JPS58153594A - Treatment of organic waste - Google Patents

Treatment of organic waste

Info

Publication number
JPS58153594A
JPS58153594A JP57033780A JP3378082A JPS58153594A JP S58153594 A JPS58153594 A JP S58153594A JP 57033780 A JP57033780 A JP 57033780A JP 3378082 A JP3378082 A JP 3378082A JP S58153594 A JPS58153594 A JP S58153594A
Authority
JP
Japan
Prior art keywords
waste
solid
liquid
tank
nitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57033780A
Other languages
Japanese (ja)
Other versions
JPH0125640B2 (en
Inventor
Koichi Kiriyama
桐山 光市
Yoshitaka Matsuo
松尾 吉高
Katsuyuki Kataoka
克之 片岡
Takayuki Suzuki
隆幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP57033780A priority Critical patent/JPS58153594A/en
Publication of JPS58153594A publication Critical patent/JPS58153594A/en
Publication of JPH0125640B2 publication Critical patent/JPH0125640B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PURPOSE:To increase the rate of generation of gaseous methane and to treat the residues of digesting liquid efficiently in the stage of subjecting org, waste to solid-liquid sepn. after anaerobic digestion, by combining heat treatment for the waste with the biological nitrification and nitrification and denitrification of the digesting liquid. CONSTITUTION:Org. waste (preferably the org. waste controlled to <=5pH) 1 is admitted into a heat treating device 2, where the waste is treated under heating for a short time preferably at >=175 deg.C. Such waste is charged into an anaerobic digesting tank 3 which is heat exchanged 9 with the device 2, and is allowed to stagnate therein for the time enough for digestion and is thereby subjected to an anaerobic digesting treatment under constant or occasional agitation. The waste flowing out from the tank 3 is treated in a biological nitrifying or biological nitrifying and denitrifying tank 4, whereafter an inorg. flocculating agent 5 is added thereto and the waste is treated in a solid-liquid separating device 6. The supernatant liqueur 8 produced in the solid-liquid separating stage is returned to the water treatment system, and if necessary part thereof may be admitted into the tank 3 and treated. Separated and dehydrated cake 7 is disposed after post treatments, for example, a mechanical dehydration stage.

Description

【発明の詳細な説明】 本発明は、下水、廃水等の処理汚泥又は都市・ごみ、そ
の他童業廃秦物類の有機性廃棄物を処理する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating treated sludge such as sewage and wastewater, or organic waste such as city garbage and other industrial waste.

従来下水、し尿処理施設などの有機性汚泥を処理する方
法として、最も一般的に広く採用されている代表的処理
方法としては、有機性汚泥に有価資源である高分子凝集
剤と塩化第2鉄、石灰などの脱水助剤とを多量に添加し
、機械脱水機によって脱水し、脱水ケーキとして乾燥、
焼却するというプロセスである丸め乾燥・焼却に重油な
どの補助燃料を多量に消費し、しかも焼却排ガス又は熱
風によって水分70〜80−程度の高水分脱水ケーキを
乾燥したのち、焼却するため、耐え―い悪臭が多量に発
生し、これの悪臭防止対策として発生した悪臭ガスを直
火燃焼脱臭、触媒燃焼脱臭、湿式薬液洗浄、吸着などの
各種の脱臭工程で脱臭するという手段によっているえめ
、プロセスが複雑となり、維持管理、維持経費上非常に
問題があった。
Conventional methods for treating organic sludge from sewage and human waste treatment facilities, and the most commonly used representative treatment method, include polymer flocculants and ferric chloride, which are valuable resources for organic sludge. , a large amount of dehydration aid such as lime is added, dehydrated using a mechanical dehydrator, and dried as a dehydrated cake.
The process of incineration, rounding, drying and incineration, consumes a large amount of auxiliary fuel such as heavy oil, and in addition, the high moisture dehydrated cake with a moisture content of about 70 to 80% is dried by incineration exhaust gas or hot air and then incinerated, so it is difficult to withstand. A large amount of bad odor is generated, and as a countermeasure to prevent this odor, the process is deodorized by various deodorizing processes such as direct combustion deodorization, catalytic combustion deodorization, wet chemical cleaning, and adsorption. It was complicated and caused problems in terms of maintenance, management, and maintenance costs.

とくに、近年石油を取)巻く環境の悪化に伴なって省資
源、省エネルギ、更には石油以外の形でのエネルギ生産
が強く要求されるようKなってきており、随所で種々様
々な研究開発を経て、実施に移されている。このエネル
ギ生産という形をとる中では廃棄物や有用植物からエネ
ルギ回収を行なおうとする姿勢が最も積極的であり、既
に多数実施されていて、なかで4代表的なものでは下・
廃水処理汚泥や都市ゴミをメタン発酵してメタンガスや
電気という形で回収する技術が提案されている、しかし
、これらのメタン発酵技術にあっては、まだ幾つかの問
題点が存在し、これらを解決することによって更に技術
的進歩が望まれる。例えば、この従来技術では十分経済
的に11.l)立つに足るだけのメタンガス発生量が得
られないか、あるいはメタン発酵後の残留物の処理処分
に却って多額の費用を要するという問題点があった。即
ち、従来法では、メタン発酵(嫌気性消化)Kてエネル
ギを回収した屯のの、発酵残留物(以下、消化液と記す
)の処理処分がうまくいかず大きな問題点となってきて
いる。これを処理処分するには先ず固液分離することが
必要であるが、この消化液は固液分離が大変困難で、こ
の固液分離操作に嫌気性消化工程で回収されるエネルギ
以上のエネルギを費しているの、が実状であり、何の丸
めのエネ1 ルギ回収かわからなくなっている欠点があっ九。
In particular, as the environment surrounding oil has deteriorated in recent years, there has been a strong demand for resource conservation, energy conservation, and energy production in forms other than oil. After that, it has been put into practice. In this form of energy production, the most proactive approach is to recover energy from waste and useful plants, and many of these have already been implemented.
Technologies have been proposed to recover wastewater treatment sludge and municipal waste in the form of methane gas and electricity through methane fermentation.However, there are still some problems with these methane fermentation technologies, and these are difficult to overcome. It is hoped that further technical progress will be made by solving this problem. For example, this prior art is sufficiently economically 11. l) There is a problem that either sufficient amount of methane gas cannot be generated or that a large amount of cost is required to process and dispose of the residue after methane fermentation. That is, in the conventional method, after energy is recovered through methane fermentation (anaerobic digestion), the fermentation residue (hereinafter referred to as digestive fluid) cannot be properly processed and disposed of, which has become a major problem. In order to treat and dispose of this, it is first necessary to separate solid-liquid, but solid-liquid separation of this digestive fluid is extremely difficult, and this solid-liquid separation operation requires more energy than is recovered in the anaerobic digestion process. The reality is that we are spending a lot of energy, and the drawback is that we don't know how much energy we are recovering.

本発明はこれら従来の有機性廃棄物の処理プロセスの不
合理な数多くの問題点を解決し、生物分解性を大巾に向
上し悪臭ガス発生を防止しつつ、メタンガス発、生量を
も増加シ、嫌気性消化液の残留物の同液分離を極めて省
エネルギ的に1効率よく処理することが可能で安価なエ
ネルギ生産と事後処理の簡便化とができる有機物の処理
方法を提供することを目的とし友ものである。
The present invention solves many unreasonable problems in the conventional organic waste treatment process, greatly improves biodegradability, prevents the generation of foul-smelling gas, and increases the amount of methane gas generated and produced. It is an object of the present invention to provide a method for treating organic matter that can efficiently separate the residue of anaerobic digestive fluid in an extremely energy-saving manner, and can produce inexpensive energy and simplify post-treatment. A purpose and a friend.

本発明は、下水汚泥など有機性廃棄物を嫌気性消化した
後、固液分離処−す、る方法にあたり、有機性廃棄物を
予め熱J611L、てから嫌気性消化し、その消化液を
生物学的硝化あるいは生物学的硝化脱窒素し丸後、無機
凝集剤を添加して固液分離することを特徴とするもの譬
、メタンガス発生量を増加し、あわせてメタン発酵後の
残留物の固液分離をも容易にすることができると共に1
熱処履餐有の問題点とされる臭気中熱処理脱離液0処履
、熱処理工程で得シれる廃熱の有効利用等の点て、従来
よシ存在する単に有機性廃棄物を熱処理し先後メタン発
酵を行なうという方法より優位な有効な方法である。
The present invention relates to a method of anaerobically digesting organic waste such as sewage sludge and then subjecting it to solid-liquid separation treatment. For example, chemical nitrification or biological nitrification, which is characterized by solid-liquid separation by adding an inorganic flocculant after denitrification, increases the amount of methane gas generated and also reduces the solidification of the residue after methane fermentation. It can also facilitate liquid separation and 1
In order to solve the problems of heat treatment, such as eliminating odor and eliminating the desorbed liquid, and effectively utilizing the waste heat obtained in the heat treatment process, it is possible to simply heat treat organic waste, which has conventionally existed. This is an effective method that is superior to the method of performing methane fermentation first.

即ち、下水汚泥など有機性廃棄物を熱処理を行なうと有
機物が変性し、例えば加水分解を受けて低分子化しえり
、非溶解状の物質が溶解性に転じ′にりして、易分解性
になるため通常の嫌気性消化では分解されないような物
質も生物分解が可能となる。そして熱処理による有機物
変性にりいては酸性域、できることならばpH5以下で
行なわれることが望ましく、そのために、有機性廃棄物
を予め酸発酵して熱処理したり、酸性域あるいはpH5
以下になるように酸を添加するのが好ましい。この場合
、用いる酸としては有機酸或いは、鉱酸であれば塩酸が
望ましい。
In other words, when organic waste such as sewage sludge is heat-treated, the organic matter is denatured, for example, undergoes hydrolysis and becomes lower in molecular weight, and undissolved substances become soluble and become easily decomposed. Therefore, substances that cannot be broken down by normal anaerobic digestion can be biodegraded. When it comes to modifying organic substances by heat treatment, it is desirable to carry out the process in an acidic range, preferably at a pH of 5 or less.
It is preferable to add the acid as follows. In this case, the acid used is preferably an organic acid or a mineral acid, preferably hydrochloric acid.

例えば、熱処理に先だって酸発酵を行なった場合は酸発
酵工程において容易に生物分解される有機物は既に分解
されておに、酸発酵工程で分解されない有機物のみを熱
処理工1で島生物分解性物質に変゛性することに集中さ
れる丸め、更にはpH値が低いほど有機性廃棄物の流動
化が良くなる良め熱処理工程の効率化が図られるのであ
る。いずれにしろ熱処理を行なうと生物分解可能な有機
物が非常に多く生成されるため後に絖く嫌気性消化工゛
程からのメタンガス発生量も通常の消化l1から発生す
る量より大変多くな)、その分だけ回収でをるエネルギ
量を増す仁とができるのである。そして酸性域あるいは
pH5以下で熱処理を行なえば、一般に嫌気性消化槽内
のpHが70〜8.0であるからこのpHの差が嫌気性
消化反応を推進し得る。
For example, if acid fermentation is performed prior to heat treatment, organic substances that are easily biodegradable in the acid fermentation process have already been decomposed, and only organic substances that are not decomposed in the acid fermentation process are converted into biodegradable substances in heat treatment step 1. The lower the pH value, the better the fluidization of the organic waste, which improves the efficiency of the heat treatment process. In any case, heat treatment generates a large amount of biodegradable organic matter, so the amount of methane gas generated from the subsequent anaerobic digestion process is much larger than that generated from normal digestion. The amount of energy recovered can be increased by that amount. If the heat treatment is performed in an acidic range or at a pH of 5 or less, the pH within the anaerobic digestion tank is generally 70 to 8.0, so this difference in pH can promote the anaerobic digestion reaction.

このように有機性廃棄物の一種である下・廃水処理汚泥
を熱処理すると固液分離性が著しく改善され、この熱処
理による同液分離性の改善は、その後嫌気性消化しても
損われない。
As described above, when sewage/wastewater treatment sludge, which is a type of organic waste, is heat-treated, its solid-liquid separability is significantly improved, and the improvement in liquid-liquid separability due to this heat treatment is not impaired even after subsequent anaerobic digestion.

すなわち、嫌気性消化槽から流出する消化液を生物学的
硝化あるいはそれに加えて脱窒素した後、無機凝集剤を
添加して固液分離すること、例えば消化液に塩化第二鉄
あるいは他の酸性鉄塩無機凝集剤またはアルカリ性カル
シウム塩あるいはマグネシウム塩による無機凝集剤を添
加して加圧脱水することによって極めて含水率のg8い
脱水ケーキ、  を得ることができる。一般に消化−の
アルカリ度は3,000〜5,000 Ml/L as
CaCαと大変高いため塩化第二鉄、他の酸性鉄塩、ア
ルカリ性0塩、Mg塩などといった無機凝集剤を添加し
てもアルカリ度に消費され、肝腎の固液分離時に効力を
発する部分は働く僅か、というととKなる。言い換えれ
は固液分離時における最適の薬注率、これはとりも直さ
ず最適のpH領域K11l整するに必要な集注率である
が、これを確保するには薬品の添加量をかなり多く要し
更には凝集剤によってアルカリ炭分と反応して固液分離
に悪影譬を与える物質を生成することすらある。そζで
消化液のアルカリ度を低くする方法として生物学的硝化
処理をすればアルカリ度が大幅に減少し、無機凝集剤の
添加量も著しく少なくすることができた。硝化処理を試
みる前に鉱酸とK5て安価な硫酸でアルカリ度除去を試
みたが経費の上では硝化工程で用いる曝気の動力と比較
しても硫酸の方が経費がかかり更に、無機凝集剤として
消石灰を用いると石膏が発生して固液分離にとってマイ
ナスに′1..なることがわかった。これに対し、消化
液を硝化処理し九後消石灰を添加して加圧脱水機で固液
分離したところ硝化処理しない消化液に比べ消石灰の添
加量を大幅に減少することのできることが、ま九消石灰
を添加することKよる汚泥からのアンモニアの放散も減
少することのできることがわかったのである。硝化によ
りアルカリ炭分が除去される反ゐを示すと次のようにな
るが、 −。
That is, after biological nitrification or additional denitrification of the digestive fluid flowing out of the anaerobic digestion tank, solid-liquid separation is performed by adding an inorganic flocculant, for example, adding ferric chloride or other acids to the digestive fluid. By adding an inorganic coagulant such as an iron salt inorganic coagulant or an inorganic coagulant based on an alkaline calcium salt or magnesium salt and performing pressure dehydration, a dehydrated cake with an extremely high water content can be obtained. In general, the alkalinity of digestion is 3,000 to 5,000 Ml/L as
Because CaCα is very high, even if inorganic flocculants such as ferric chloride, other acidic iron salts, alkaline 0 salts, Mg salts, etc. are added, they are consumed by alkalinity, and the part that is effective during solid-liquid separation of the liver and kidneys is not used. When I say a little, it's K. In other words, the optimal chemical injection rate during solid-liquid separation, which is the concentration rate necessary to adjust the optimal pH range K11l, requires a considerably large amount of chemical addition to ensure this. Furthermore, the coagulant may even react with the alkali carbon content to produce substances that adversely affect solid-liquid separation. Therefore, by using biological nitrification treatment as a method to lower the alkalinity of the digestive fluid, the alkalinity was significantly reduced, and the amount of inorganic flocculant added could also be significantly reduced. Before attempting the nitrification process, we attempted to remove alkalinity using mineral acid and K5, an inexpensive sulfuric acid, but sulfuric acid was more expensive than the aeration power used in the nitrification process, and in addition, it required an inorganic flocculant. If slaked lime is used as slaked lime, gypsum will be generated, which is negative for solid-liquid separation.'1. .. I found out that it will happen. On the other hand, when the digestive fluid is nitrified, slaked lime is added, and the solid-liquid is separated using a pressure dehydrator, the amount of slaked lime added can be significantly reduced compared to the digestive fluid that is not nitrified. It has been found that the addition of slaked lime can also reduce the release of ammonia from sludge. The rate at which alkaline carbon is removed by nitrification is as follows: −.

NH4HCO3+3/202−NO; + H”+2H
20+ CO2↑これからも硝化によってアルカリ炭分
である炭酸が液中よシ放散する上、硝化によってpH値
が低くなるので極めて容易に放散することがわかる。
NH4HCO3+3/202-NO; + H”+2H
20+ CO2↑ It can be seen that carbonic acid, which is an alkaline carbon content, will continue to be dissipated from the liquid by nitrification, and it will be dissipated very easily because the pH value will be lowered by nitrification.

なお本発明方法において前記熱処理における加熱温度を
175℃以上で処理するのがよく、これri175℃以
下に比べて脱水f過速度が大巾に向上し、脱水性が向上
し、マ九メタン発酵での有機物分解率が大巾に増大する
からである。
In addition, in the method of the present invention, the heating temperature in the heat treatment is preferably 175°C or higher, which greatly improves the dehydration f overrate and improves the dehydration property compared to when the ri is 175°C or lower. This is because the decomposition rate of organic matter increases significantly.

このように本発明にあっては有機性廃棄物を、pHが5
以下において175℃以上で熱処理し九後嫌気性消化処
理することによシ生物分解性が増加し、それに伴ってメ
タンガス発生量が増大するのみならず、メタン発酵残留
物の固液分離性が改善される。そしてpH5以下での熱
処理であるため該廃棄物の流動性が増し熱処理が効率よ
く行なわれ、熱処理時間も短縮され、を良熱処理装置本
体、熱交換器、およびこれらを介する配管内部へのスケ
ールの付着の問題が解決され、熱交換も効率よく行なう
ことができるのである。
In this way, in the present invention, organic waste is treated at a pH of 5.
In the following, heat treatment at 175°C or higher followed by anaerobic digestion increases biodegradability, which not only increases the amount of methane gas generated, but also improves the solid-liquid separation of the methane fermentation residue. be done. Since the heat treatment is carried out at a pH of 5 or less, the fluidity of the waste increases, the heat treatment is carried out efficiently, and the heat treatment time is shortened. This solves the problem of adhesion and allows efficient heat exchange.

ところで、有機性廃棄物の熱処理を行なうとがなりの悪
臭を発することが多く、%に下水処理汚泥の熱処理にお
いて顕著なものであり九が、熱処理後、嫌気性消化処理
を行なうことにょシ悪臭成分がかなシ除去され二次公害
の危険性も無くなるほか、熱処理脱離液の色度成分が非
常に議く、生物処理のみの手段では色度成分の除去が大
変困難であったが固液分離に際し、少なくとも塩化第二
鉄などの無機凝集剤を用いる固液分離方法を採用すれば
色度成分をかな〕除去することができた。
By the way, heat treatment of organic waste often produces a foul odor, which is most noticeable in the heat treatment of sewage treatment sludge. In addition to eliminating the risk of secondary pollution as the components are easily removed, the chromaticity component of the heat-treated desorbed liquid is very sensitive, and it was very difficult to remove the chromaticity component using biological treatment alone, but solid-liquid During separation, it was possible to remove chromaticity components by employing a solid-liquid separation method that uses at least an inorganic flocculant such as ferric chloride.

本発明を!I施態様托したがって図面を参照して説明す
ると、有機性廃棄物<tiましくはpH5以下Kll整
されたもの)1は熱処理装置2に流入し、望ましくは1
75℃以上の温度で短時間の熱処理を受ける。そして所
定時間の熱処理を受けた廃棄物を熱処理装置2と熱交換
9された嫌気性消化槽3に投入し、十分に消化するに足
る時間滞留させ、終始または適宜攪拌を行なって嫌気性
消化処理する。
Invent this invention! Accordingly, referring to the drawings, an organic waste (preferably one whose pH has been adjusted to 5 or lower) 1 flows into a heat treatment device 2, and preferably 1
Subjected to a short heat treatment at a temperature of 75°C or higher. Then, the waste that has been heat-treated for a predetermined period of time is put into the anaerobic digestion tank 3 that has undergone heat exchange 9 with the heat treatment device 2, and is allowed to stay there for a sufficient time for sufficient digestion.The waste is then subjected to anaerobic digestion treatment by stirring from beginning to end or as needed. do.

この嫌気性消化槽3から流出する廃棄物を生物学的硝化
または生物学的硝化、脱窒紫檀4(以下硝化槽4)で処
理した後、無機凝集剤5を添加し、固液分離装置6で処
理を行なう。該固液分離工程で発生する脱離液8は水処
理系に返流し、必要に応じその一部を前記嫌気性消化槽
3に流入させて処理してもよく、また分離し喪脱水ケー
キ7は事後処理例えば機械的脱水工程などを経て処分さ
れる。
After the waste flowing out from this anaerobic digestion tank 3 is treated with biological nitrification or biological nitrification and denitrification rosewood 4 (hereinafter referred to as nitrification tank 4), an inorganic flocculant 5 is added, and a solid-liquid separator 6 Process with . The desorbed liquid 8 generated in the solid-liquid separation process may be returned to the water treatment system, and if necessary, a part of it may be flowed into the anaerobic digestion tank 3 for treatment. 7 is disposed of after undergoing post-processing, such as a mechanical dehydration process.

前記硝化槽4において有機性廃棄物の消化液は曝気され
アンモニアは硝化菌によって亜硝酸あるいは硝酸に酸化
されpHが低くなる。このpHは硝化菌の阻害されるp
H域である約5.5前後まで低くなるが、このpHで曝
気すると脚数、イオン、重訳酸イオンはほとんど全て大
気中に放散してアルカリ度が大幅に低下する。消化液は
濃度が高く、通常の活性汚泥処理法のような沈殿池で硝
化槽混合液を固液分離し、汚泥返送を行なうには極めて
大きな沈殿池を必要とするので、硝化は一過性の曝気を
することが望ましい。すなわち、消化液を硝化槽4で硝
化あるいは更に脱窪素した後、その混合液を直接脱水処
理するのである。アルカリ度の除去が十分になされた消
化液は塩化第二鉄あるbは他の酸性鉄塩無機凝集剤5を
、消化液に対して固形物重量比で2〜3o慢添加した後
、アルカリ性Ca塩あるいはMg塩を添加してpHを3
5〜5.0に調整する。
In the nitrification tank 4, the digestive fluid of organic waste is aerated, and ammonia is oxidized to nitrite or nitric acid by nitrifying bacteria, thereby lowering the pH. This pH is the pH at which nitrifying bacteria are inhibited.
The pH will be as low as about 5.5, which is in the H range, but if aeration is carried out at this pH, almost all of the alkalinity, ions, and deuterate ions will be dissipated into the atmosphere, resulting in a significant decrease in alkalinity. Digestion fluid has a high concentration, and as in the normal activated sludge treatment method, an extremely large settling tank is required to separate the nitrification tank mixture into solid and liquid and return the sludge, so nitrification is temporary. It is desirable to provide aeration. That is, after the digestive fluid is nitrified or further desilicated in the nitrification tank 4, the mixed solution is directly dehydrated. Digestive fluid from which alkalinity has been sufficiently removed is ferric chloride. After adding another acidic iron salt inorganic flocculant 5 to the digestive fluid at a solid weight ratio of 2 to 3 o, alkaline Ca Adjust the pH to 3 by adding salt or Mg salt.
Adjust to 5-5.0.

但し、塩化第二鉄あるいは他の酸性鉄塩無機凝集剤5を
添加した後pHが3.5〜5.0になればアルカリ性C
a塩あるいはhtg塩を添加する必要はない。またアル
カリ性C1塩あるいは珈塩のみを添加する場合は消化液
に対して固形物重量比で5〜30%添加するだけでその
後のpH1l整は必要としない。このように無機凝集剤
5を添加された消化液は加圧脱水機で固液分離され邊。
However, if the pH becomes 3.5 to 5.0 after adding ferric chloride or other acidic iron salt inorganic flocculant 5, alkaline C
There is no need to add a salt or htg salt. In addition, when only alkaline C1 salt or chlorine salt is added, it is only added to the digestive fluid in an amount of 5 to 30% by weight of solids, and subsequent pH adjustment to 1 l is not necessary. The digestive fluid to which the inorganic flocculant 5 has been added is subjected to solid-liquid separation in a pressure dehydrator.

硝化菌は一般の”BOD酸化菌に比べて菌体の増殖速度
が小さいので硝化槽4の汚泥令が短かいと硝化槽4から
硝化菌が洗出して硝化不能となるため硝化槽4の容積は
次式に示すように硝化菌の増殖速度から求めるとよい。
The growth rate of nitrifying bacteria is lower than that of general BOD oxidizing bacteria, so if the sludge period in nitrification tank 4 is short, nitrifying bacteria will be washed out from nitrification tank 4 and nitrification will become impossible, so the volume of nitrification tank 4 will be reduced. can be determined from the growth rate of nitrifying bacteria as shown in the following equation.

ΔX” / Vn @冶≦μ ΔX1:余剰固形物発生量(147日)vn:硝化槽の
容積(、/) X!I :硝化槽固形物濃度(〜/−)μ :硝化菌の
最大増殖速度(1/日)通常の廃水であれば流入BOD
に対する固形物発生量、流入SSに対する固形物発生量
から余剰固形物発生量を求めなければならないが、消化
液は生物分解性の有機物が既に分解除去されているので
消化液が全て余剰の固形物となり、硝化槽4の水温が2
5℃(μ=0.311/日)とすれば、硝化槽4の容積
は次のように計算される。
ΔX" / Vn @ji≦μ ΔX1: Amount of surplus solids generated (147 days) vn: Volume of nitrification tank (,/) X!I: Concentration of solids in nitrification tank (~/-) μ: Maximum growth of nitrifying bacteria Speed (1/day) If it is normal wastewater, inflow BOD
The amount of surplus solids generated must be calculated from the amount of solids generated for the inflow SS and the amount of solids generated for the inflow SS, but since the biodegradable organic matter has already been decomposed and removed from the digestive fluid, all of the digestive fluid is excess solids. Therefore, the water temperature in nitrification tank 4 is 2.
Assuming that the temperature is 5° C. (μ=0.311/day), the volume of the nitrification tank 4 is calculated as follows.

Q−8O/万、μ≦■ Q:消化液流入量(−7日) SO:消化液の固形物濃度(却/−) BO= 40”ly譬とすると、冶はSoとほぼ同じと
みなせるから W≧Q10.31 = 3.2Q(i)  となる。
Q-8O/10,000, μ≦■ Q: Digestive fluid inflow rate (-7 days) SO: Digestive fluid solids concentration (cool/-) If we assume BO = 40"ly, then the heat can be considered to be almost the same as the So. Therefore, W≧Q10.31 = 3.2Q(i).

すなわち1日に流入する消化液量の3.2倍を硝化槽4
の容積とすればよい。硝化菌の増殖速度は40℃近くま
でならば水温が高いほど大きくなるので、硝化槽4に流
入する消化液は硝化槽4での曝気による放熱を考慮し、
できるだけ水温の高い状態で硝化槽4に流入することが
望ましい。この意味からも、熱処理装置2と嫌気性消化
槽3との間の熱交換を効率よく利用して消化温度を高温
消化域に設定するのが望ましい。なお前記固液分離装置
6は加圧脱水機が最も好ましく加圧脱水機ならばどの機
種でも効果的であるが、特に圧搾機構付が効果的で、r
過時間(9)分、圧搾時間加分で含水率65−以下の脱
水ケーキを得ることができる。と夛わけ本願発明では予
め熱処理を行なうことによって固液分離性が著しく改善
され、かつこれが消化によって失なわれることがないの
で、この固液分離性の改善は消化液の固液分離において
も効力を膚し、それだけ予め熱処理を行なわない場合よ
シもすぐれた固液分離結果を示す。
In other words, 3.2 times the amount of digestive fluid that flows in per day is transferred to the nitrification tank 4.
The volume should be . The growth rate of nitrifying bacteria increases as the water temperature rises up to around 40°C, so the digestive fluid flowing into the nitrification tank 4 should be prepared by considering the heat dissipation due to aeration in the nitrification tank 4.
It is desirable that the water flow into the nitrification tank 4 in a state where the water temperature is as high as possible. From this point of view, it is desirable to efficiently utilize heat exchange between the heat treatment device 2 and the anaerobic digestion tank 3 to set the digestion temperature in the high temperature digestion range. The solid-liquid separator 6 is most preferably a pressurized dehydrator, and any type of pressurized dehydrator is effective, but one with a squeezing mechanism is particularly effective.
A dehydrated cake with a moisture content of 65 or less can be obtained by adding the extra time (9) minutes and the pressing time. In addition, in the present invention, the solid-liquid separability is significantly improved by performing heat treatment in advance, and this is not lost by digestion, so this improvement in solid-liquid separation is also effective in solid-liquid separation of digestive fluid. The solid-liquid separation results are even better than those obtained without prior heat treatment.

本発明は塩化第二鉄あるいは他の酸性鉄塩無機凝集剤、
を九はアルカリ性Ca塩や造塩による固液分離の前処理
に著しく効果的である。すなわち消化液を硝化処理する
ことにより、アルカリ度をはとんと除去できるので少量
のこれら薬品添加で容易にpHを上昇させたり下降させ
たりできる。また、消化液中の重炭酸、炭酸イオンが消
失するので、アルカリ性のCa塩やMg塩を添加しても
これらの炭酸塩を生ずることがなく加圧脱水−〇f布の
目詰まりを゛防止することができる。更に硝化によつ゛
てアンモニア量減少しているため、pHの上昇に際して
消化液から放散するアンモニア量が少なくなり固液分離
部の猿境吃改善することができる。硝化槽4におけるア
ぶカリ度はpH5,0になればtlぼ消失するがpH5
,0においてアンモニアが全て硝化されているわけでは
なく低pHq)ため硝化菌の硝化反応が進壕ずアンモニ
アが残留している状態である。
The present invention uses ferric chloride or other acidic iron salt inorganic flocculants,
9 is extremely effective for pretreatment of solid-liquid separation using alkaline Ca salt or salt formation. That is, by nitrifying the digestive fluid, the alkalinity can be drastically removed, so the pH can be easily raised or lowered by adding a small amount of these chemicals. In addition, since the bicarbonate and carbonate ions in the digestive fluid disappear, even if alkaline Ca salts and Mg salts are added, these carbonates are not generated, which prevents clogging of pressurized dehydration cloth. can do. Furthermore, since the amount of ammonia is reduced due to nitrification, the amount of ammonia released from the digestive fluid when the pH increases is reduced, and the stability of the solid-liquid separation section can be improved. The oil content in the nitrification tank 4 disappears when the pH reaches 5.0, but at pH 5.
, 0, not all ammonia is nitrified (at low pH), the nitrification reaction of nitrifying bacteria does not progress and ammonia remains.

アルカリ性Ca塩や均塩を添加L ? pH1rt 1
1近くに壕、  で上昇した際にアンモニアの放散を完
全に防止するためにはアンモニアを完全に硝化すればよ
いが、このためには硝化槽4にアルカリ剤を添加してp
H進するとよい。あるいは硝化槽の前の部分に脱窒紫檀
を設け、硝化された液を脱窒紫檀に循環して循環液中の
硝酸、亜硝酸を還元して脱窒素すれば硝化槽におけるp
Hの低下が緩和され、更には消化液中の画素も除去でき
る゛のでなおのこと好都合である。脱窒素反応は硝化反
応とは逆に嫌気的条件下で硝酸、亜硝酸を還元分解する
ものであるが、脱♀素の際には還元剤が必要となる。還
元剤としては消化液に残留しているBOD成分を利用で
きるが、還元剤の量として不十分であればメタノールな
どの炭素源を用いてもよい。
Added alkaline Ca salt or uniform salt L? pH1rt 1
In order to completely prevent ammonia from dissipating when it rises in a trench near 1, it is sufficient to completely nitrify the ammonia, but for this purpose, add an alkaline agent to nitrification tank 4.
It is better to go H forward. Alternatively, if a denitrifying rosewood is installed in the front part of the nitrification tank and the nitrified liquid is circulated through the denitrifying rosewood, nitric acid and nitrite in the circulating liquid are reduced and denitrified.
This is particularly advantageous because the drop in H is alleviated and furthermore, pixels in the digestive fluid can be removed. The denitrification reaction is the opposite of the nitrification reaction, in which nitric acid and nitrite are reduced and decomposed under anaerobic conditions, but a reducing agent is required during deoxidation. The BOD component remaining in the digestive fluid can be used as the reducing agent, but if the amount of reducing agent is insufficient, a carbon source such as methanol may be used.

このように本発明は、有機性廃棄物の嫌気性消化に先だ
って熱処理を行なっているので゛生物分解可能な有機愉
が非常に多く′生成きれ、嫌気性消化工程からのメタン
ガス発生量も多くなる。そしてこれは熱処理に先だって
#i発酵工程を経れば酸を′i: 添加せずとも、あるいはわずかの添加でpH5以下で熱
処理を行なうことができ、有機性廃棄物の流動化”が向
上して熱処理が効率よく行なわれるばかりか、嫌気性消
化を推進し得る。また、熱処理を行なうことによって改
善された消化液の固液分離性はその俵嫌気性消化を行な
っても失なわれることなく、とりわけ加圧脱水機を用い
ることによって従来では考えられなかったような低い含
水率の脱水ケーキを得ることができる。そして、この固
液分離工程においては、消化液を曝気して硝化反応を起
こすことによりアルカリ度を低下することができるので
無機凝集剤が固液分離に寄与できる最適のpH領域に調
整するに必要な無機凝集剤の添加量を大幅に減少するこ
とができ、かつ、無機凝集剤としてアルカリ性Ca塩や
造塩を用いても、それらの炭酸塩を形成することもなく
、シ九がって配管等へのスケールの付着やr布の目詰t
bを防止することができる。
As described above, since the present invention performs heat treatment prior to anaerobic digestion of organic waste, a large amount of biodegradable organic waste is produced, and the amount of methane gas generated from the anaerobic digestion process is also increased. . This means that if a fermentation process is performed prior to heat treatment, heat treatment can be carried out at a pH of 5 or less without or with the addition of a small amount of acid, improving the fluidization of organic waste. Not only can the heat treatment be carried out efficiently, but it can also promote anaerobic digestion.In addition, the solid-liquid separation property of the digestive fluid, which has been improved by heat treatment, is not lost even when bale anaerobic digestion is performed. In particular, by using a pressure dehydrator, it is possible to obtain a dehydrated cake with a water content that is unimaginable in the past.In this solid-liquid separation process, the digestive fluid is aerated to cause a nitrification reaction. As a result, the alkalinity can be lowered, so it is possible to significantly reduce the amount of inorganic flocculant added to adjust the pH to the optimum pH range where the inorganic flocculant can contribute to solid-liquid separation. Even if alkaline Ca salts or salt-forming agents are used as agents, these carbonates will not be formed, and this will result in scale adhesion to pipes, etc., and clogging of fabrics.
b can be prevented.

更には消化液を硝化することによりアンモニアが減少す
るため固液分離時にアルカリ性(’a塩や造塩を用いて
pHが上昇しても放散するアンモニア量はわずかで、悪
臭に@オされる仁ともなく、固液分離の脱離液について
は硝化によってアンモニアと同時にBODも減少し、ま
た塩化第二鉄やアルカリ性C&塩a句塩を用いることに
よってリンが除去されるので水処理系に返流しても大き
な負荷となることはない。しかも本発明では熱処理の後
、嫌気性消化を行なうことによシ悪臭成分がかなり除去
され二次公害の危険性も無くなる。また、色度成分につ
いては消化液の固液分離に際し、塩化第二鉄あるいは他
の酸性鉄塩無機凝集剤またはアルカリ性C龜塩、Mg塩
といつ九無機凝集剤を用いているが少なくとも塩化第二
鉄あるいは酸性鉄塩無機凝集剤を用いることにより色度
成分をかなり除去することができた。ここではこれらの
凝集剤の添加量は株加後のpHが3.5〜50になるよ
うな量で消化液の固形物あ九り2〜30−であったがこ
れらを凝集助剤として添加′して固液分離すると、固液
分離と同時に熱処理過程で発生する着色成分をも除去で
きるのである。
Furthermore, ammonia is reduced by nitrifying the digestive juices, so even if the pH is increased using alkaline salt or salt-forming during solid-liquid separation, the amount of ammonia released is small, and the amount of ammonia released is small. As a result, in the separated liquid of solid-liquid separation, BOD is reduced at the same time as ammonia through nitrification, and phosphorus is removed by using ferric chloride and alkaline C and a salt, so it is returned to the water treatment system. Moreover, in the present invention, by performing anaerobic digestion after heat treatment, the odor components are considerably removed and the risk of secondary pollution is eliminated.Also, regarding the chromaticity components, In the solid-liquid separation of digestive juices, ferric chloride or other acidic iron salt inorganic flocculants or alkaline carbon salts, Mg salts and nine inorganic flocculants are used, but at least ferric chloride or acidic iron salts are used as inorganic flocculants. By using flocculants, we were able to remove a considerable amount of the chromaticity components.Here, the amount of these flocculants added was such that the pH after the straining was 3.5 to 50, and the solids of the digestive fluid were However, if these are added as coagulation aids and solid-liquid separation is performed, colored components generated during the heat treatment process can be removed at the same time as solid-liquid separation.

本発明では有機性廃棄物の生物分解性が増大しメタンガ
ス発生量が増加するのみならず、嫌気性消化液の固液分
解性が改善され、固液分離に必要な凝集剤の添加量もか
なシ少なくすることができ、この際、無機凝集剤として
アルカリ性Ca塩や造塩を用いても、配管等へのスケー
ルの付着や固液分離装置のr布の目づま)を生じること
がない。
The present invention not only increases the biodegradability of organic waste and increases the amount of methane gas generated, but also improves the solid-liquid decomposition of anaerobic digestion fluid and reduces the amount of flocculant added for solid-liquid separation. At this time, even if an alkaline Ca salt or salt forming agent is used as an inorganic flocculant, scale adhesion to piping and the like and clogging of the cloth of the solid-liquid separator will not occur.

また、固液分離の脱離液については、硝化によってBO
Dやアンモニアが減少しており、固液分離に塩化第二鉄
やアルカリ性Ca塩1Mg塩を用いることKよってリン
が除去され、更には従来より熱処理脱離液の最大の問題
点であった着色成分も塩化第二鉄あるいは酸性鉄塩無機
凝集剤を用いることKよって除去できるため、脱離液は
何ら案することなく水処理系に返流することができる。
In addition, as for the desorbed liquid of solid-liquid separation, BO is removed by nitrification.
D and ammonia are reduced, phosphorus is removed by using ferric chloride or alkaline Ca salt 1Mg salt for solid-liquid separation, and coloration, which has traditionally been the biggest problem with heat-treated desorbed liquids, has been reduced. Since the components can also be removed by using ferric chloride or acidic iron salt inorganic flocculants, the desorbed liquid can be returned to the water treatment system without any trouble.

その上熱処理操作にて発生する臭気は後に続く嫌気性消
化工程で除去され、また175℃以上での熱処理工程と
効率よく熱交換することによシ嫌気性消化を一般に言う
高温消化で行なえば嫌気性消化槽内滞留時間の短縮化に
つながるばかりか、後に続く硝化工程の短縮にもつなが
るのである。そして好ましくはpH5以下に調整して熱
処理を行なえば熱処理装置内の有機性廃棄物の流勢性が
増し、熱処理が効率よく行なわれる#1か熱処理装置本
体、熱交換器、およびこれらを介する配管内部へのスケ
ール付着の聞難も解決されるのである。
Moreover, the odor generated during the heat treatment operation is removed in the subsequent anaerobic digestion process, and by efficiently exchanging heat with the heat treatment process at 175°C or higher, anaerobic digestion can be carried out with what is generally called high temperature digestion. This not only shortens the residence time in the digester, but also shortens the subsequent nitrification process. Preferably, if heat treatment is performed with the pH adjusted to 5 or less, the flow of organic waste in the heat treatment equipment will increase, and the heat treatment will be carried out efficiently. This also solves the problem of scale adhesion inside.

次に本発明に基〈実施例ならびに比較例としての従来法
を記す。
Next, examples based on the present invention and conventional methods as comparative examples will be described.

実施例 l 全固形物員度(以下TSと記す) 3.511 、揮発
性固形物濃度(以下■Sと記す) 2.81g 、強熱
減量(以下■s/T8と記す)78.411i 、 p
H5,6ノ下水汚泥t”容量5jOオートクレーブに入
れ、175℃で(資)分間熱処理するとpH5,9、T
S: 3.5−、VS: 2.8−+”/laニアB、
2−ノ熱処理汚泥が得られ、この臭気濃度は930.0
00、脱離液の色度は520であっ九。この熱処理汚泥
を、52±ICに維持し、連続して攪拌されている嫌気
性消化槽に82日間滞留させる(消化槽の容量は24t
)とVSの54−が分解してガスが1日当たり57.1
を発1 生し、pH7,6、T町、2.0% 、 VS : 1
.3% 、 ”!/ya:62.:M   、の嫌気性
消化汚泥が得られ良。これを容量10jの曝気槽で3日
間中分に曝気(水温約(9)u)した後塩化第二鉄を固
形物に対して4−添加し攪拌混合してからr過圧:4b
/j、濾過時間=30分、圧搾圧カニ9Kt/j、圧搾
時間:加分の条件で加圧脱水を行なったところ含水率:
64.3−の脱水ケーキが得られた。表−1に嫌気性消
化液、硝化処理液および加圧脱水脱離液の性状を示す。
Example l Total solid content (hereinafter referred to as TS) 3.511, volatile solids concentration (hereinafter referred to as ■S) 2.81g, loss on ignition (hereinafter referred to as ■s/T8) 78.411i, p
H5,6 sewage sludge was placed in an autoclave with a capacity of 5JO and heat-treated at 175°C for (capital) minutes, resulting in a pH of 5,9 and T.
S: 3.5-, VS: 2.8-+”/la near B,
2-Heat-treated sludge was obtained, and the odor concentration was 930.0.
00, and the chromaticity of the desorbed liquid was 520. This heat-treated sludge is maintained at 52±IC and retained for 82 days in an anaerobic digestion tank that is continuously stirred (the capacity of the digestion tank is 24 tons).
) and 54- of VS are decomposed and the gas is 57.1 per day.
1, pH 7.6, T town, 2.0%, VS: 1
.. Anaerobically digested sludge with a concentration of 3%, ``!/ya:62.:M'' was obtained. This was aerated for 3 days in an aeration tank with a capacity of 10J (water temperature approximately (9)U), and then chlorinated sludge was added. Add iron to the solid substance, stir and mix, then apply overpressure: 4b
/j, filtration time = 30 minutes, pressing pressure crab 9Kt/j, pressing time: When pressurized dehydration was performed under the conditions of addition, water content:
A dehydrated cake of 64.3- was obtained. Table 1 shows the properties of the anaerobic digestive fluid, nitrification fluid, and pressurized dehydration fluid.

表−1嫌気性消化液、硝化処理液および加圧脱水脱離液
の性状実施例 2 実施例1と同じ汚泥に塩酸を添加してpH49にした後
、容量5tのオートクレーブに入れ、175℃で15分
閘熱処理するとpH5,0、TS : 3.51G 、
 VS : 2.8L”/ra : 78.2−の熱処
理汚泥が得られ、この臭気濃度は1,010,000 
、脱離液の色度は610であった。この熱処理汚泥を、
52±lcK維持し、連続して攪拌されている嫌気性消
化槽に8日間滞留させる(消化槽の容量は24t)とv
Sの6211が分解してガスが1日当た!> 56.9
1発生し、pH7,7、TS : 1.81G 、 V
S :1.11G 、 vha : 57.611 (
D fll 気性消化汚泥力II b し*。
Table 1 Properties of anaerobic digestion fluid, nitrification treatment fluid, and pressurized dehydration solution Example 2 Hydrochloric acid was added to the same sludge as in Example 1 to adjust the pH to 49, and the mixture was placed in a 5-ton autoclave and heated at 175°C. After 15 minutes of lock heat treatment, pH 5.0, TS: 3.51G,
A heat-treated sludge with VS: 2.8L"/ra: 78.2- was obtained, and the odor concentration was 1,010,000
The chromaticity of the desorbed liquid was 610. This heat treated sludge is
52±lcK and retained in an anaerobic digestion tank with continuous stirring for 8 days (the capacity of the digestion tank is 24 tons).
S 6211 decomposed and got gas for a day! >56.9
1 occurred, pH 7.7, TS: 1.81G, V
S: 1.11G, vha: 57.611 (
D flll pneumatic digestion sludge power II b し*.

これを容量2OLの曝気槽で4日間、十分に曝気(水温
約30’C)した後、消石灰を固形物に対して1011
+添加し、攪拌混合してからr過圧:44/j、濾過時
間=30分、圧搾圧カニ9Kt/j=圧搾時間:20分
の条件で加圧脱水を行なったところ、含水率:62.7
−の脱水ケーキが得られえ。嫌気性消化液、硝化処理液
および加圧脱水脱藩液の性状を表−2に示す。
After sufficiently aerating this in an aeration tank with a capacity of 2 OL for 4 days (water temperature approximately 30'C), slaked lime was added to the solids at a rate of 1011
After adding and stirring and mixing, pressurized dehydration was performed under the conditions of overpressure: 44/j, filtration time = 30 minutes, squeezing pressure crab 9Kt/j = squeezing time: 20 minutes, water content: 62 .7
- A dehydrated cake can be obtained. Table 2 shows the properties of the anaerobic digestion fluid, nitrification treatment fluid, and pressurized dehydration fluid.

表−2嫌気性消化液、硝化処理液および脱水脱離液の性
状比較例 実施例1,2と同じ下水汚泥を容量5tのオートクレー
ブに入れ、175Cで加分間熱処理するとpH5,8,
TS : 3.51g 、VS : 2811 、 ”
/laニアg、21G ノ熱処理汚泥を得た。この熱処
理汚泥の臭気濃度は930,000゜脱離液の色度は5
20でこれを、邸±1℃に維持し、ゞ  連続して攪拌
されている嫌気性消化槽に15日滞留させる(消化槽の
容量45t)とvS05191が分解してガスが1日あ
たり53.24発生し、pH7,6、TS:得られえ。
Table 2 Comparative example of properties of anaerobic digestive fluid, nitrification fluid, and dehydration fluid The same sewage sludge as in Examples 1 and 2 was placed in an autoclave with a capacity of 5 tons, and when heat-treated at 175C during heating, the pH became 5.8,
TS: 3.51g, VS: 2811, ”
A heat-treated sludge of 21G was obtained. The odor concentration of this heat-treated sludge is 930,000°, and the chromaticity of the desorbed liquid is 5.
At 20°C, this was maintained at ±1°C in the house and retained in an anaerobic digestion tank with continuous stirring for 15 days (the capacity of the digestion tank was 45 tons), and vS05191 decomposed and gas was released at 53.2°C per day. 24, pH 7.6, TS: Obtained.

これを1日装置すると沈降濃縮して濃縮汚泥の占メル容
量は2391!となり、TS : 7.41G 、 V
fS:4.8−の濃縮汚泥が得られる。このときの沈降
分離水は色度:550 、臭気源[ニア6Gであった。
If this device is used for one day, it will settle and concentrate, and the total volume of the concentrated sludge will be 2391! Therefore, TS: 7.41G, V
Thickened sludge with fS: 4.8- is obtained. The precipitated and separated water at this time had a chromaticity of 550 and an odor source [near 6G].

得られた濃縮汚泥にTSあ九り塩化第二鉄を201! 
、消石灰を5011添加し、濾過圧: 44/j 、 
濾過時間:(9)分。
Add TS Akuri ferric chloride to the obtained thickened sludge!
, 5011 slaked lime was added, filtration pressure: 44/j,
Filtration time: (9) minutes.

圧搾圧カニ9b/ai、圧搾時間:加分という条件で加
圧脱水を行なったところ含水率67.1−の脱水ケーキ
が得られえ。この脱水脱離液は色[:17.臭気濃度:
330であっ九。
When pressurized dehydration was performed under the conditions of pressurized crab 9b/ai and pressurization time: addition, a dehydrated cake with a moisture content of 67.1- was obtained. This dehydrated solution has a color [:17. Odor concentration:
330 and nine.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明方法の一笑施態様の70−シートである。 1・・・有機性廃棄物、2・・・熱処理装置、3・・・
嫌気性消化槽、4・・・硝化または硝化、脱窒紫檀、5
・・・無機凝集剤、6・・・−液分離装置、7・・・脱
水ケーキ、8・・・脱離液、9・・・熱交換。
The drawing is a 70-sheet of one embodiment of the method of the invention. 1...Organic waste, 2...Heat treatment equipment, 3...
Anaerobic digestion tank, 4...Nitrification or nitrification, denitrification rosewood, 5
... Inorganic flocculant, 6 ... - Liquid separation device, 7 ... Dehydrated cake, 8 ... Desorption liquid, 9 ... Heat exchange.

Claims (1)

【特許請求の範囲】 1、 有機性廃棄物を加熱したのち、嫌気性消化処理し
、該嫌気性消化液を生物学的硝化あるいは生物学的硝化
脱窒素処理し、次いで無機凝集剤を添加して固液分離す
ることを%像とする有機性廃棄物0Jlll理方法。 2、 前記加熱処理工程が4、加熱温、度175℃以上
で処理するものである特許請求の範囲第1項記載の処理
方法。 五 前記加熱処理工程が、前記有機性廃棄物をpH5以
下に調整したのち加熱処理するものである特許請求の範
l#!第1項又は第2項記載の処理方法。 4、前記嫌気性消化ニーが、前記加熱処理工程との間で
熱交換して行なわれるものである特許請求の範囲第1項
乃至第3項の少なくともいずれか一つの項記載の処理方
法。 5、前記固液分離工程が、塩化第二鉄或いは酸性鉄塩、
アルカリ性カルシウム塩又はアルカリ性マグネシウム塩
のいずれかの無機凝集剤を添加して処理されるものであ
る特許請求の範囲第1項乃至第4項の少なくともいずれ
か一つの項記載の処理方法。 & 前記固液分離工程が、塩化第二鉄或い祉酸性鉄塩の
無機凝集剤と、その凝集助剤としてアルカリ性カルシウ
ム塩或いはマグネシウム塩とを併用添加して処理される
ものである特許請求の範囲第1項乃至第4項の少なくと
もいずれか一つの項記載の処理方法。
[Claims] 1. After heating the organic waste, it is subjected to anaerobic digestion treatment, and the anaerobic digestive liquid is subjected to biological nitrification or biological nitrification and denitrification treatment, and then an inorganic flocculant is added. A method for treating organic waste with a focus on solid-liquid separation. 2. The processing method according to claim 1, wherein the heat treatment step is performed at a heating temperature of 175° C. or higher. 5. Claim l#!, wherein the heat treatment step is to heat treat the organic waste after adjusting the pH to 5 or less. The processing method described in item 1 or 2. 4. The processing method according to at least one of claims 1 to 3, wherein the anaerobic digestion knee is performed by exchanging heat with the heat treatment step. 5. The solid-liquid separation step uses ferric chloride or acidic iron salt,
5. The treatment method according to claim 1, wherein the treatment is performed by adding an inorganic flocculant such as an alkaline calcium salt or an alkaline magnesium salt. & The solid-liquid separation step is carried out by adding an inorganic flocculant such as ferric chloride or a ferric iron salt together with an alkaline calcium salt or magnesium salt as a flocculation aid. A processing method as described in at least one of the ranges 1 to 4.
JP57033780A 1982-03-05 1982-03-05 Treatment of organic waste Granted JPS58153594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57033780A JPS58153594A (en) 1982-03-05 1982-03-05 Treatment of organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57033780A JPS58153594A (en) 1982-03-05 1982-03-05 Treatment of organic waste

Publications (2)

Publication Number Publication Date
JPS58153594A true JPS58153594A (en) 1983-09-12
JPH0125640B2 JPH0125640B2 (en) 1989-05-18

Family

ID=12395967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57033780A Granted JPS58153594A (en) 1982-03-05 1982-03-05 Treatment of organic waste

Country Status (1)

Country Link
JP (1) JPS58153594A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231898A (en) * 1988-03-30 1990-02-01 Yoshio Kobayashi Method for anaerobically digesting sewage sludge
JPH0899099A (en) * 1994-09-30 1996-04-16 Agency Of Ind Science & Technol Treatment of garbage
JP2001000985A (en) * 1999-06-22 2001-01-09 Toshiba Corp Method and apparatus for treating organic solid- containing wastewater
JP2002136989A (en) * 2000-08-24 2002-05-14 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for treating organic waste liquid
JP2007117948A (en) * 2005-10-31 2007-05-17 Ebara Corp Method and apparatus for treating high-concentration organic waste liquid
JP2008093609A (en) * 2006-10-13 2008-04-24 Kobelco Eco-Solutions Co Ltd Method and apparatus for treating organic waste water
WO2021192922A1 (en) * 2020-03-27 2021-09-30 住友金属鉱山エンジニアリング株式会社 Treatment method for water subject to treatment, and wastewater treatment method including said treatment method
CN113735384A (en) * 2021-09-24 2021-12-03 北京嘉博文生物科技有限公司 Biogas slurry treatment device and biogas slurry treatment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155798A (en) * 1979-05-23 1980-12-04 Ebara Infilco Co Ltd Treating method of organic waste water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55155798A (en) * 1979-05-23 1980-12-04 Ebara Infilco Co Ltd Treating method of organic waste water

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0231898A (en) * 1988-03-30 1990-02-01 Yoshio Kobayashi Method for anaerobically digesting sewage sludge
JPH0811240B2 (en) * 1988-03-30 1996-02-07 義雄 小林 Anaerobic digestion method of sewage sludge
JPH0899099A (en) * 1994-09-30 1996-04-16 Agency Of Ind Science & Technol Treatment of garbage
JP2001000985A (en) * 1999-06-22 2001-01-09 Toshiba Corp Method and apparatus for treating organic solid- containing wastewater
JP2002136989A (en) * 2000-08-24 2002-05-14 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for treating organic waste liquid
JP2007117948A (en) * 2005-10-31 2007-05-17 Ebara Corp Method and apparatus for treating high-concentration organic waste liquid
JP4642635B2 (en) * 2005-10-31 2011-03-02 荏原エンジニアリングサービス株式会社 High concentration organic waste liquid treatment method and apparatus
JP2008093609A (en) * 2006-10-13 2008-04-24 Kobelco Eco-Solutions Co Ltd Method and apparatus for treating organic waste water
WO2021192922A1 (en) * 2020-03-27 2021-09-30 住友金属鉱山エンジニアリング株式会社 Treatment method for water subject to treatment, and wastewater treatment method including said treatment method
WO2021192246A1 (en) * 2020-03-27 2021-09-30 住友金属鉱山エンジニアリング株式会社 Treatment method for water to be treated, and drainage water treatment method including said treatment method
JP7010564B1 (en) * 2020-03-27 2022-01-26 住友金属鉱山エンジニアリング株式会社 Treatment method of water to be treated and wastewater treatment method including the treatment method
CN113735384A (en) * 2021-09-24 2021-12-03 北京嘉博文生物科技有限公司 Biogas slurry treatment device and biogas slurry treatment method

Also Published As

Publication number Publication date
JPH0125640B2 (en) 1989-05-18

Similar Documents

Publication Publication Date Title
JPS58153594A (en) Treatment of organic waste
JPS5845920B2 (en) Biochemical treatment method for organic waste liquid
JP2796909B2 (en) Wastewater treatment method
JPH0124558B2 (en)
JPS6320600B2 (en)
JPH0135720B2 (en)
JPS6075392A (en) Treatment of organic waste water
JPH0247279B2 (en)
JP3672175B2 (en) Organic wastewater treatment method and treatment apparatus
JPS6339309B2 (en)
JPS63315197A (en) Treatment process for organic waste water
JPH0230320B2 (en)
KR100503632B1 (en) Method and apparatus for treating metal finishing waste which contains high nitrogen and phosphorus
JPS59206092A (en) Treating process of waste water
JP5063975B2 (en) Organic wastewater treatment method and treatment apparatus
JPS6254077B2 (en)
JPH0155920B2 (en)
JPS58112099A (en) Purification of organic waste water
JPH0445236B2 (en)
JPS58143894A (en) Treatment of organic waste matter
JPS63214389A (en) Treatment of organic sewage
JPS5898198A (en) Treatment of sewage sludge
JPS5919598A (en) Treatment of organic liquid waste
JPH10156381A (en) Method for reducing volume of organic sludge
JPS596986A (en) Treatment of night soil-type filthy water