JP2002316192A - Method and apparatus for treating organic foul water - Google Patents

Method and apparatus for treating organic foul water

Info

Publication number
JP2002316192A
JP2002316192A JP2001119703A JP2001119703A JP2002316192A JP 2002316192 A JP2002316192 A JP 2002316192A JP 2001119703 A JP2001119703 A JP 2001119703A JP 2001119703 A JP2001119703 A JP 2001119703A JP 2002316192 A JP2002316192 A JP 2002316192A
Authority
JP
Japan
Prior art keywords
sludge
solid
separated
liquid
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001119703A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kataoka
克之 片岡
Kazuaki Shimamura
和彰 島村
Toshihiro Tanaka
俊博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001119703A priority Critical patent/JP2002316192A/en
Publication of JP2002316192A publication Critical patent/JP2002316192A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PROBLEM TO BE SOLVED: To provide an organic foul water treatment process which can greatly decrease the amount of generated excess activated sludge, can remove nitrogen stably to a high degree, can remove phosphorus to a high degree, can recover phosphorus as a resource, and can increase the amount of energy recovered from organic foul water. SOLUTION: Organic foul water is mixed with a cationic polymeric flocculant and subjected to solid-liquid separation to give a flocculate and separated water. The separated water is supplied to a biological nitration denitrification activated-sludge treatment step and mixed with a particulate chemical phosphorus-removal agent to solidify a phosphorus component. Then, the separated water is supplied to a solid-liquid separation step, and the resultant supernatant is obtained as treatment water. A part of separated sludge obtained in the separation step is taken out, subjected to an alkali treatment by the addition of NaOH, and subjected to solid-liquid separation. Thus separated sludge is returned to the denitrification step. Ca or Mg ions are added to the separated liquid obtained in the solid-liquid separation step to precipitate phosphorus ions as a solid, which is recovered by solid-liquid separation, and the separated liquid is returned to the denitrification step.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水などの有機性
汚水を高度に浄化する技術に関し、特に余剰活性汚泥発
生量を著しく減少でき、かつ汚水中のリンを資源として
回収でき、更に汚水からのエネルギ回収量を増加できる
処理技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for highly purifying organic sewage such as sewage, and in particular, can significantly reduce the amount of surplus activated sludge generated, can recover phosphorus in sewage as a resource, and can further reduce sewage. The present invention relates to a processing technique capable of increasing the amount of energy recovered from wastewater.

【0002】[0002]

【従来の技術】以下、有機性汚水の代表例として、下水
を例に挙げて説明する。現在最新の下水処理方法は、図
2に示すように、下水1を最初沈殿池32においてSS
の一部を除去した後、生物学的硝化脱窒素工程34で生
物処理しBOD、窒素を除去した後、最終沈殿池36で
活性汚泥を沈降分離して沈殿汚泥38を分離し、そこか
らの流出水37に無機凝集剤39を添加して凝集沈殿
し、リン、SS、CODを除去するというプロセスがと
られている。なお、無機凝集剤39を、最終沈殿池36
への流入スラリに添加してリンを不溶化したフロック
を、活性汚泥と共に沈殿させる場合もある。なお、図2
において、40は凝集沈殿槽、42は凝集沈殿汚泥、4
1は処理水、43は返送汚泥、33は生汚泥である。
2. Description of the Related Art Sewage will be described below as a typical example of organic wastewater. The latest sewage treatment method at present is as shown in FIG.
After removing a part of the sludge, biological treatment is performed in a biological nitrification and denitrification step 34 to remove BOD and nitrogen, and then the activated sludge is settled and separated in a final sedimentation tank 36 to separate the settled sludge 38, from which the sludge is separated. A process is performed in which an inorganic coagulant 39 is added to the effluent water 37 to cause coagulation and precipitation to remove phosphorus, SS, and COD. In addition, the inorganic coagulant 39 was added to the final sedimentation basin 36.
In some cases, the floc in which phosphorus has been insolubilized by being added to the slurry flowing into the reactor is precipitated together with the activated sludge. Note that FIG.
, 40 is a coagulation sedimentation tank, 42 is a coagulation sedimentation sludge,
1 is treated water, 43 is returned sludge, and 33 is raw sludge.

【0003】[0003]

【発明が解決しようとする課題】しかし、図2のような
従来の下水処理プロセスは次の欠点があった。 イ)最初沈殿池のSS除去率が約40%程度にすぎない
ので、生物処理工程からの余剰活性汚泥発生量が多くな
り、汚泥処理に負担を与える。また、最初沈殿池で除去
される有機性SS量が少ないために、初沈汚泥を嫌気性
消化した場合に、メタンガス発生量が少ないという問題
がある。 ロ)最初沈殿池に塩化第2鉄、硫酸アルミニウムなどの
無機凝集剤を添加して凝集沈殿させる方法を適用すれ
ば、最初沈殿池におけるSSとリン除去率が大幅に向上
し、上記の問題は解決するが、その反面、難脱水性の
凝集沈殿汚泥が大量に発生するという、それ以上の問題
が発生する。
However, the conventional sewage treatment process as shown in FIG. 2 has the following disadvantages. B) Since the SS removal rate of the first sedimentation basin is only about 40%, the amount of surplus activated sludge generated from the biological treatment process increases, and this burdens the sludge treatment. In addition, since the amount of organic SS removed in the first settling basin is small, there is a problem that the amount of methane gas generated is small when the first settled sludge is anaerobically digested. B) If a method of adding an inorganic coagulant such as ferric chloride or aluminum sulfate to the first sedimentation tank to apply coagulation and sedimentation is applied, SS and phosphorus removal rates in the first sedimentation tank are greatly improved, and the above-mentioned problems are solved. On the other hand, on the other hand, on the other hand, there arises a further problem that a large amount of hardly dewaterable coagulated sediment sludge is generated.

【0004】ハ)また、最初沈殿池に凝集剤を添加して
SSの除去率を高めると、SS性BODの除去率が高く
なりすぎるため、生物学的脱窒素工程における脱窒素菌
のためのBOD源(水素供与体)が不足し、脱窒素効果
が悪化してしまう。 ニ)下水のリンの凝集沈殿汚泥は、有効利用できないた
め廃棄せざるを得ない。従って、下水中の貴重なリンを
資源として回収して利用できない。
[0004] Further, if the removal rate of SS is increased by adding a flocculant to the first settling basin, the removal rate of SS-BOD becomes too high. Insufficient BOD source (hydrogen donor) degrades the denitrification effect. D) Phosphorus flocculated sediment sludge cannot be used effectively and must be discarded. Therefore, precious phosphorus in sewage cannot be recovered and used as a resource.

【0005】本発明は、従来の有機性汚水処理法の欠点
のすべてを解決し、余剰活性汚泥発生量を著しく少なく
(実質的にゼロ)でき、脱窒素菌のBOD源も不足せず
安定して高度の窒素除去が可能で、更にリンを高度に除
去でき、かつリンを資源として回収可能で、有機性汚水
からのエネルギ回収量も増加できる、21世紀に相応し
い理想的な有機性汚水処理プロセスを提供することを課
題とする。
The present invention solves all the drawbacks of the conventional organic sewage treatment method, makes it possible to significantly reduce the amount of excess activated sludge (substantially zero), and to provide a stable and stable BOD source of denitrifying bacteria. Ideal organic wastewater treatment process suitable for the 21st century, capable of removing nitrogen at a high level, further removing phosphorus, recovering phosphorus as a resource, and increasing energy recovery from organic wastewater The task is to provide

【0006】[0006]

【課題を解決するための手段】本発明者等は、上記の従
来の技術の欠点を解決するために、調査、研究の結果、
カチオンポリマによりSSが高度に凝集分離された下水
を、リン除去剤と活性汚泥を共存させた生物学的脱窒素
工程で処理すれば、以後の処理工程が円滑に進行し、余
剰活性汚泥発生量、リンの回収、メタンガスなどのエネ
ルギ回収量の問題の全てに極めて有効であることを見出
して、本発明を完成するに至った。
Means for Solving the Problems The present inventors have conducted investigations and studies in order to solve the above-mentioned disadvantages of the prior art.
If the sewage in which SS is highly coagulated and separated by the cationic polymer is treated in a biological denitrification process in which a phosphorus remover and activated sludge coexist, the subsequent treatment process proceeds smoothly, and the amount of excess activated sludge generated The present invention has been found to be extremely effective in all of the problems of recovering phosphorus and recovering energy such as methane gas, and has completed the present invention.

【0007】すなわち、本発明は以下に示す基本フロー
からなる有機性汚水の処理プロセスを提供するものであ
る。 (1)有機性汚水にカチオン系高分子凝集剤を添加して
生成する凝集物を固液分離して分離水と凝集分離汚泥と
し、該分離水を化学的リン除去剤粒子と活性汚泥とが共
存する生物学的硝化脱窒素活性汚泥処理工程に供給し、
BOD、窒素を除去すると共にリン分を固体化し、該処
理工程の汚泥混合液を固液分離工程に供給し、前記汚泥
物質を分離した上澄液を処理水として系外に排出し、一
方該分離工程の分離汚泥の一部を引き抜き、リン、BO
D、窒素を取り込んだ汚泥にNaOHを添加してpH1
0以上に調整した後、固液分離し、分離汚泥を前記脱窒
素工程に返送し、一方該固液分離からの分離液にCa又
はMgイオンを添加して、リンイオンを固体として析出
させた後固液分離してリンを回収するとともに、分離液
を前記脱窒素工程に返送することを特徴とする有機性汚
水の処理方法。 (2)さらに、前記カチオン高分子凝集剤による凝集分
離汚泥を嫌気性消化し、該消化脱離液を前記NaOH添
加後の固液分離液に混合する工程を含むことを特徴とす
る前記(1)記載の処理方法。
That is, the present invention provides an organic wastewater treatment process comprising the following basic flow. (1) Aggregates formed by adding a cationic polymer flocculant to organic wastewater are separated into solids and liquids to obtain separated water and coagulated separated sludge, and the separated water is formed by the chemical phosphorus remover particles and activated sludge. Supply to the coexisting biological nitrification denitrification activated sludge treatment process,
The BOD and nitrogen are removed and the phosphorus content is solidified, the sludge mixture in the treatment step is supplied to a solid-liquid separation step, and the supernatant liquid from which the sludge substance has been separated is discharged out of the system as treated water. Pull out part of the separated sludge in the separation process, phosphorus, BO
D, NaOH is added to the sludge containing nitrogen to adjust the pH to 1
After being adjusted to 0 or more, solid-liquid separation is performed, and the separated sludge is returned to the denitrification step. On the other hand, Ca or Mg ions are added to the separated liquid from the solid-liquid separation to precipitate phosphorus ions as solids. A method for treating organic sewage, comprising: collecting phosphorus by solid-liquid separation, and returning the separated liquid to the denitrification step. (2) The method according to (1), further comprising a step of anaerobically digesting the coagulated and separated sludge with the cationic polymer coagulant and mixing the digested and separated liquid with the solid-liquid separated liquid after the addition of the NaOH. ) Described processing method.

【0008】(3)有機性汚水にカチオン系高分子凝集
剤を添加して生成した凝集物を固液分離する凝集分離装
置、該凝集分離装置からの分離水を供給し、化学的リン
除去剤を添加し、リン、BOD、窒素を除去する生物学
的硝化脱窒素装置、該硝化脱窒素装置からの流出水を導
入し、処理水と汚泥に分離する固液分離槽、該固液分離
槽からの分離汚泥の一部を導入してリンを放出させるア
ルカリ処理槽、アルカリ処理槽からのアルカリ処理汚泥
を固液分離して分離液と分離汚泥に分ける固液分離装
置、該分離液にCa又はMgイオンを添加してリン分を
固体として析出させる析出槽、前記固液分離装置の分離
汚泥及び該析出槽からの分離液を該硝化脱窒素装置に送
る返送管を設けたことを特徴とする有機性汚水の処理装
置。
(3) An aggregating / separating apparatus for adding a cationic polymer flocculant to organic sewage to perform solid-liquid separation of an agglomerated product, and supplying the separated water from the aggregating / separating apparatus to a chemical phosphorus removing agent A biological nitrification denitrification apparatus for removing phosphorus, BOD and nitrogen, a solid-liquid separation tank for introducing effluent from the nitrification denitrification apparatus and separating it into treated water and sludge, and a solid-liquid separation tank Alkali treatment tank that introduces a part of the separated sludge from the above to release phosphorus, a solid-liquid separation device that separates the alkali-treated sludge from the alkali treatment tank into solid and liquid and separates the separated liquid and the separated sludge, Or a precipitation tank that adds Mg ions to precipitate phosphorus as a solid, a separation pipe of the solid-liquid separation device, and a return pipe that sends a separated liquid from the precipitation tank to the nitrification denitrification device. Organic wastewater treatment equipment.

【0009】[0009]

【発明の実施の形態】図1に本発明の一実施例にフロー
を示す。図1において、有機性汚水の1例である下水1
に、高分子凝集剤の例である少なくともカチオン系ポリ
マ2(分子内にカチオン基とアニオン基を持つ両性高分
子凝集剤を含む意味でこの術語を使用する)を添加し、
下水中SSを凝集させ、凝集分離槽3で形成フロックを
沈降分離又は粗大粒径ろ材充填層でろ過分離する。な
お、「少なくともカチオンポリマを添加」という意味
は、カチオン系高分子凝集剤とアニオン、ノニオン、両
性高分子凝集剤を併用しても良いという意味である。な
お、アニオン系又はノニオン系ポリマを単独で添加して
も、下水中の有機性SSを充分フロック化できないの
で、不適である。この際、カチオンポリマを添加する凝
集分離槽3に、微細な砂などの比重の大きな鉱物粒子を
添加すると、この粒子にフロックが付着し、極めて沈降
性の大きなフロックが形成され、沈降分離速度2m/m
in以上という超高速の沈降分離ができるので、非常に
好ましい。この結果、下水1中のSSは高度に(90%
以上)除去され、SSとSS性BODが非常に少ない下
水が、後続する生物学的硝化脱窒素工程に流入してゆ
く。
FIG. 1 is a flow chart showing an embodiment of the present invention. In FIG. 1, sewage 1 which is an example of organic wastewater
, At least a cationic polymer 2 which is an example of a polymer flocculant (this term is used to mean an amphoteric polymer flocculant having a cationic group and an anionic group in a molecule) is added,
The sewage SS is agglomerated, and the formed floc is sedimented in the aggregating / separating tank 3 or separated by filtration through a coarse particle size filter medium packed bed. The meaning of "adding at least a cationic polymer" means that a cationic polymer flocculant may be used in combination with an anionic, nonionic, or amphoteric polymer flocculant. In addition, it is not suitable to add an anionic or nonionic polymer alone, since the organic SS in the sewage cannot be sufficiently flocculated. At this time, when mineral particles having a large specific gravity, such as fine sand, are added to the flocculation / separation tank 3 to which the cationic polymer is added, flocs adhere to the particles, and extremely large sedimentable flocs are formed. / M
Very high-speed sedimentation separation of in or more is very preferable. As a result, the SS in the sewage 1 was high (90%
Above) The sewage that has been removed and has very little SS and SS-based BOD flows into the subsequent biological nitrification denitrification process.

【0010】一方、カチオン系ポリマによって凝集除去
されたSS(凝集分離汚泥5)は、有機物が主体である
ので、嫌気性消化工程を行う嫌気性消化槽25に供給す
ると、メタンガス26が効果的に発生し、下水1からの
エネルギ−回収量を増加できる。すなわち、本発明では
下水1のSSを、無機汚泥を発生させることなく高度に
除去でき、固液分離効率が約2倍に増加し、これを嫌気
性消化工程に持ち込めるため、従来の下水処理法よりも
メタンガス25の発生量が約2倍に増加できる。
On the other hand, SS (agglomerated and separated sludge 5), which is agglomerated and removed by the cationic polymer, is mainly composed of organic matter, and when supplied to the anaerobic digestion tank 25 for performing the anaerobic digestion step, the methane gas 26 is effectively converted Occurs and the amount of energy recovered from the sewage 1 can be increased. That is, in the present invention, the SS of the sewage 1 can be removed to a high degree without generating inorganic sludge, and the solid-liquid separation efficiency is increased about twice, and this can be taken to the anaerobic digestion step. The amount of generated methane gas 25 can be approximately doubled.

【0011】また、嫌気性消化槽25から出る嫌気性消
化脱離液27は、リンとアンモニアを多量に含んでいる
ので、後記するNaOH可溶化工程を行うアルカリ処理
槽15の後の固液分離装置18から出る固液分離液19
に混合させて、リン、アンモニアをMAP(回収リン2
4)として回収する。また、嫌気性消化槽25から出る
消化汚泥28を脱水機29に送り、そこで得られる脱水
分離液30にもリン、アンモニアが多量に含まれている
ので、同様に前記の固液分離装置18から出る固液分離
液20に混合させる。しかして、カチオンポリマ2によ
ってSSが高度に凝集分離された下水1は、生物学的硝
化脱窒素工程の脱窒素槽6に流入した後、更に硝化工程
の硝化槽7に流入し、下水1中の溶解性BODと窒素成
分が除去される。その流出水9はあと固液分離槽11に
おいて活性汚泥が分離され、処理水12が得られる。こ
の硝化脱窒素工程では、流出水9の一部は循環スラリ1
0として脱窒素槽6に循環される。固液分離槽11とし
ては、沈殿槽、膜分離槽が考えられる。図1では、硝化
液循環型の生物学的脱窒素法を示したが、ステップ型硝
化脱窒素法、好気的脱窒素法、脱窒素槽の前に嫌気槽を
設けて生物脱リンを行う方法など、任意の生物学的硝化
脱窒素法を採用できる。
Further, since the anaerobic digestion and desorption solution 27 discharged from the anaerobic digestion tank 25 contains a large amount of phosphorus and ammonia, the solid-liquid separation after the alkali treatment tank 15 for performing the NaOH solubilization step described later is performed. Solid-liquid separation liquid 19 that exits the device 18
And ammonia and MAP (recovered phosphorus 2
Collect as 4). Further, the digested sludge 28 from the anaerobic digestion tank 25 is sent to a dehydrator 29, and the dehydrated separated liquid 30 obtained there contains a large amount of phosphorus and ammonia. The resulting solid-liquid separation liquid 20 is mixed. Thus, the sewage 1 in which the SS is highly coagulated and separated by the cationic polymer 2 flows into the denitrification tank 6 in the biological nitrification denitrification step, and further flows into the nitrification tank 7 in the nitrification step, and The soluble BOD and nitrogen components are removed. The activated sludge is separated from the effluent 9 in a solid-liquid separation tank 11 to obtain treated water 12. In this nitrification denitrification step, a part of the effluent 9 is
It is circulated to the denitrification tank 6 as 0. As the solid-liquid separation tank 11, a precipitation tank and a membrane separation tank can be considered. In FIG. 1, the biological nitrification method of the nitrification liquid circulation type is shown. However, the step-type nitrification denitrification method, the aerobic denitrification method, and the biological dephosphorization performed by providing an anaerobic tank before the denitrification tank Any biological nitrification denitrification method, such as a method, can be employed.

【0012】下水1中のリン酸イオンは、カチオンポリ
マ2の添加による凝集分離槽3では除去されないので、
カチオンポリマ凝集分離工程流出水には、リン酸イオン
が多量に含まれている。本発明で重要な点は、カチオン
ポリマ凝集分離水を受入れる生物学的硝化脱窒素工程
に、化学的にリンを除去できるリン除去剤8を添加して
活性汚泥と共存させておくという点である。リン酸イオ
ンは、リン除去剤(塩化第2鉄、硫酸第2鉄、硫酸第1
鉄、水酸化鉄、硫酸アルミニウム、塩化アルミニウム、
ポリ塩化アルミニウム、水酸化アルミニウム、活性アル
ミナ、アルミン酸ナトリウム、塩化チタン、硫酸チタニ
ル、水酸化チタン、酸化チタン、塩化ジルコニウム、水
酸化ジルコニウム、酸化ジルコニウム等)を添加する
と、生物学的硝化脱窒素工程において、凝集又は吸着に
よって高度に除去されるので、最終の固液分離槽11か
ら流出する処理水のリン酸イオンは、0.1〜0.2m
g/リットル程度と、極めて少なくすることができる。
Since the phosphate ions in the sewage 1 are not removed in the coagulation / separation tank 3 by adding the cationic polymer 2,
The effluent from the cationic polymer coagulation separation step contains a large amount of phosphate ions. An important point in the present invention is that a phosphorus removing agent 8 capable of chemically removing phosphorus is added to the biological nitrification denitrification step for receiving the coagulated and separated water from the cationic polymer to coexist with activated sludge. . Phosphate ions can be removed using a phosphorus remover (ferric chloride, ferric sulfate,
Iron, iron hydroxide, aluminum sulfate, aluminum chloride,
Biological nitrification denitrification process by adding polyaluminum chloride, aluminum hydroxide, activated alumina, sodium aluminate, titanium chloride, titanyl sulfate, titanium hydroxide, titanium oxide, zirconium chloride, zirconium hydroxide, zirconium oxide) In the above, since the water is highly removed by coagulation or adsorption, the phosphate ion of the treated water flowing out from the final solid-liquid separation tank 11 is 0.1 to 0.2 m
It can be extremely reduced to about g / liter.

【0013】生物処理工程に添加されたリン除去剤は、
生物学的硝化脱窒素処理工程内に滞留する過程で、リン
を吸着した状態の水酸化鉄、水和酸化鉄、水酸化アルミ
ニウム、水和酸化アルミニウム、水酸化ジルコニウム、
酸化ジルコニウム、水酸化チタン、酸化チタン等の状態
で存在する様になる。生物学的硝化脱窒素工程の後の固
液分離槽11で分離した分離汚泥13の大部分は、脱窒
素槽6に返送汚泥14として返送される。残りの汚泥
(本発明を適用しない、従来の通常の活性汚泥法で発生
する余剰活性汚泥発生量の約3倍以上とすることが重要
であり、余剰活性汚泥発生量と等しい量の汚泥をアルカ
リ処理しても、余剰汚泥減量効果は少ない)をアルカリ
処理槽15に送る。
The phosphorus removing agent added to the biological treatment step includes:
In the process of staying in the biological nitrification denitrification treatment process, iron hydroxide in the state of adsorbing phosphorus, hydrated iron oxide, aluminum hydroxide, hydrated aluminum oxide, zirconium hydroxide,
It is present in a state of zirconium oxide, titanium hydroxide, titanium oxide and the like. Most of the separated sludge 13 separated in the solid-liquid separation tank 11 after the biological nitrification denitrification step is returned to the denitrification tank 6 as return sludge 14. It is important that the remaining sludge (the amount of surplus activated sludge generated by a conventional ordinary activated sludge method not applying the present invention is at least three times or more, and an amount of sludge equal to the amount of surplus activated sludge generated is treated with alkali. Even if it is treated, the excess sludge reduction effect is small) is sent to the alkali treatment tank 15.

【0014】アルカリ処理槽15にはNaOH16が添
加され、pHが10以上(好ましくは10.5〜11.
5)に調整され、1〜2時間程度攪拌される。この結
果、活性汚泥がアルカリによって加水分解されて可溶化
し、活性汚泥から溶解性BODが溶出する。活性汚泥細
胞自身も、アルカリによって細胞壁に損傷を受けてお
り、生物分解を受け易くなる。また、上記アルカリ性p
H条件にすると、水酸基がリン酸イオンよりも配位し易
いため、リン酸イオンを吸着した水酸化鉄、水酸化アル
ミニウム、水酸化ジルコニウムなどからリン酸イオンが
脱離する。なお、アルカリ槽に供給する汚泥としては、
硝化槽7、脱窒素槽6から活性汚泥の一部を引き抜いて
も構わない。
NaOH 16 is added to the alkali treatment tank 15 and the pH is 10 or more (preferably 10.5-11.
It is adjusted to 5) and stirred for about 1 to 2 hours. As a result, the activated sludge is hydrolyzed by the alkali and solubilized, and the soluble BOD is eluted from the activated sludge. Activated sludge cells themselves have been damaged by cell walls due to alkali and are susceptible to biodegradation. In addition, the alkaline p
Under the H condition, the hydroxyl group is more easily coordinated than the phosphate ion, so that the phosphate ion is desorbed from the iron hydroxide, aluminum hydroxide, zirconium hydroxide, or the like that has adsorbed the phosphate ion. The sludge to be supplied to the alkaline tank is
Part of the activated sludge may be withdrawn from the nitrification tank 7 and the denitrification tank 6.

【0015】アルカリ処理汚泥17を固液分離装置18
で固液分離した分離液19には、リン酸イオンと溶解性
BODが含まれているのて、これにMgイオン又はCa
イオン21を添加してリン酸マグネシウムアンモニウム
(MAP)、リン酸カルシウムとして析出させて沈降分
離し、下水中のリン資源の回収リン24として回収す
る。MAPを生成させるためのアンモニウムイオンは、
凝集分離汚泥5の嫌気性消化工程での消化脱離液27、
脱水分離液30(アンモニウムイオンを高濃度に含有す
る)と混合することによって、MAP生成のためのアン
モニウムイオンを必要充分量供給できる。次に、アルカ
リ処理後固液分離装置18で固液分離した分離汚泥20
と、リン析出工程の分離液23の両者を脱窒素槽6に返
送し、アルカリ処理によって溶出したBODを、脱窒素
菌のための有機炭素源(水素供与体)として利用する。
The alkali-treated sludge 17 is separated into a solid-liquid separator 18
Separation liquid 19 obtained by solid-liquid separation contains phosphate ions and soluble BOD.
Ion 21 is added to precipitate as magnesium ammonium phosphate (MAP) and calcium phosphate, and sedimentation-separation is carried out. The ammonium ion for producing MAP is
Digestion and desorption solution 27 in the anaerobic digestion step of coagulated and separated sludge 5,
By mixing with the dehydration separation liquid 30 (containing a high concentration of ammonium ions), a sufficient amount of ammonium ions for MAP generation can be supplied. Next, the separated sludge 20 solid-liquid separated by the solid-liquid separator 18 after the alkali treatment
And the separated liquid 23 in the phosphorus precipitation step are returned to the denitrification tank 6, and the BOD eluted by the alkali treatment is used as an organic carbon source (hydrogen donor) for the denitrifying bacteria.

【0016】従って、本発明によれば、下水1中のSS
を凝集分離してSS性BODを除去した下水を、脱窒素
工程に供給しても、脱窒素菌のための有機炭素源が不足
することがなく、効率的な脱窒素が行われる。この点
は、本発明の重要な効果の一つである。なぜならば、従
来下水に凝集剤を添加してSSを高度に除去すると、S
S性BODも同時に除去されてしまうため、後続する脱
窒素工程での有機炭素源が不足して、脱窒素効果が悪化
してしまうという大きな問題点が、従来は解決できなか
ったからである。
Therefore, according to the present invention, the SS in the sewage 1
Even if the sewage from which the SS BOD has been removed by coagulation separation is supplied to the denitrification step, the organic carbon source for the denitrifying bacteria does not run short, and efficient denitrification is performed. This is one of the important effects of the present invention. This is because the conventional removal of SS by adding a flocculant to sewage,
This is because the S-BOD is also removed at the same time, and a large problem that the denitrification effect deteriorates due to the shortage of the organic carbon source in the subsequent denitrification step could not be solved conventionally.

【0017】アルカリ処理汚泥17は、細胞壁が脆弱に
なって生分解性が向上しているので、生物学的硝化脱窒
素工程に供給すると、その約30%が微生物によって炭
酸ガスと水に分解され、70%が増殖汚泥として残る。
従って、本発明を適用しない通常の活性汚泥法において
発生する余剰活性汚泥量の約3倍量以上の汚泥をアルカ
リ処理すると、生物学的硝化脱窒素工程から余剰活性汚
泥が実質的に発生しなくなる。
Since the alkali-treated sludge 17 has a weakened cell wall and improved biodegradability, when supplied to the biological nitrification denitrification step, about 30% of the sludge is decomposed by microorganisms into carbon dioxide and water. , 70% remain as growing sludge.
Therefore, when the sludge of about 3 times or more the amount of the excess activated sludge generated in the ordinary activated sludge method to which the present invention is not applied is alkali-treated, the excess activated sludge is not substantially generated from the biological nitrification denitrification step. .

【0018】しかも、本発明では下水1中の有機性SS
のほぼすべてが、カチオンポリマ2による凝集分離工程
によって除去されるので、生物学的硝化脱窒素工程に有
機性SSがほとんど流入しなくなるため、これ自体の効
果によって、アルカリ可溶化処理を組み込まない場合で
も余剰活性汚泥発生量が少なくなる。この結果、アルカ
リ処理工程に供給する活性汚泥量も少なくでき、この結
果として、アルカリ所要量が削減するという大きな効果
がある。
In the present invention, the organic SS in the sewage 1 is used.
Almost all are removed by the coagulation separation step using the cationic polymer 2, so that the organic SS hardly flows into the biological nitrification denitrification step. However, the amount of surplus activated sludge is reduced. As a result, the amount of activated sludge supplied to the alkali treatment step can be reduced, and as a result, there is a great effect that the required amount of alkali is reduced.

【0019】更にもう一つの大きな効果がある。すなわ
ち、本発明では、下水1中の有機性SSのほぼすべて
が、カチオンポリマ2による凝集分離工程によって除去
されるので、生物学的硝化脱窒素工程に、有機性SSが
ほとんど流入しなくなるため、硝化工程における硝化菌
のSRT(汚泥齢)が大きくなり、硝化菌が系外にウオ
ッシュアウトされなくなる。従って、従来のように、硝
化菌をゲル担体などの担体に固定化される必要がなくな
り、担体コストを不要にできるという大きな効果であ
る。
There is still another great effect. That is, in the present invention, since almost all of the organic SS in the sewage 1 is removed by the coagulation separation step using the cationic polymer 2, the organic SS hardly flows into the biological nitrification denitrification step. The SRT (sludge age) of the nitrifying bacteria in the nitrification step becomes large, and the nitrifying bacteria are not washed out out of the system. Therefore, unlike the related art, it is not necessary to fix nitrifying bacteria to a carrier such as a gel carrier, which is a great effect that the carrier cost can be eliminated.

【0020】しかして、リン析出工程のアルカリ性の分
離液23中には、リン脱着した水酸化鉄、アルミン酸イ
オン、水酸化アルミニウム、酸化アルミニウム、水酸化
チタン、酸化チタン、水酸化ジルコニウム等が含まれて
いるので、これを生物学的硝化脱窒素工程に返送する
と、再び下水1中のリン酸イオンを効果的に除去する機
能を発揮する。従って、生物学的硝化脱窒素工程に添加
する新鮮なリン除去剤8は、運転初期だけで良い。つま
り、運転開始後、生物学的硝化脱窒素槽内に水酸化鉄、
又は水酸化アルミニウム、水酸化チタン、水酸化ジルコ
ニウムなどが、SSとして1000〜3000mg/リ
ットル程度に蓄積した後は、新鮮なリン除去剤8を添加
する必要を実質的に非常に少なくでき、リン除去材8
は、系外に逃げたロス分だけを、曝気槽に添加補給すれ
ばよい。なお、図1において、29は消化汚泥28の脱
水機であり、31は脱水汚泥、10は循環スラリであ
る。
However, the alkaline separation liquid 23 in the phosphorus precipitation step contains phosphorus-desorbed iron hydroxide, aluminate ion, aluminum hydroxide, aluminum oxide, titanium hydroxide, titanium oxide, zirconium hydroxide and the like. Therefore, when this is returned to the biological nitrification denitrification step, it again has a function of effectively removing phosphate ions in the sewage 1. Therefore, the fresh phosphorus removing agent 8 to be added to the biological nitrification denitrification step only needs to be in the initial operation. In other words, after the start of operation, iron hydroxide,
Alternatively, after aluminum hydroxide, titanium hydroxide, zirconium hydroxide, etc. accumulate at about 1000 to 3000 mg / liter as SS, the necessity of adding a fresh phosphorus removing agent 8 can be substantially reduced, and phosphorus removal can be achieved. Lumber 8
In this case, only the loss that escaped from the system may be added to the aeration tank and replenished. In FIG. 1, reference numeral 29 denotes a dehydrator for digested sludge 28, 31 denotes dehydrated sludge, and 10 denotes a circulation slurry.

【0021】[0021]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明は、この実施例により何等制限されるもの
ではない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.

【0022】(実施例1)図1の工程に従って、下水
(平均水質を第1表に示す)を対象に本発明の実証試験
を行った。第2表に試験条件を示す。
(Example 1) A verification test of the present invention was performed on sewage (average water quality is shown in Table 1) according to the process shown in FIG. Table 2 shows the test conditions.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】実験の結果、下水のカチオンポリマ凝集沈
殿処理水の水質は、SS5〜12mg/リットル、BO
D40〜45mg/リットル、T−P3.2〜3.6m
g/リットル、T−N21〜25mg/リットルであ
り、下水中の有機性SSが高度に除去されていた。運転
開始後2ヵ月後に、処理状況が安定状態になってからの
沈殿槽からの処理水水質の平均は、第3表のように高度
にリン、BOD、窒素が除去されていた。また余剰汚泥
は、1年間の試験の間、系外に廃棄しなかったが、生物
学的硝化脱窒素槽のMLVSSは3600〜4000m
g/リットルを維持したことから、余剰汚泥の発生は無
視できるほど少量であることが判明した。
As a result of the experiment, the quality of the treated sewage cationic polymer coagulated sedimentation water was SS 5 to 12 mg / L, BO
D40-45mg / liter, T-P3.2-3.6m
g / L, T-N 21-25 mg / L, and the organic SS in the sewage was highly removed. Two months after the operation started, the average of the quality of the treated water from the sedimentation tank after the treatment condition became stable was as shown in Table 3 in which phosphorus, BOD and nitrogen were highly removed. Although the excess sludge was not disposed of outside the system during the one-year test, the MLVSS of the biological nitrification denitrification tank was 3600 to 4000 m.
Since the g / liter was maintained, it was found that the generation of excess sludge was negligibly small.

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【発明の効果】以上のように、本発明によれば次の様な
顕著な効果を発揮でき、下水処理などの有機性汚水処理
プロセスを革新できる。 (1)汚水の生物処理水のリン濃度を確実に極めて低く
でき、かつ下水から貴重なリンをMAP、HAPとして
資源回収できる。従って、凝集沈殿などの3次処理設備
によってリンを除去する必要がなく、大幅な設備削減が
できる。 (2)生物処理工1から余剰活性汚泥がほとんど発生し
ないので、余剰活性汚泥の脱水、焼却処理が大幅に合理
化される。 (3)最初沈殿池で汚水中の有機性SSを高度に除去
し、メタン発酵(嫌気性消化)工程に持ち込むので、汚
水からのメタンガス回収量が増加する。
As described above, according to the present invention, the following remarkable effects can be exhibited, and an organic sewage treatment process such as sewage treatment can be innovated. (1) Phosphorus concentration of biologically treated sewage can be extremely low, and valuable phosphorus can be recovered from sewage as MAP and HAP. Therefore, it is not necessary to remove phosphorus by a tertiary treatment facility such as coagulation sedimentation, so that the facility can be greatly reduced. (2) Since almost no surplus activated sludge is generated from the biological treatment plant 1, dehydration and incineration of the surplus activated sludge are greatly streamlined. (3) Since organic SS in sewage is highly removed in the first sedimentation basin and brought into the methane fermentation (anaerobic digestion) process, the amount of methane gas recovered from sewage increases.

【0028】(4)最初沈殿池で汚水中の有機性SSを
高度に除去するので、生物学的硝化脱窒素工程の硝化菌
のSRTを増加でき、硝化菌固定化担体を利用しなくて
も硝化菌のSRTを高めることができ、担体添加コスト
を不要にできる。 (5)汚水の有機性SSを除去しすぎると、従来は生物
学的脱窒素工程の脱窒素菌のためBODが不足し、脱窒
素効果が悪化してしまうが、本発明では、汚泥をアルカ
リで可溶化し、BODを汚泥から溶出させ、これを脱窒
素菌のための有機炭素源とできるので、あらかじめ有機
性SSを高度に凝集除去しても、脱窒素効果が悪化しな
い。 (6)アルカリ剤(NaOH)を、リン除去粒子からの
リン酸イオンの脱着と、活性汚泥の可溶化の複合目的に
利用できるので経済的である。
(4) Since organic SS in sewage is highly removed in the first sedimentation basin, the SRT of nitrifying bacteria in the biological nitrification and denitrification step can be increased, and even if a nitrifying bacteria-immobilized carrier is not used. The SRT of nitrifying bacteria can be increased, and the cost of adding a carrier can be eliminated. (5) If the organic SS of the wastewater is removed too much, the BOD is insufficient due to the denitrification bacteria in the biological denitrification step, and the denitrification effect is deteriorated. , And the BOD is eluted from the sludge, which can be used as an organic carbon source for denitrifying bacteria. Therefore, even if organic SS is highly coagulated and removed in advance, the denitrifying effect does not deteriorate. (6) The alkali agent (NaOH) is economical because it can be used for a combined purpose of desorbing phosphate ions from phosphorus-removed particles and solubilizing activated sludge.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機性汚水の処理方法を示すブロック
図である。
FIG. 1 is a block diagram showing a method for treating organic wastewater of the present invention.

【図2】従来の下水処理方法を示すブロック図である。FIG. 2 is a block diagram showing a conventional sewage treatment method.

【符号の説明】[Explanation of symbols]

1 下水 2 カチオンポリマ 3 凝集分離槽 4 流出水 5 凝集分離汚泥 6 脱窒素槽 7 硝化槽 8 リン除去剤 9 流出水 10 循環スラリ 11 固液分離槽 12 処理水 13 分離汚泥 14 返送汚泥 15 アルカリ処理槽 16 NaOH 17 アルカリ処理汚泥 18 固液分離装置 19 分離液 20 分離汚泥 21 Mg又はCaイオン 22 析出槽 23 分離液 24 回収リン 25 嫌気性消化槽 26 メタンガス 27 消化脱離液 28 消化汚泥 29 脱水機 30 脱水分離液 31 脱水汚泥 32 最初沈殿池 33 生汚泥 34 生物学的硝化脱窒素工程 35 流出液 36 最終沈殿池 37 流出水 38 沈殿汚泥 39 無機凝集剤 40 凝集沈殿槽 41 処理水 42 凝集沈殿汚泥 43 返送汚泥 44 余剰活性汚泥 Reference Signs List 1 sewage 2 cationic polymer 3 coagulation separation tank 4 effluent 5 coagulation separation sludge 6 denitrification tank 7 nitrification tank 8 phosphorus remover 9 effluent water 10 circulation slurry 11 solid-liquid separation tank 12 treated water 13 separation sludge 14 return sludge 15 alkali treatment Tank 16 NaOH 17 Alkali-treated sludge 18 Solid-liquid separator 19 Separation liquid 20 Separation sludge 21 Mg or Ca ion 22 Precipitation tank 23 Separation liquid 24 Recovered phosphorus 25 Anaerobic digester 26 Methane gas 27 Digestion / desorption liquid 28 Digestion sludge 29 Dehydrator Reference Signs List 30 Dehydration separation liquid 31 Dehydration sludge 32 First sedimentation basin 33 Raw sludge 34 Biological nitrification denitrification process 35 Effluent 36 Final sedimentation basin 37 Outflow water 38 Sedimentation sludge 39 Inorganic coagulant 40 Coagulation sedimentation tank 41 Treated water 42 Coagulation sedimentation sludge 43 Return sludge 44 Excess activated sludge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 俊博 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D015 BA23 BB05 BB17 CA01 DC06 DC07 DC08 EA32 EA35 FA02 FA03 FA26 4D038 AA08 AB45 AB48 BA04 BB18 BB19 4D040 BB05 BB15 BB32 BB57 BB72 4D059 AA03 AA06 AA19 BA12 BE00 BE49 BF14 BK12 CA28 DA01 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Toshihiro Tanaka 11-1 Haneda Asahimachi, Ota-ku, Tokyo F-term in EBARA CORPORATION (reference) 4D015 BA23 BB05 BB17 CA01 DC06 DC07 DC08 EA32 EA35 FA02 FA03 FA26 4D038 AA08 AB45 AB48 BA04 BB18 BB19 4D040 BB05 BB15 BB32 BB57 BB72 4D059 AA03 AA06 AA19 BA12 BE00 BE49 BF14 BK12 CA28 DA01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 有機性汚水にカチオン系高分子凝集剤を
添加して生成する凝集物を固液分離して分離水と凝集分
離汚泥とし、該分離水を化学的リン除去剤粒子と活性汚
泥とが共存する生物学的硝化脱窒素活性汚泥処理工程に
供給し、BOD、窒素を除去すると共にリン分を固体化
し、該処理工程の汚泥混合液を固液分離工程に供給し、
前記汚泥物質を分離した上澄液を処理水として系外に排
出し、一方該分離工程の分離汚泥の一部を引き抜き、リ
ン、BOD、窒素を取り込んだ汚泥にNaOHを添加し
てpH10以上に調整した後、固液分離し、分離汚泥を
前記脱窒素工程に返送し、一方該固液分離からの分離液
にCa又はMgイオンを添加して、リンイオンを固体と
して析出させた後固液分離してリンを回収するととも
に、分離液を前記脱窒素工程に返送することを特徴とす
る有機性汚水の処理方法。
1. A method of adding a cationic polymer flocculant to organic wastewater to separate solids and liquids into aggregates formed into separated water and coagulated separated sludge. The separated water is used as a chemical phosphorus remover particle and activated sludge. Is supplied to the biological nitrification denitrification activated sludge treatment step coexisting with BOD, nitrogen is removed and the phosphorus is solidified, and the sludge mixture of the treatment step is supplied to the solid-liquid separation step,
The supernatant obtained by separating the sludge substance is discharged as treated water to the outside of the system, while a part of the separated sludge in the separation step is extracted, and NaOH is added to the sludge containing phosphorus, BOD and nitrogen to adjust the pH to 10 or more. After the adjustment, solid-liquid separation is performed, and the separated sludge is returned to the above-mentioned denitrification step. On the other hand, Ca or Mg ions are added to the separated liquid from the solid-liquid separation to precipitate phosphorus ions as solids and then solid-liquid separation. And recovering the phosphorus, and returning the separated liquid to the denitrification step.
【請求項2】 さらに、前記カチオン高分子凝集剤によ
る凝集分離汚泥を嫌気性消化し、該消化脱離液を前記N
aOH添加後の固液分離液に混合する工程を含むことを
特徴とする請求項1記載の処理方法。
2. An anaerobic digestion of the coagulated and separated sludge by the cationic polymer coagulant, and the digested and separated liquid is treated with the N
The processing method according to claim 1, further comprising a step of mixing the solid-liquid separation liquid after the addition of aOH.
【請求項3】 有機性汚水にカチオン系高分子凝集剤を
添加して生成した凝集物を固液分離する凝集分離装置、
該凝集分離装置からの分離水を供給し、化学的リン除去
剤を添加し、リン、BOD、窒素を除去する生物学的硝
化脱窒素装置、該硝化脱窒素装置からの流出水を導入
し、処理水と汚泥に分離する固液分離槽、該固液分離槽
からの分離汚泥の一部を導入してリンを放出させるアル
カリ処理槽、アルカリ処理槽からのアルカリ処理汚泥を
固液分離して分離液と分離汚泥に分ける固液分離装置、
該分離液にCa又はMgイオンを添加してリン分を固体
として析出させる析出槽、前記固液分離装置の分離汚泥
及び該析出槽からの分離液を該硝化脱窒素装置に送る返
送管を設けたことを特徴とする有機性汚水の処理装置。
3. An aggregating / separating apparatus for solid-liquid separating an agglomerate formed by adding a cationic polymer flocculant to organic wastewater.
Supplying the separated water from the coagulation separation device, adding a chemical phosphorus removing agent, introducing a biological nitrification denitrification device for removing phosphorus, BOD, and nitrogen, and introducing effluent from the nitrification denitrification device; A solid-liquid separation tank for separating into treated water and sludge, an alkali treatment tank for introducing a part of the separated sludge from the solid-liquid separation tank to release phosphorus, and an alkali-treated sludge from the alkali treatment tank for solid-liquid separation. Solid-liquid separation device that separates into separated liquid and separated sludge,
A separation tank for adding Ca or Mg ions to the separation liquid to precipitate phosphorus as a solid, a return pipe for sending the separation sludge of the solid-liquid separation device and the separation liquid from the separation tank to the nitrification denitrification apparatus are provided. An organic wastewater treatment device characterized by the following.
JP2001119703A 2001-04-18 2001-04-18 Method and apparatus for treating organic foul water Pending JP2002316192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001119703A JP2002316192A (en) 2001-04-18 2001-04-18 Method and apparatus for treating organic foul water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001119703A JP2002316192A (en) 2001-04-18 2001-04-18 Method and apparatus for treating organic foul water

Publications (1)

Publication Number Publication Date
JP2002316192A true JP2002316192A (en) 2002-10-29

Family

ID=18969880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001119703A Pending JP2002316192A (en) 2001-04-18 2001-04-18 Method and apparatus for treating organic foul water

Country Status (1)

Country Link
JP (1) JP2002316192A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005066504A (en) * 2003-08-26 2005-03-17 Ataka Construction & Engineering Co Ltd Method and apparatus for treating sewage
JP2006281001A (en) * 2005-03-31 2006-10-19 Kubota Corp Method and apparatus for treating water
JP2006346622A (en) * 2005-06-17 2006-12-28 Jfe Engineering Kk Apparatus for treating excrement waste water
KR100885204B1 (en) * 2002-09-03 2009-02-24 주식회사 포스코 A treatment method of b/s scrubbing wastewater
US20100193431A1 (en) * 2009-01-30 2010-08-05 Hitachi Plant Technologies, Ltd. Nitrite type nitrification-reactive sludge, production method therefor, production apparatus therefor, and waste water treatment method and waste water treatment apparatus
JP2012011376A (en) * 2010-06-02 2012-01-19 Daiki Ataka Engineering Co Ltd Sewage treatment method and apparatus
KR101892017B1 (en) * 2017-02-24 2018-09-28 엘지히타치워터솔루션 주식회사 Wastewater treatment system and wastewater treatment method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100885204B1 (en) * 2002-09-03 2009-02-24 주식회사 포스코 A treatment method of b/s scrubbing wastewater
JP2005066504A (en) * 2003-08-26 2005-03-17 Ataka Construction & Engineering Co Ltd Method and apparatus for treating sewage
JP4632397B2 (en) * 2003-08-26 2011-02-16 アタカ大機株式会社 Sewage treatment method and apparatus
JP2006281001A (en) * 2005-03-31 2006-10-19 Kubota Corp Method and apparatus for treating water
JP4660247B2 (en) * 2005-03-31 2011-03-30 クボタ環境サ−ビス株式会社 Water treatment method and apparatus
JP2006346622A (en) * 2005-06-17 2006-12-28 Jfe Engineering Kk Apparatus for treating excrement waste water
JP4506574B2 (en) * 2005-06-17 2010-07-21 Jfeエンジニアリング株式会社 Human wastewater treatment equipment
US20100193431A1 (en) * 2009-01-30 2010-08-05 Hitachi Plant Technologies, Ltd. Nitrite type nitrification-reactive sludge, production method therefor, production apparatus therefor, and waste water treatment method and waste water treatment apparatus
US8323487B2 (en) * 2009-01-30 2012-12-04 Hitachi Plant Technologies, Ltd. Waste water treatment apparatus
JP2012011376A (en) * 2010-06-02 2012-01-19 Daiki Ataka Engineering Co Ltd Sewage treatment method and apparatus
KR101892017B1 (en) * 2017-02-24 2018-09-28 엘지히타치워터솔루션 주식회사 Wastewater treatment system and wastewater treatment method

Similar Documents

Publication Publication Date Title
JP3672117B2 (en) Organic wastewater treatment method and apparatus
JP3172965B2 (en) Sewage treatment method
JP3473328B2 (en) Biological dephosphorization equipment
JP5128735B2 (en) Recovery and reuse of phosphorus and flocculant in wastewater
JPH09108690A (en) Treatment of phosphorus containing sewage
JP3442205B2 (en) Treatment method for phosphorus-containing wastewater
JP2002316192A (en) Method and apparatus for treating organic foul water
JP3844347B2 (en) Method and apparatus for removing and recovering phosphorus from organic wastewater
JP2004033897A (en) Flocculation method of excretion-containing wastewater, flocculation equipment therefor, composting system equipped therewith
JPH1157773A (en) Biological dephosphorizing device
JP2002205077A (en) Method and apparatus for treating organic sewage
JP3646925B2 (en) Organic wastewater treatment method and treatment apparatus
JP2002316191A (en) Method and apparatus for treating organic foul water
JP2003300095A (en) Method and apparatus for sewage treatment
JP2004008957A (en) Phosphorus and nitrogen recovery method and apparatus therefor
JP3794736B2 (en) Treatment method of wastewater containing high concentration phosphorus and ammonia nitrogen
JP2002326088A (en) Method and apparatus for treating phosphorous and cod- containing water
JP3700938B2 (en) Method and apparatus for treating combined sewage in rainy weather
TWI298712B (en) Method and apparatus for treating organic wastewater capable of recovering phosphorus
JP2002263676A (en) Waste water treatment method and facility
JP3449864B2 (en) Method and apparatus for reducing organic sludge
JP2003071487A (en) Method and apparatus for treating organic wastewater
JPH0437755B2 (en)
JPH0649197B2 (en) Organic wastewater treatment method
JPH10314757A (en) Method for treating sewage turned back water