was of little significance, but the present inventors worked diligently to resolve this contradiction. As a result of further investigation, we established an anaerobic fermentation process before the biological nitrification and denitrification method, and created a biological method in which the returned sludge is retained and the function of microorganisms to take in excess phosphorus in the liquid is enhanced. We arrived at the idea of applying a dephosphorization method, and were able to resolve the above-mentioned contradictions by using a new concept that could be called a combination process of biological dephosphorization process and permeable membrane. Furthermore, the chromaticity components in the liquid flowing into the permeable membrane,
As a result of studying methods to reduce the concentration of COD and BOD components and improve membrane flux, we decided to mix effluent from the nitrification and denitrification process, which includes biological dephosphorization, with excess sludge from the biological treatment process. We investigated a method of adding a cationic polymer flocculant to the slurry, allowing it to flow into a dehydrator, and separating it into a dehydrated cake and a dehydrated separated liquid, thereby incorporating the sludge treatment process into the water treatment process. (Traditionally, surplus sludge is treated in a system completely separate from the water treatment system.) As a result, cationic polymer flocculation, which has traditionally been used only for flocculation as a pretreatment for dewatering surplus sludge, Colloidal chromatic components, SS, BOD, COD, organic N, etc. in the liquid flowing out from biological dephosphorization and nitrification and denitrification processes coagulate with excess sludge and are discharged as a dehydrated cake. We discovered this phenomenon and established a method to significantly reduce the chromaticity components in the water flowing into the permeable membrane. Furthermore, by simply concentrating and separating the substances to be removed,
We have established a completely new method for disposing of concentrated liquid remaining on the membrane side, which is always a problem in membrane separation processes where solid matter is not removed, such as coagulation and sedimentation. In other words, the concentrated liquid of the permeable membrane was conventionally processed by evaporation,
This method has been disposed of by methods such as incineration, but this method results in extremely high fuel consumption and increases costs. Therefore, in the present invention, the permeable membrane side concentrated liquid is added to the mixed slurry liquid flowing into the dehydrator. A new method was developed in which the high molecular weight chromatic components in the concentrated liquid were co-agglomerated with the biological process surplus sludge and removed by adding a cationic polymer flocculant to the liquid. Adopted. As a result, it is no longer necessary to use methods that waste a large amount of thermal energy, such as evaporation or incineration, to dispose of the permeable membrane side concentrate, and the process has been significantly streamlined. The permeable membrane used in the present invention is a reverse osmosis membrane or a microporous membrane with low permselectivity, and an ultrafiltration membrane (UF membrane) or a microporous membrane is particularly preferred. Furthermore, one embodiment to which the new concept of the present invention is applied will be described with reference to FIG. First, concentrated organic wastewater 1 such as human waste is introduced into the anaerobic fermentation section 2. The sludge 4 is returned from the solid-liquid separation section 3 to the anaerobic fermentation section 2, where the raw water and activated sludge are brought into contact and retained under anaerobic conditions, so that the microorganisms in the activated sludge absorb excessive phosphorus. The subsequent nitrification section takes in excessive phosphorus from the liquid side under aerobic conditions. A biological denitrification unit 5 is arranged next to the anaerobic fermentation unit 2, and NO 2 -N, NO 3 -N in the circulating nitrification liquid 6 is
(abbreviated as NOx-N)), the denitrifying bacteria respires nitric acid while reducing the BOD in the stock solution.
NOx-N→N 2 ↑ at high speed using the component as an organic carbon source
A reduction reaction takes place. Further, a nitrification unit 7 is provided following the denitrification unit 5, and the nitrification unit 7 is
NH 4 --N and residual BOD are oxidized or removed to NOx --N, and phosphorus is excessively ingested. Although not shown in the drawings, it is of course possible to provide a second denitrification section and a reaeration section next to the nitrification section 7 if a high degree of nitrogen removal is desired. The biological nitrification and denitrification process is as follows:
In addition to the illustrated nitrification solution circulation method, it is also possible without any problem to adopt the so-called step method in which the stock solution is dispensed in a stepwise manner to the denitrification section in a process consisting of repeating the denitrification section and the nitrification section. It is of course possible to employ the so-called aerobic denitrification method in which weak aeration is performed in the denitrification section. Next, the solid-liquid separation unit 3 can adopt normal gravity precipitation, but in the case of a biological nitrification and denitrification process that incorporates a biological dephosphorization function, the solid-liquid separation unit 3 If the residence time is long, it tends to become anaerobic and phosphorus leaks into the treated water, so it is preferable to use a flotation separation method or a centrifugal concentration method that allows solid-liquid separation in a shorter time. Thus, a cationic polymer flocculant 11 is added to a mixed liquid 10 of separated water 8 and excess sludge 9 from the solid-liquid separation section 3, and a dehydrator 12 such as a centrifugal dehydrator or a roll press type dehydrator is used. Dehydrated cake 1
3 and a dehydrated separated liquid 14 are obtained. The dehydrated separated liquid 14 is
As mentioned above, the chromaticity of colloidal,
Since BOD, COD, organic N, etc. have been removed, and the fluid is considerably clear, it becomes easier to process with a permeable membrane, such as the UF membrane 15, and the flux is also improved. In most cases, the treated water can be discharged by this UF membrane 15 treatment, but if more advanced treatment is required, activated carbon adsorption may be performed after this. Note that some of the cationic polymer flocculant 11 added before the dehydrator 12 remains in the dehydrated separated liquid 14, but this residual polymer is completely removed by the UF membrane 15 and discharged. Another important advantage of the present invention is that there is no problem with the use of cationic polymers, which are no longer contained in water and are said to be highly toxic to fish. On the other hand, the concentrated liquid 16 of the UF membrane is recycled and mixed with the dehydrator inflow mixed liquid 10, is added with the cationic polymer flocculant 11 as described above, is flocculated, and then flows into the dehydrator 12. In this process,
The soluble components on the polymer side in the UF membrane concentrate 16 are:
As it undergoes co-aggregation and migrates into the dehydrated cake,
It has been confirmed that the concentration of the UF membrane concentrate 16 does not increase infinitely but remains balanced at a certain constant value. In addition, the separated liquid 8 of the solid-liquid separation section 3 in the biological dephosphorization, nitrification, and denitrification steps contains a small amount of phosphoric acid that could not be completely removed by biological dephosphorization. In order to remove this, inorganic flocculants such as sulfuric acid or ferric chloride are used in combination with the cationic polymer flocculant added before the dehydrator.
Another effective method is to add the inorganic flocculant 17 to the dehydrator separated liquid 14 to form a floc, and then directly treat it with the UF membrane 15. The amount of inorganic flocculant required to remove phosphoric acid is determined by the concentration of phosphoric acid, so whereas conventional methods require an extremely large amount (several thousand ppm) of inorganic flocculant to be injected, our method Since the invention combines biological dephosphorization with a physicochemical method using a flocculating UF membrane, the amount of inorganic flocculant required can be significantly reduced.
The treated water 18 of the UF membrane is discharged as is, or if necessary, it is further treated with ozone, activated carbon adsorption, etc. and then discharged. The present invention having the above configuration makes it possible to obtain the following industrially important benefits. Water quality that can be discharged without the need for dilution water can be obtained. By combining the biological dephosphorization process and the permeable membrane process, we achieved a clear separation of the functions of removing phosphorus and chromatic components, so that inorganic sludge that is difficult to dewater is not generated or is generated in a very small amount. Establish a rational disposal method for permeable membrane concentrate,
This makes it possible to apply membrane treatment without significantly increasing costs. The cationic polymer flocculant, which was conventionally used for dewatering excess sludge, can now also be used to clarify the liquid, improving the quality of raw water supplied to the permeable membrane and making it possible to increase flux. As a result of being able to use no dilution or a low dilution ratio close to that, it is possible to efficiently utilize the liquid temperature raising effect of the fermentation heat generated during biological dephosphorization, nitrification, and denitrification processes, and there is no need for external heating. Since the temperature inside the tank can be easily maintained at 30 to 35°C, the rate of phosphorus uptake and discharge by microorganisms, as well as the rate of nitrification and denitrification, is improved. As a result, the facility can be made more compact. If a high separation rate method such as pressure flotation or centrifugal concentration is used for solid-liquid separation in the biological dephosphorization process, the microorganisms that have taken up phosphorus will not be exposed to the anaerobic atmosphere, and the There is no risk of phosphorus leaking into the treated water as there is no discharge of phosphorus in the liquid separation section. Next, one embodiment of the present invention will be described based on experimental results. EXAMPLE An experiment was conducted based on the flow of the present invention shown in FIG. 1 using filtered human urine having the water quality as shown in Table 1 as a stock solution.

〔フローナツク(商品名)〕[Fronatsuk (product name)]

3 UF膜処理 分画分子量 6000 膜透過水量 0.4m3/m2・d(10Kgf/m2) 回 収 率 95% 以上のような諸元でし尿を無希釈処理実験した
結果、生物学的脱リン工程の固液分離部(加圧浮
上槽)の分離水の水質は表―2のとおりであつ
た。
3 UF membrane treatment Molecular weight cut off: 6000 Membrane permeation water volume: 0.4m 3 /m 2・d (10Kgf/m 2 ) Recovery rate: 95% or more. The water quality of the separated water in the solid-liquid separation section (pressurized flotation tank) of the phosphorus process was as shown in Table 2.

【表】 このように、全く薬剤を使用せずに、90%以上
の除去率で生物学的脱リンが行われた。また、
BOD,COD、窒素の除去率は当然のように極め
て良好に行われた。 次に、加圧浮上分離水とUF膜濃縮リサイクル
液に生物学的脱リン、硝化、脱窒素工程から発生
する余剰汚泥を混和したスラリー液に(SSとし
て10000〜12000mg/)カチオン性高分子凝集剤
(フローナツク商品名)を1.5%〜2%対SS添加
して、デカンター型遠心脱水機で脱水した。 この結果、ケーキ含水率79〜81%の脱水ケーキ
と表―3の如き水質を有する脱水分離液が得られ
た。
[Table] In this way, biological dephosphorization was performed with a removal rate of over 90% without using any chemicals. Also,
Naturally, the removal rates of BOD, COD, and nitrogen were extremely good. Next, cationic polymers are aggregated in a slurry liquid (10,000 to 12,000 mg/SS as SS), which is a mixture of pressurized flotation separated water, UF membrane concentrated recycle liquid, and excess sludge generated from biological dephosphorization, nitrification, and denitrification processes. A 1.5% to 2% SS solution (trade name of Flownatsuk) was added thereto, and the mixture was dehydrated using a decanter-type centrifugal dehydrator. As a result, a dehydrated cake with a cake moisture content of 79 to 81% and a dehydrated separated liquid having water quality as shown in Table 3 were obtained.

【表】 以上の工程では、従来法のように硫酸ばん土、
塩化第2鉄などの難脱水性の無機スラツジを発生
する無機凝集剤を使用していない。 次に、表―3の水質を有する脱水分離液をUF
膜で超過処理した。この際、生物学的脱リンで
除去しきれなかつた75mg/の残留PO4を除去す
るために、硫酸ばん土を300mg/添加し混和し、
フロツク形成したのち、そのままUF膜に流入さ
せた。この結果UF膜処理水は表―4の如き水質
を示し、無希釈し尿処理にもかかわらず極めて良
好な水質が得られた。
[Table] In the above process, as in the conventional method, sulfuric acid
It does not use inorganic flocculants such as ferric chloride that generate inorganic sludge that is difficult to dehydrate. Next, the dehydrated separated liquid having the water quality shown in Table 3 was UF
Overtreated with membrane. At this time, in order to remove the 75 mg of residual PO 4 that could not be removed by biological dephosphorization, 300 mg of sulfuric acid was added and mixed.
After forming a floc, it was allowed to flow directly into the UF membrane. As a result, the UF membrane-treated water exhibited water quality as shown in Table 4, and extremely good water quality was obtained despite the non-diluted human urine treatment.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施態様を示す系統説明図
である。 1…有機性廃水、2…嫌気発酵部、3…固液分
離部、4…返送汚泥、5…生物学的脱窒素部、6
…循環硝化液、7…硝化部、8…分離水、9…余
剰汚泥、10…混合液、11…カチオン性高分子
凝集剤、12…脱水機、13…脱水ケーキ、14
…脱水分離液、15…UF膜、16…濃縮液、1
7…無機凝集剤、18…処理水、19…空気。
FIG. 1 is a system explanatory diagram showing one embodiment of the present invention. 1...Organic wastewater, 2...Anaerobic fermentation section, 3...Solid-liquid separation section, 4...Return sludge, 5...Biological denitrification section, 6
... Circulating nitrifying liquid, 7... Nitrification section, 8... Separated water, 9... Excess sludge, 10... Mixed liquid, 11... Cationic polymer flocculant, 12... Dehydrator, 13... Dehydrated cake, 14
...Dehydrated separation liquid, 15...UF membrane, 16...Concentrated liquid, 1
7... Inorganic flocculant, 18... Treated water, 19... Air.

Claims (1)

【特許請求の範囲】 1 生物学的硝化脱窒素工程の前段に嫌気性発酵
工程を設け、これらの工程を経た流出液と余剰汚
泥との混合液に少なくともカチオン性高分子凝集
剤を含む凝集剤を添加して脱水処理し、該脱水分
離液をさらに透過膜により処理することを特徴と
する有機性廃水の処理方法。 2 上記嫌気性発酵工程および生物学的硝化脱窒
素工程を無希釈または無希釈に近い状態で行う特
許請求の範囲第1項記載の有機性廃水の処理方
法。 3 上記透過膜による処理で得られた膜側残留濃
縮液を上記脱水処理されるべき混合液中に返送す
る特許請求の範囲第1項または第2項記載の有機
性廃水の処理方法。 4 上記生物学的硝化脱窒素工程中の固液分離手
段として加圧浮上または遠心分離を用いる特許請
求の範囲第1項、第2項または第3項記載の有機
性廃水の処理方法。 5 上記脱水分離液にさらに凝集剤を添加したの
ち透過膜により処理する特許請求の範囲第1項、
第2項、第3項または第4項記載の有機性廃水の
処理方法。 6 上記透過膜が限外過膜乃至マイクロポーラ
ス膜である特許請求の範囲第1項、第2項、第3
項、第4項または第5項記載の有機性廃水の処理
方法。
[Scope of Claims] 1. An anaerobic fermentation step is provided before the biological nitrification and denitrification step, and a flocculant containing at least a cationic polymer flocculant is added to the mixed liquid of the effluent that has passed through these steps and excess sludge. 1. A method for treating organic wastewater, the method comprising: dehydrating the organic wastewater by adding the following: and further treating the dehydrated separated liquid using a permeable membrane. 2. The method for treating organic wastewater according to claim 1, wherein the anaerobic fermentation step and the biological nitrification and denitrification step are carried out without dilution or in a near-undiluted state. 3. The organic wastewater treatment method according to claim 1 or 2, wherein the membrane-side residual concentrate obtained by the treatment with the permeable membrane is returned to the mixed liquid to be dehydrated. 4. The method for treating organic wastewater according to claim 1, 2 or 3, in which pressurized flotation or centrifugation is used as the solid-liquid separation means during the biological nitrification and denitrification process. 5. Claim 1, wherein a flocculant is further added to the dehydrated separated liquid and then treated with a permeable membrane.
The method for treating organic wastewater according to item 2, 3 or 4. 6 Claims 1, 2, and 3, wherein the permeable membrane is an ultrafiltration membrane or a microporous membrane.
The method for treating organic wastewater according to item 4 or 5.
JP6370679A 1979-05-23 1979-05-23 Treating method of organic waste water Granted JPS55155798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6370679A JPS55155798A (en) 1979-05-23 1979-05-23 Treating method of organic waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6370679A JPS55155798A (en) 1979-05-23 1979-05-23 Treating method of organic waste water

Publications (2)

Publication Number Publication Date
JPS55155798A JPS55155798A (en) 1980-12-04
JPS6210720B2 true JPS6210720B2 (en) 1987-03-07

Family

ID=13237077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6370679A Granted JPS55155798A (en) 1979-05-23 1979-05-23 Treating method of organic waste water

Country Status (1)

Country Link
JP (1) JPS55155798A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57167797A (en) * 1981-04-07 1982-10-15 Showa Denko Kk Removing and recovering method for phosphorus in waste water
JPS57177396A (en) * 1981-04-27 1982-11-01 Ebara Infilco Co Ltd Purification of organic waste water
JPS5884096A (en) * 1981-11-13 1983-05-20 Ebara Infilco Co Ltd Digesting and denitrifying method for night soil sewage
JPS58153594A (en) * 1982-03-05 1983-09-12 Ebara Infilco Co Ltd Treatment of organic waste
JPH074597B2 (en) * 1985-02-08 1995-01-25 栗田工業株式会社 Organic wastewater treatment equipment
JPH074598B2 (en) * 1985-02-12 1995-01-25 栗田工業株式会社 Human waste system treatment equipment
JPS63185493A (en) * 1987-01-26 1988-08-01 Kubota Ltd Water treatment
JPH02211295A (en) * 1989-02-10 1990-08-22 Ebara Infilco Co Ltd Treatment of raw sewage
WO1994011313A1 (en) * 1992-11-06 1994-05-26 THE MINISTER FOR PUBLIC WORKS for and on behalf ofTHE STATE OF NEW SOUTH WALES Biological phosphorus removal from waste water
FR2812627B1 (en) * 2000-08-07 2003-02-21 Abderrazack Djenani CONTINUOUS INDUSTRIAL WASTEWATER TREATMENT PROCESS AND DEVICES FOR ITS IMPLEMENTATION
JP3835610B2 (en) * 2003-02-17 2006-10-18 株式会社日立プラントテクノロジー Wastewater treatment method and apparatus
US8268169B2 (en) * 2010-12-20 2012-09-18 Palo Alto Research Center Incorporated Membrane bioreactor (MBR) and moving bed bioreactor (MBBR) configurations for wastewater treatment
CN108424215A (en) * 2018-03-27 2018-08-21 中山大学 A kind of method of sludge and garden garbage efficient low-consume aerobic compost

Also Published As

Publication number Publication date
JPS55155798A (en) 1980-12-04

Similar Documents

Publication Publication Date Title
JPS6210720B2 (en)
JPS5845920B2 (en) Biochemical treatment method for organic waste liquid
JP4839645B2 (en) Method and apparatus for treating human waste sewage
JP2796909B2 (en) Wastewater treatment method
JPS6328500A (en) Treatment device for night soil sanitary sewage
JPH0366036B2 (en)
JPS6320600B2 (en)
JPH0947781A (en) Treatment of organic material related to bod, nitrogen and phosphorus in waste water
JP2000117289A (en) Treatment of dehydration-separated liquid from anaerobic-digested sludge and equipment therefor
JPH0649199B2 (en) Human waste system treatment equipment
JPS60206498A (en) Treatment of excretion sewage
JPH10156398A (en) Water treatment and water treating device
JPH0535039B2 (en)
JPS5851995A (en) Treatment of night soil
JP3672175B2 (en) Organic wastewater treatment method and treatment apparatus
JPH04227899A (en) Treatment of night soil
JPH0141119B2 (en)
JPH02139099A (en) Treatment of organic sewage
JPH0568993A (en) Treatment of sludge of purifying tank
JPH0141399B2 (en)
JPS6244996B2 (en)
JPH10156381A (en) Method for reducing volume of organic sludge
JPS5820290A (en) Disposition of organic waste water
JPS5898198A (en) Treatment of sewage sludge
JPS64119B2 (en)