JP3672175B2 - Organic wastewater treatment method and treatment apparatus - Google Patents

Organic wastewater treatment method and treatment apparatus Download PDF

Info

Publication number
JP3672175B2
JP3672175B2 JP29390799A JP29390799A JP3672175B2 JP 3672175 B2 JP3672175 B2 JP 3672175B2 JP 29390799 A JP29390799 A JP 29390799A JP 29390799 A JP29390799 A JP 29390799A JP 3672175 B2 JP3672175 B2 JP 3672175B2
Authority
JP
Japan
Prior art keywords
liquid separation
solid
sludge
separation tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29390799A
Other languages
Japanese (ja)
Other versions
JP2001113300A (en
Inventor
隆生 萩野
昭 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP29390799A priority Critical patent/JP3672175B2/en
Publication of JP2001113300A publication Critical patent/JP2001113300A/en
Application granted granted Critical
Publication of JP3672175B2 publication Critical patent/JP3672175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Description

【0001】
【発明の属する技術分野】
本発明は、下水処理場や各種廃水処理施設等において有機性廃水を処理する方法に係わり、更に詳しくは、下水、し尿、産業廃水などの有機物、窒素、リンを含有する廃水を、活性汚泥法に代表される微生物の生物代謝反応を利用した廃水処理方法を介して処理するシステムにおいて、省エネルギー化、有用物質の回収とその資源化を考慮した有機性廃水の処理方法に関するものである。
【0002】
【従来の技術】
従来の有機性廃水の処理方法において、例えば活性汚泥法に嫌気性消化処理、好気性消化処理、硝化脱窒処理、凝集処理、膜分離処理、脱水処理、焼却処理、MAP処理、オゾン処理、活性炭処理等を組み合わせた方法では、処理プラントの建設費、ランニングコスト、環境に対する影響等を総合的に考慮したシステムは、非常に少なかった。
【0003】
【発明が解決しようとする課題】
すなわち、従来の有機性廃水の処理方法においては、非常に大きな建設費を費やして嫌気性消化処理、膜分離処理、焼却処理等を行ったり、非常に大きなエネルギーを消費して好気性消化、オゾン処理、膜分離処理、焼却処理等を行ったり、非常に大きな薬品コストをかけて凝集処理、脱水処理、MAP処理、活性炭処理等を行ったりする場合が多かった。
このように、従来の有機性廃水の処理方法は、省エネルギー的にも、ランニングコスト的にも大きな問題点があった。
【0004】
本発明は、上述した従来技術の問題点を解決することを目的とする。すなわち、有機性廃水処理システムの中で、特に有機物、窒素、リンを含有する廃水を、活性汚泥法に代表される微生物の生物代謝反応を利用した廃水処理方法を介して処理するシステムにおいて、排水中の処理対象成分の形態とその特性をできるだけ生かした処理フローを構成することで、省エネルギー化、有用物質の回収とその資源化を考慮した廃水処理方法を提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明者等は、上記課題を解決するために、廃水中の処理対象成分の形態とその特性について検討を行い、最初固液分離槽(最初沈殿池を含む)において分離した初沈汚泥またはその濃縮汚泥(総称して「汚泥」という)は、炭水化物が多く、特に脱水性がよい、すなわち、焼却に適していることを見出した。
また、最終固液分離槽(最終沈殿池を含む)において分離した余剰汚泥またはその濃縮汚泥は、リン、窒素が多く、また、脱水性が悪く、すなわち、リン酸マグネシウムアンモニウム(MAP)処理に適していることを見出した。
本発明は、このような知見に基づいてなされたものであり、次の構成からなるものである。
【0006】
上記課題を解決するために、本発明では以下に示す基本処理フローからなる有機性廃水の処理方法を提供するものである。
(1)最初固液分離槽、活性汚泥が浮遊する生物反応槽、最終固液分離槽の3種類の槽工程を含む有機性廃水の処理方法において、最初固液分離槽において分離した汚泥を最終固形分離槽において分離した汚泥と混合することなく脱水装置により脱水処理し、脱水ケーキをケーキ燃焼工程において燃焼し、また、最終固液分離槽において分離した汚泥を前記最初固液分離槽において分離した汚泥と混合することなく嫌気性醗酵工程において消化し、前記ケーキ燃焼工程からの熱によって前記嫌気性醗酵工程を加温し、前記嫌気性醗酵工程で生成する消化汚泥から、リン酸マグネシウムアンモニウムの形態でリンと窒素を回収することを特徴とする有機性廃水の処理方法。
【0007】
(2)前記有機性廃水が活性汚泥が浮遊する生物反応槽に流入する工程の前に、最初固液分離槽の分離水中に残存する懸濁成分を分離する中間固液分離工程を設け、かつ、前記中間固液分離工程において分離した汚泥を、前記最初固液分離槽において分離した汚泥と混合し、脱水装置により脱水する工程を含むことを特徴とする請求項1記載の有機性廃水の処理方法。
【0008】
(3)最初固液分離槽、活性汚泥が浮遊する生物反応槽、最終固液分離槽の3種類の槽を含む有機性廃水の処理装置において、最初固液分離槽にそこで分離した汚泥を最終固液分離槽からの汚泥と混合することなく脱水処理する脱水装置を接続して設け、前記脱水装置にその脱水ケーキを燃焼させるケーキ燃焼装置を接続し、最終固液分離槽にそこで分離した汚泥を最初固液分離槽にそこで分離した汚泥と混合することなく消化し、そこで生成する消化汚泥から、リン酸マグネシウムアンモニウムの形態でリンと窒素を回収する、前記ケーキ燃焼装置からの熱によって加温される前記嫌気性醗酵装置を接続して設けたことを特徴とする有機性廃水の処理装置。
なお、ここでいう「最初固液分離槽」とは、生物反応前に設置され、また「最終固液分離槽」とは生物反応後に設置されているもののことであり、最初固液分離槽の前後及び最終固液分離槽の前後に補助的な固液分離槽が存在してもよく、例えば最初固液分離槽の後に「中間固液分離槽」を設けることができる。また、「固液分離槽」は槽状のものに限定されず、「沈殿池」のようなものも含む。
【0009】
【発明の実施の形態】
以下に、本発明の実施態様を図面に基づいて詳細に説明する。
すなわち、本発明の第1の態様では、最初固液分離槽1、活性汚泥が浮遊する生物反応槽2、最終固液分離槽3の3種類の槽工程を含む有機性廃水処理システムにおいて、最初固液分離槽1において分離した初沈汚泥またはその濃縮汚泥11、すなわち脱水性が比較的良く、高カロリーで、窒素とリンの含有率が低いSS成分を、脱水装置4により脱水処理することで、水処理系から多量の有機成分を取り除き、脱水ケーキをケーキ燃焼工程7において燃焼し、また、最終固液分離槽3において分離した余剰汚泥またはその濃縮汚泥31、すなわち脱水性が比較的悪く、低カロリーで、窒素とリンの含有率が高い成分を、嫌気性醗酵工程5において消化し、嫌気性醗酵工程5で生成する消化汚泥51、すなわち高濃度の窒素、リン及びアルカリ成分を含有する成分からリン酸マグネシウムアンモニアムの形態でリンと窒素を回収するというものである。
【0010】
また、第2の態様では、有機性廃水が活性汚泥が浮遊する生物反応槽2に流入する工程の前に、最初固液分離槽1の分離水中に残存する懸濁成分を分離する中間固液分離工程6を設け、かつ、中間固液分離工程6において分離した中間汚泥またはその濃縮汚泥61を、脱水装置4により脱水する工程を含むことにより、カロリーが高く、脱水性の良いSS性有機物をより多く水処理系外に分離することができる。
また、第3の態様では、中間固液分離工程6において、濾過体の濾過作用を利用する分離方法、または凝集剤添加による凝集沈降分離方法の内、少なくとも1方法を採用することにより、カロリーが高く、脱水性の良いSS性有機物を、更に効率的に水処理系外に分離することができる。
【0011】
また、第4の態様では、脱水装置4により脱水処理した初沈汚泥またはその濃縮汚泥11、または中間汚泥またはその濃縮汚泥61の脱水ケーキを燃焼させるケーキ燃焼工程7、ケーキ燃焼工程7において発生するエネルギーを回収する燃焼エネルギー回収工程8、嫌気性醗酵工程5で生成するメタンガス等を回収するメタンガス回収工程9の内少なくとも1つの工程を含むことにより、プラントのエネルギー消費量の軽減化がより効率的に図るものである。
【0012】
【実施例】
次に、本発明を実際に組み込んだ実験プラントの運転結果の一例について詳細に説明する。ただし、本発明はこの実施例により何等制限されるものではない。
【0013】
実施例1
図1に実験プラントのフローを示す。この例では、原水として実際の下水処理場に流入する有機性汚水を使用した。BOD:200mg/リットル、SS:180mg/リットルの水質の有機性汚水を900m3 /dの流量で流入させ、最初固液分離槽1で初沈汚泥を沈殿分離して濃縮汚泥11とし、中間固液分離工程6を通して生物反応槽2に入れて生物的反応を行わせ、その液を最終固液分離槽3に送り活性汚泥を沈殿させ、上澄み水を処理水として取り出し、BOD:20mg/リットル、SS:10mg/リットルの水質の処理水を得た。
前記の中間固液分離工程6はFe系の凝集剤を使用し、さらに不織布により濾過を行う機能を持つ装置とした。
最初固液分離槽1で、固形物濃度4%の濃縮汚泥11が20m3 /dの量で得られ、中間固液分離工程6で、固形物濃度2%の濃縮汚泥61が40m3 /dの量で得られ、さらに最終固液分離槽3で、固形物濃度1.5%の濃縮汚泥31が3.5m3 /dの量で得られた。
【0014】
脱水装置4はスクリュープレス型の脱水機を使用した。前記濃縮汚泥11及び濃縮汚泥61を脱水装置4に送って脱水し、含水率65%の脱水ケーキ4.5m3 /d(4.5t/d)を得て、それをケーキ燃焼工程7に送って燃焼させる。この燃焼で発生する熱は燃焼エネルギー回収工程8で回収するが、その熱量は8.4×108 J/d(200Mcal/d)である。
一方、最終固液分離槽3で沈殿した汚泥を濃縮して得た濃縮汚泥31は嫌気性醗酵工程5へ送る。嫌気性醗酵工程5では、ケーキ燃焼工程7において発生したエネルギーの一部と嫌気性醗酵工程5から回収したメタンガスの発熱エネルギーを利用して、90℃に加温して嫌気性消化を行った。メタンガスの発生量は50m3 /dであり、発生熱は1.8×109 J/d(430Mcal/d)である。
また、嫌気性醗酵工程5において、水酸化マグネシウム、及び数種類の添加剤を使用することによりリン酸マグネシウムアンモニウム(MAP)を生成させた。その生成量はMgNH4 PO4 ・6H2 Oとして25kg/dであった。
【0015】
【発明の効果】
本発明によれば、有機性廃水処理システムの中で、特に有機物、窒素、リンを含有する廃水を、活性汚泥法に代表される微生物の生物代謝反応を利用した排水処理方法を介して処理するシステムにおいて、最初沈殿で生成する汚泥は、炭水化物が多くて脱水性がよく、焼却に適しているので、汚泥の脱水と焼却が容易に行われ、また最終沈殿で生成する汚泥は、リン、窒素を多く含み、脱水性がよくないので、脱水することなく、嫌気性醗酵工程で消化させ、減量化して、その消化汚泥からリン、窒素を得ているので、リン、窒素の取得が容易になった。
本発明によれば、処理の困難な最終沈殿で生成する汚泥は、嫌気性醗酵工程により減量化することができ、脱水性がよい最初沈殿で生成する汚泥から脱水ケーキを得て、そのケーキの燃焼熱を前記の嫌気性醗酵工程に利用できて、総合的な関係を形成することができる。
【図面の簡単な説明】
【図1】本発明の有機性廃水の処理方法を示すブロック図である。
【符号の説明】
1 最初固液分離槽
2 生物反応槽
3 最終固液分離槽
4 脱水装置
5 嫌気性醗酵工程
6 中間固液分離工程
7 ケーキ燃焼工程
8 燃焼エネルギー回収工程
9 メタンガス回収工程
11 濃縮汚泥
31 濃縮汚泥
51 消化汚泥
61 濃縮汚泥
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating organic wastewater in a sewage treatment plant, various wastewater treatment facilities, and the like. More specifically, wastewater containing organic matter such as sewage, human waste, industrial wastewater, nitrogen, and phosphorus is treated with an activated sludge process. The present invention relates to a method for treating organic wastewater in consideration of energy saving, recovery of useful substances, and resource recycling in a system for treating via a wastewater treatment method using a biological metabolic reaction of microorganisms represented by.
[0002]
[Prior art]
Conventional organic wastewater treatment methods include, for example, activated sludge method, anaerobic digestion treatment, aerobic digestion treatment, nitrification denitrification treatment, agglomeration treatment, membrane separation treatment, dehydration treatment, incineration treatment, MAP treatment, ozone treatment, activated carbon In the method combining treatments, there are very few systems that comprehensively consider the construction plant cost, running cost, environmental impact, etc. of the treatment plant.
[0003]
[Problems to be solved by the invention]
In other words, in the conventional organic wastewater treatment method, a very large construction cost is spent for anaerobic digestion, membrane separation, incineration, etc., or very large energy is consumed for aerobic digestion, ozone In many cases, treatment, membrane separation treatment, incineration treatment, or the like is performed, or aggregation treatment, dehydration treatment, MAP treatment, activated carbon treatment, or the like is performed at a very high chemical cost.
Thus, the conventional method for treating organic wastewater has significant problems in terms of energy saving and running cost.
[0004]
The object of the present invention is to solve the above-mentioned problems of the prior art. That is, among organic wastewater treatment systems, in particular, wastewater containing organic matter, nitrogen, and phosphorus is treated by a wastewater treatment method using a biological metabolic reaction of microorganisms represented by the activated sludge method. It is an object of the present invention to provide a wastewater treatment method in consideration of energy saving, recovery of useful substances, and resource recycling by configuring a treatment flow that makes the best use of the form and characteristics of the components to be treated.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have examined the form and characteristics of components to be treated in wastewater, and initially settled sludge separated in the first solid-liquid separation tank (including the first sedimentation basin) or its It has been found that concentrated sludge (collectively referred to as “sludge”) is rich in carbohydrates and is particularly dehydrated, that is, suitable for incineration.
Moreover, the excess sludge or concentrated sludge separated in the final solid-liquid separation tank (including the final sedimentation basin) is rich in phosphorus and nitrogen and has poor dehydration properties, that is, suitable for magnesium ammonium phosphate (MAP) treatment. I found out.
The present invention has been made based on such knowledge and has the following configuration.
[0006]
In order to solve the above-mentioned problems, the present invention provides a method for treating organic wastewater comprising the following basic treatment flow.
(1) In an organic wastewater treatment method including three types of tank processes: a first solid-liquid separation tank, a biological reaction tank in which activated sludge floats, and a final solid-liquid separation tank, the sludge separated in the first solid-liquid separation tank is finally Dehydrated by the dehydrator without mixing with the sludge separated in the solid separation tank, the dehydrated cake was burned in the cake combustion process, and the sludge separated in the final solid-liquid separation tank was separated in the first solid-liquid separation tank Digested in an anaerobic fermentation process without mixing with sludge, heated the anaerobic fermentation process with heat from the cake combustion process, and from the digested sludge produced in the anaerobic fermentation process, the form of magnesium ammonium phosphate A method for treating organic wastewater, characterized in that phosphorus and nitrogen are recovered by using a method.
[0007]
(2) providing an intermediate solid-liquid separation step for separating suspended components remaining in the separated water of the solid-liquid separation tank first before the step of flowing the organic waste water into the biological reaction tank in which the activated sludge floats; and 2. The treatment of organic wastewater according to claim 1, further comprising a step of mixing the sludge separated in the intermediate solid-liquid separation step with the sludge separated in the first solid-liquid separation tank and dehydrating the sludge by a dehydrator. Method.
[0008]
(3) In an organic wastewater treatment device that includes three types of tanks: a first solid-liquid separation tank, a biological reaction tank in which activated sludge floats, and a final solid-liquid separation tank, the sludge separated there is finally put into the first solid-liquid separation tank. A dewatering device for dewatering without mixing with the sludge from the solid-liquid separation tank is connected, a cake combustion device for burning the dewatered cake is connected to the dewatering device, and the sludge separated there in the final solid-liquid separation tank Is first digested without mixing with the sludge separated there in the solid-liquid separation tank, and phosphorus and nitrogen are recovered from the digested sludge produced there in the form of magnesium ammonium phosphate, heated by the heat from the cake combustion device. An organic wastewater treatment apparatus comprising the anaerobic fermentation apparatus connected thereto.
The "first solid-liquid separation tank" here is installed before the biological reaction, and the "final solid-liquid separation tank" is installed after the biological reaction. There may be auxiliary solid-liquid separation tanks before and after the final solid-liquid separation tank. For example, an “intermediate solid-liquid separation tank” may be provided after the first solid-liquid separation tank. Further, the “solid-liquid separation tank” is not limited to a tank-like one, but includes a “sedimentation basin”.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
That is, in the first aspect of the present invention, in an organic wastewater treatment system including three types of tank processes, a first solid-liquid separation tank 1, a biological reaction tank 2 in which activated sludge floats, and a final solid-liquid separation tank 3, By dehydrating the SS component separated in the solid-liquid separation tank 1 or the concentrated sludge 11 thereof, that is, the SS component having relatively good dehydration, high calories, and low nitrogen and phosphorus content by the dehydrator 4. , Removing a large amount of organic components from the water treatment system, burning the dehydrated cake in the cake combustion step 7, and surplus sludge separated in the final solid-liquid separation tank 3 or its concentrated sludge 31, that is, the dewaterability is relatively poor, Digested sludge 51 that is digested in anaerobic fermentation process 5 with low calorie content and high content of nitrogen and phosphorus, and is produced in anaerobic fermentation process 5, that is, high concentration of nitrogen, phosphorus and alkali Is that the recovery of phosphorus and nitrogen in the form of magnesium phosphate ammonia beam from a component containing component.
[0010]
Further, in the second aspect, the intermediate solid-liquid that separates the suspended components remaining in the separated water of the solid-liquid separation tank 1 first before the organic waste water flows into the biological reaction tank 2 where the activated sludge floats. By providing the separation step 6 and including the step of dehydrating the intermediate sludge or its concentrated sludge 61 separated in the intermediate solid-liquid separation step 6 with the dehydration device 4, the SS organic substance with high calorie and good dehydration properties can be obtained. More can be separated out of the water treatment system.
Further, in the third aspect, in the intermediate solid-liquid separation step 6, the calorie can be reduced by adopting at least one of the separation method using the filtration action of the filter body or the aggregation sedimentation separation method by adding a flocculant. SS organic substances that are high and have good dehydration properties can be more efficiently separated out of the water treatment system.
[0011]
Further, in the fourth aspect, it is generated in the cake combustion process 7 and the cake combustion process 7 in which the dewatered cake of the first settling sludge or its concentrated sludge 11 or the intermediate sludge or its concentrated sludge 61 dehydrated by the dehydrator 4 is burned. By including at least one of the combustion energy recovery process 8 for recovering energy and the methane gas recovery process 9 for recovering methane gas generated in the anaerobic fermentation process 5, the energy consumption of the plant can be reduced more efficiently. It is intended.
[0012]
【Example】
Next, an example of the operation result of the experimental plant that actually incorporates the present invention will be described in detail. However, the present invention is not limited to the examples.
[0013]
Example 1
Fig. 1 shows the flow of the experimental plant. In this example, organic sewage flowing into an actual sewage treatment plant was used as raw water. BOD: 200 mg / liter, SS: 180 mg / liter of water quality organic sewage is introduced at a flow rate of 900 m 3 / d, and the first settling sludge is first separated in the solid-liquid separation tank 1 to form concentrated sludge 11, A biological reaction is performed by entering the biological reaction tank 2 through the liquid separation step 6, the liquid is sent to the final solid-liquid separation tank 3 to precipitate activated sludge, and the supernatant water is taken out as treated water, BOD: 20 mg / liter, SS: treated water having a water quality of 10 mg / liter was obtained.
The intermediate solid-liquid separation step 6 uses an Fe-based flocculant and has a function of performing filtration with a nonwoven fabric.
The first solid-liquid separation tank 1, the solids concentration of 4% thickened sludge 11 is obtained in an amount of 20 m 3 / d, an intermediate solid-liquid separation step 6, the solids concentration of 2% concentrated sludge 61 is 40 m 3 / d In the final solid-liquid separation tank 3, concentrated sludge 31 having a solid concentration of 1.5% was obtained in an amount of 3.5 m 3 / d.
[0014]
The dehydrator 4 was a screw press type dehydrator. The concentrated sludge 11 and the concentrated sludge 61 are sent to the dehydrator 4 for dehydration to obtain 4.5 m 3 / d (4.5 t / d) dehydrated cake with a moisture content of 65%, and this is sent to the cake combustion step 7 And burn. The heat generated by this combustion is recovered in the combustion energy recovery step 8, and the amount of heat is 8.4 × 10 8 J / d (200 Mcal / d).
On the other hand, the concentrated sludge 31 obtained by concentrating the sludge precipitated in the final solid-liquid separation tank 3 is sent to the anaerobic fermentation process 5. In the anaerobic fermentation process 5, anaerobic digestion was performed by heating to 90 ° C. using part of the energy generated in the cake combustion process 7 and the exothermic energy of methane gas recovered from the anaerobic fermentation process 5. The amount of methane gas generated is 50 m 3 / d, and the generated heat is 1.8 × 10 9 J / d (430 Mcal / d).
Moreover, in the anaerobic fermentation process 5, magnesium ammonium phosphate (MAP) was produced | generated by using magnesium hydroxide and several types of additives. The amount produced was 25 kg / d as MgNH 4 PO 4 .6H 2 O.
[0015]
【The invention's effect】
According to the present invention, in an organic wastewater treatment system, particularly, wastewater containing organic matter, nitrogen, and phosphorus is treated through a wastewater treatment method using a biological metabolic reaction of microorganisms represented by an activated sludge method. In the system, the sludge produced by the initial precipitation is rich in carbohydrates and has good dewaterability and is suitable for incineration. Therefore, the sludge is easily dewatered and incinerated, and the sludge produced by the final precipitation is phosphorus, nitrogen. It is easy to obtain phosphorus and nitrogen because it is digested and reduced in anaerobic fermentation process without dehydration, and phosphorus and nitrogen are obtained from the digested sludge. It was.
According to the present invention, the sludge produced in the final precipitate that is difficult to treat can be reduced by the anaerobic fermentation process, and the dehydrated cake is obtained from the sludge produced in the first precipitate having good dewaterability. Combustion heat can be used in the anaerobic fermentation process to form a comprehensive relationship.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a method for treating organic wastewater according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 First solid-liquid separation tank 2 Biological reaction tank 3 Final solid-liquid separation tank 4 Dehydrator 5 Anaerobic fermentation process 6 Intermediate solid-liquid separation process 7 Cake combustion process 8 Combustion energy recovery process 9 Methane gas recovery process 11 Concentrated sludge 31 Concentrated sludge 51 Digested sludge 61 Concentrated sludge

Claims (3)

最初固液分離槽、活性汚泥が浮遊する生物反応槽、最終固液分離槽の3種類の槽工程を含む有機性廃水の処理方法において、最初固液分離槽において分離した汚泥を最終固形分離槽において分離した汚泥と混合することなく脱水装置により脱水処理し、脱水ケーキをケーキ燃焼工程において燃焼し、また、最終固液分離槽において分離した汚泥を前記最初固液分離槽において分離した汚泥と混合することなく嫌気性醗酵工程において消化し、前記ケーキ燃焼工程からの熱によって前記嫌気性醗酵工程を加温し、前記嫌気性醗酵工程で生成する消化汚泥から、リン酸マグネシウムアンモニウムの形態でリンと窒素を回収することを特徴とする有機性廃水の処理方法。In the organic wastewater treatment method including the three types of tank processes, the first solid-liquid separation tank, the biological reaction tank where activated sludge floats, and the final solid-liquid separation tank, the sludge separated in the first solid-liquid separation tank is the final solid separation tank. Dehydrated by the dehydrator without mixing with the sludge separated in step 1, the dehydrated cake is burned in the cake combustion process, and the sludge separated in the final solid-liquid separation tank is mixed with the sludge separated in the first solid-liquid separation tank digested in the anaerobic fermentation process without the by the heat from the cake combustion process warmed the anaerobic fermentation process, the digested sludge generated in the anaerobic fermentation process, and phosphorus in the form of magnesium ammonium phosphate A method for treating organic wastewater, wherein nitrogen is recovered. 前記有機性廃水が活性汚泥が浮遊する生物反応槽に流入する工程の前に、最初固液分離槽の分離水中に残存する懸濁成分を分離する中間固液分離工程を設け、かつ、前記中間固液分離工程において分離した汚泥を、前記最初固液分離槽において分離した汚泥と混合し、脱水装置により脱水する工程を含むことを特徴とする請求項1記載の有機性廃水の処理方法。Before the step of flowing the organic wastewater into the biological reaction tank in which activated sludge floats, an intermediate solid-liquid separation step for separating suspended components remaining in the separation water of the solid-liquid separation tank is provided, and the intermediate The method for treating organic wastewater according to claim 1, further comprising a step of mixing the sludge separated in the solid-liquid separation step with the sludge separated in the first solid-liquid separation tank and dehydrating the sludge by a dehydrator. 最初固液分離槽、活性汚泥が浮遊する生物反応槽、最終固液分離槽の3種類の槽を含む有機性廃水の処理装置において、最初固液分離槽にそこで分離した汚泥を最終固液分離槽からの汚泥と混合することなく脱水処理する脱水装置を接続して設け、前記脱水装置にその脱水ケーキを燃焼させるケーキ燃焼装置を接続し、最終固液分離槽にそこで分離した汚泥を最初固液分離槽にそこで分離した汚泥と混合することなく消化し、そこで生成する消化汚泥から、リン酸マグネシウムアンモニウムの形態でリンと窒素を回収する、前記ケーキ燃焼装置からの熱によって加温される前記嫌気性醗酵装置を接続して設けたことを特徴とする有機性廃水の処理装置。In the organic wastewater treatment equipment including the first solid-liquid separation tank, the biological reaction tank where activated sludge floats, and the final solid-liquid separation tank, the sludge separated there in the first solid-liquid separation tank is finally solid-liquid separated. A dewatering device for dewatering without mixing with sludge from the tank is connected, and a cake combustion device for burning the dewatered cake is connected to the dewatering device, and the sludge separated there is first solidified in the final solid-liquid separation tank. Digested without mixing with the sludge separated there in the liquid separation tank, recovering phosphorus and nitrogen in the form of magnesium ammonium phosphate from the digested sludge produced there, heated by the heat from the cake combustion device An organic wastewater treatment apparatus characterized by being connected to an anaerobic fermentation apparatus.
JP29390799A 1999-10-15 1999-10-15 Organic wastewater treatment method and treatment apparatus Expired - Fee Related JP3672175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29390799A JP3672175B2 (en) 1999-10-15 1999-10-15 Organic wastewater treatment method and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29390799A JP3672175B2 (en) 1999-10-15 1999-10-15 Organic wastewater treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JP2001113300A JP2001113300A (en) 2001-04-24
JP3672175B2 true JP3672175B2 (en) 2005-07-13

Family

ID=17800704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29390799A Expired - Fee Related JP3672175B2 (en) 1999-10-15 1999-10-15 Organic wastewater treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP3672175B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105130149B (en) * 2015-07-23 2018-01-05 中国科学院重庆绿色智能技术研究院 A kind of method for recycling citrus peel residue and dewatered sludge fermentation and biogas production
JP7251373B2 (en) * 2019-07-12 2023-04-04 栗田工業株式会社 Wastewater treatment method

Also Published As

Publication number Publication date
JP2001113300A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
JP3452439B2 (en) Recovery and recycling of useful substances from organic waste
JP4024045B2 (en) Sewage treatment method
JP3172965B2 (en) Sewage treatment method
JP2001129590A (en) Method for anaerobic treatment of waste water from starch production
JPS6210720B2 (en)
JP3844347B2 (en) Method and apparatus for removing and recovering phosphorus from organic wastewater
JP2007061773A (en) Organic sludge treatment method and apparatus
JP3672175B2 (en) Organic wastewater treatment method and treatment apparatus
JPH0125640B2 (en)
JPH03238098A (en) Treatment of raw sewage liquor
JP4004766B2 (en) Excess sludge biological treatment method using hydrothermal reaction
JP2002316192A (en) Method and apparatus for treating organic foul water
JPH0135720B2 (en)
JPH0141110B2 (en)
JP2000117289A (en) Treatment of dehydration-separated liquid from anaerobic-digested sludge and equipment therefor
JP2002316191A (en) Method and apparatus for treating organic foul water
JP3526141B2 (en) Method and apparatus for reducing organic sludge and recovering phosphorus resources
JP4010733B2 (en) Organic wastewater treatment method and apparatus
JP3759055B2 (en) Organic wastewater treatment apparatus and method
JPH10156398A (en) Water treatment and water treating device
JPH1034189A (en) Method and apparatus for reducing volume of organic sludge
JPH0314519B2 (en)
JPS5898198A (en) Treatment of sewage sludge
JPH10249376A (en) Treatment of organic waste water such as sewage
JPS58210900A (en) Treatment of organic waste liquid

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050414

R150 Certificate of patent or registration of utility model

Ref document number: 3672175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees