JPH10314757A - Method for treating sewage turned back water - Google Patents

Method for treating sewage turned back water

Info

Publication number
JPH10314757A
JPH10314757A JP9142945A JP14294597A JPH10314757A JP H10314757 A JPH10314757 A JP H10314757A JP 9142945 A JP9142945 A JP 9142945A JP 14294597 A JP14294597 A JP 14294597A JP H10314757 A JPH10314757 A JP H10314757A
Authority
JP
Japan
Prior art keywords
treatment
sludge
return water
sewage
turned back
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9142945A
Other languages
Japanese (ja)
Other versions
JP4007639B2 (en
Inventor
Yutaka Yoneyama
豊 米山
Yasuhiro Honma
康弘 本間
Teruaki Kitamura
輝明 北村
Hiroshi Noguchi
廣 野口
Hidetoshi Ishii
英俊 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP14294597A priority Critical patent/JP4007639B2/en
Publication of JPH10314757A publication Critical patent/JPH10314757A/en
Application granted granted Critical
Publication of JP4007639B2 publication Critical patent/JP4007639B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating sewage turned back water by which BOD, nitrogen, phosphorus, etc., contained in the turned back water are efficiently removed in a compact treatment facility. SOLUTION: This method for treating turned back water 19 includes a sludge treatment process including a concentrating process 4 for concentrating sludge containing excess sludge 15 generated in a sewage treatment site and an initially precipitated sludge 13, a digesting process 2', and a dewatering process 5 and the resultant treated water is turned back after the sludge treatment process. A flocculating agent is added to the turned back water 19 to carry out flocculation treatment by a high speed granulating and precipitating treatment apparatus 7 equipped with a concentrating tank and SS and phosphorus in the turned back water are removed and then remaining BOD and nitrogen are removed by biological membrane filtration treatment 8, 9. The sludges generated in sewage treatment sites may be the sludges gathered from a plurality of sewage treatment sites and the biological membrane filtration treatment 8, 9 may be denitrification 8 and nitrification 9 treatment using a floating type filtration material and the treatment may be carried out in tanks arranged separately in series.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水返流水の処理
方法に係り、特に、下水処理場から発生する余剰汚泥、
初沈汚泥等の汚泥を、濃縮、消化、脱水等の汚泥処理工
程により処理して排出される下水返流水の処理方法に関
する。
[0001] The present invention relates to a method for treating sewage return water, and more particularly, to an excess sludge generated from a sewage treatment plant.
The present invention relates to a method for treating sewage return water discharged by treating sludge such as initial settling sludge in sludge treatment steps such as concentration, digestion, and dehydration.

【0002】[0002]

【従来の技術】近年、下水処理においては、有機汚濁物
の処理のほかに窒素、りんの高度処理の必要性が高まっ
ている。この中で、下水処理場から発生する余剰汚泥、
初沈汚泥等の汚泥を、濃縮、消化、脱水等の汚泥処理工
程により処理して排出される返流水は、流入下水に付加
され、有機物汚濁負荷、窒素負荷及びりん負荷を増加さ
せるため、処理水水質の悪化の原因となる。特に、複数
の下水処理場から発生する余剰汚泥、初沈汚泥、消化汚
泥等の汚泥を移送し、一ヵ所の汚泥処理基地に移送後汚
泥処理を行う汚泥の集約処理においては、濃縮、脱水等
の汚泥処理工程より排出される返流水を、近在の下水処
理場に直接戻し処理する場合は、有機物負荷量、窒素負
荷量及びりん負荷量の極端な増加を生じるため、流入下
水と混合する前に返流水処理を行う必要がある。
2. Description of the Related Art In recent years, in sewage treatment, the necessity of advanced treatment of nitrogen and phosphorus is increasing in addition to treatment of organic pollutants. Among them, surplus sludge generated from sewage treatment plant,
The return water discharged after treating sludge such as initial settling sludge in the sludge treatment process such as concentration, digestion, and dehydration is added to the inflow sewage to increase the organic pollutant load, nitrogen load, and phosphorus load. It causes deterioration of water quality. In particular, in the sludge consolidation process where sludge such as surplus sludge, primary sludge, and digested sludge generated from multiple sewage treatment plants is transferred to a single sludge treatment base and sludge treatment is performed, concentration, dewatering, etc. If the return water discharged from the sludge treatment process is directly returned to a nearby sewage treatment plant, it will be mixed with the inflow sewage because the organic matter load, the nitrogen load and the phosphorus load will increase extremely. Return water treatment must be performed before.

【0003】このため、以下のような技術が出てきてい
る。その大半は、返流水を活性汚泥処理する技術であ
り、この技術は処理能力(硝化速度、脱窒速度等)が低
いため、反応槽は大規模化する傾向にあり、敷地の制約
のある汚泥集約処理の場合は特に問題となっている。そ
の改善策として、(1)汚泥返流水に凝集剤を添加して
凝集沈殿処理し、次いで、(2)その処理水を脱窒、硝
化処理する技術(特開平7−256295号公報参照)
が提案されている。この技術においても、生物処理の前
段の凝集沈殿処理でSS、BOD、りんの処理を行い、
後段の生物処理の負荷を軽減しているが、前段の凝集沈
殿では凝集汚泥の沈降濃縮性が良くないため、コンパク
トな処理設備にならず、後段の生物処理においても、基
本的には活性汚泥処理を行うため、コンパクトな返流水
処理を行う解決策には至っていない。
[0003] For this reason, the following techniques have emerged. Most of the technology is activated sludge treatment of return water, and this technology has a low treatment capacity (nitrification rate, denitrification rate, etc.), so the reaction tank tends to be large-scale and sludge with site restrictions This is particularly problematic in the case of aggregation processing. As a remedy, a technique of (1) adding a flocculant to sludge return water to perform coagulation sedimentation treatment, and then (2) denitrifying and nitrifying the treated water (see Japanese Patent Application Laid-Open No. Hei 7-256295).
Has been proposed. Also in this technology, SS, BOD, and phosphorus are performed in the coagulation and sedimentation process before the biological treatment,
Although the load of the biological treatment in the latter stage is reduced, the flocculation and sedimentation of the former stage does not have good sedimentation and concentration properties of the flocculated sludge, so it does not become a compact treatment facility. Because of the treatment, there is no solution for compact return water treatment.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の従来
の問題点を解決して、コンパクトな処理設備で、返流水
に含まれるBOD、窒素、りん等を効率的に除去するこ
とができる下水返流水の処理方法を提供することを課題
とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned conventional problems and can efficiently remove BOD, nitrogen, phosphorus and the like contained in return water with a compact treatment facility. It is an object to provide a method for treating sewage return water.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、下水処理場から発生する余剰汚泥、初
沈汚泥を含む汚泥を濃縮工程、消化工程、脱水工程を含
む汚泥処理工程で処理し、該工程より排出される返流水
を処理する方法において、該返流水に凝集剤を添加し
て、濃縮槽付き高速造粒沈殿処理装置を用いて凝集処理
し、返流水中のSS、りんを除去後、生物膜ろ過処理に
より、残存するBOD、窒素を除去することを特徴とす
る下水返流水の処理方法としたものである。前記処理方
法において、下水処理場から発生する汚泥は、複数の下
水処理場で発生する汚泥を一ヵ所に集めた汚泥であって
も良く、前記汚泥処理工程より排出される返流水が、汚
泥の濃縮、消化、脱水、蒸発乾燥、汚泥油化、焼却工程
より排出される返流水であっても良い。
In order to solve the above-mentioned problems, the present invention provides a sludge treatment step including a concentration step, a digestion step, and a dewatering step for sludge including excess sludge generated from a sewage treatment plant and primary sludge. In the method for treating the return water discharged from the step, a flocculant is added to the return water, and the flocculant is subjected to a flocculation treatment using a high-speed granulation / sedimentation treatment device with a concentration tank, and the SS in the return water is treated. And a method for treating sewage return water characterized by removing remaining BOD and nitrogen by a biofilm filtration treatment after removing phosphorus and phosphorus. In the treatment method, the sludge generated from the sewage treatment plant may be sludge obtained by collecting sludge generated in a plurality of sewage treatment plants in one place, and the return water discharged from the sludge treatment step may be a sludge of sludge. It may be return water discharged from the concentration, digestion, dehydration, evaporative drying, sludge oiling and incineration processes.

【0006】また、前記生物膜ろ過処理は、浮上性ろ材
を用いることができ、該生物膜ろ過処理が、脱窒及び硝
化処理であるのが良い。前記複数の下水処理場から発生
する汚泥は、余剰汚泥、初沈汚泥、消化汚泥等の汚泥を
送泥することにより一ヵ所の汚泥処理基地に移送し、該
汚泥を濃縮、消化、脱水、蒸発乾燥、汚泥油化、焼却工
程より排出される返流水に凝集剤を添加し、濃縮槽付き
高速造粒沈殿処理装置を用いて返流水中のSS、りんを
処理し、その後、生物膜ろ過処理によりBOD、窒素等
を処理することにより行うことができる。
[0006] In addition, the biofilm filtration treatment may use a buoyant filter medium, and the biofilm filtration treatment may be a denitrification and nitrification treatment. Sludge generated from the plurality of sewage treatment plants is transferred to one sludge treatment base by sending sludge such as excess sludge, primary sludge, digested sludge, etc., and the sludge is concentrated, digested, dehydrated, and evaporated. A flocculant is added to the return water discharged from the drying, sludge oiling and incineration processes, and SS and phosphorus in the return water are treated using a high-speed granulation / sedimentation treatment device equipped with a concentration tank, followed by biofilm filtration treatment By treating BOD, nitrogen and the like.

【0007】[0007]

【発明の実施の形態】以下、本発明を図面を参照しなが
ら詳細に説明する。図1は、本発明の処理方法を用いて
下水処理場の返流水処理を行う工程図である。図1にお
いて、流入下水11は最初沈殿池、曝気槽2、最終沈殿
池3を通って処理され、放流水12として排出される。
その際、最初沈殿池1からは初沈汚泥13が、また、最
終沈殿池3からは余剰汚泥15が排出されるので、これ
らの排泥汚泥を濃縮工程4、消化処理工程2′、脱水工
程5及び焼却工程6にて汚泥処理を行うと、各工程より
濃縮分離水17、脱水ろ液18、消化脱離液18′及び
洗煙排水19′等の返流水19が発生する。この中で、
洗煙排水19′以外の返流水19はBOD、SS、窒素
及びりんを多く含んでいるため返流水処理の対象とな
る。その他処理場の汚泥処理方式により嫌気性消化の脱
離液、汚泥油化、蒸発缶凝縮水等BOD、SS、窒素及
びりんを多く含んでいる返流水はすべて処理対象とな
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a process diagram for performing return water treatment at a sewage treatment plant using the treatment method of the present invention. In FIG. 1, inflow sewage 11 is first treated through a sedimentation basin, an aeration tank 2, and a final sedimentation basin 3, and discharged as discharge water 12.
At that time, the initial sedimentation sludge 13 is discharged from the first sedimentation basin 1, and the excess sludge 15 is discharged from the final sedimentation basin 3. Therefore, these waste sludges are concentrated in the concentration step 4, the digestion treatment step 2 ', and the dehydration step. When the sludge treatment is performed in step 5 and incineration step 6, return water 19 such as concentrated separated water 17, dewatered filtrate 18, digestion / desorbed liquid 18 'and smoke washing wastewater 19' is generated from each step. In this,
The return water 19 other than the smoke wash drain 19 'contains a large amount of BOD, SS, nitrogen and phosphorus, and is subjected to return water treatment. In addition, depending on the sludge treatment method of the treatment plant, the return liquid containing a large amount of BOD, SS, nitrogen and phosphorus such as anaerobic digestion desorbate, sludge oil, evaporator condensate, etc. is treated.

【0008】返流水19は濃縮槽付き高速造粒沈殿処理
装置7にてSS、りんを除去する。図2(a)〜(c)
に濃縮槽付き高速造粒沈殿処理装置7の概略構成図を示
す。これらのタイプ(a)〜(c)のいずれでも使用で
きるが、タイプ(c)のものが最とも好ましい。これら
の処理装置7は、槽下部に濃縮部26を付帯するため排
泥汚泥2〜4%まで濃縮するため、直接脱水工程に戻す
ことができる。25はフロック形成槽であり、返流水1
9に凝集剤を添加してここでまず凝集される。凝集処理
に用いる無機凝集剤は、硫酸バンド、PAC等のアルミ
ニウム塩、あるいは塩化第二鉄、ポリ鉄等の鉄塩の何で
も良い。また高分子凝集剤としては、アニオン系高分子
凝集剤、ノニオン系高分子凝集剤どちらを使用しても良
い。
The return water 19 is subjected to high-speed granulation / sedimentation with a thickening tank 7 to remove SS and phosphorus. FIG. 2 (a) to (c)
FIG. 1 shows a schematic configuration diagram of a high-speed granulation / sedimentation treatment apparatus 7 equipped with a concentration tank. Although any of these types (a) to (c) can be used, the type (c) is most preferred. Since these treatment devices 7 are provided with the concentrating unit 26 at the lower part of the tank and concentrate the sludge to 2 to 4%, the process can be directly returned to the dehydration step. Reference numeral 25 denotes a floc forming tank, and the return water 1
A coagulant is added to 9 to be coagulated first. The inorganic coagulant used in the coagulation treatment may be any of aluminum salts such as a sulfate band and PAC, and iron salts such as ferric chloride and polyiron. Either an anionic polymer flocculant or a nonionic polymer flocculant may be used as the polymer flocculant.

【0009】凝集処理された処理水28は、上向流生物
膜ろ過8、9により硝化、脱窒処理される。充填ろ材は
浮上性のろ材を使用し、粒径は3〜10mm、好ましく
は4〜6mmのものが良い。生物膜ろ過法では、一般的
には比表面積の大きい小粒径のものを使用するが、本発
明では、返流水処理では不活性なSS分を系内になるべ
く捕捉せず、有用な菌体を増殖させること、及びろ過形
式を表層ろ過から体積ろ過に近付け、SS捕捉量を高く
とれるようにして、逆洗頻度を少なくすること、等の理
由で粒径の大きなろ材を使用する。硝化槽9の処理水の
一部20は、脱窒槽8に戻される。返流水19のBOD
/N比は大半3以上であるため、生物膜流入原水28
(高速造粒沈殿処理水)は、充分脱窒可能であるが、B
OD/N<3の場合は、脱窒槽8にメタノール、イソプ
ロパノール等を添加して脱窒処理を行う。生物膜処理さ
れた処理水21は、処理水質に応じて最初沈殿池1ある
いは直接曝気槽2に返流する。
[0009] The treated water 28 subjected to the coagulation treatment is subjected to nitrification and denitrification treatment by the upstream biofilm filters 8 and 9. The filter medium used is a buoyant filter medium having a particle size of 3 to 10 mm, preferably 4 to 6 mm. In the biofilm filtration method, small particles having a large specific surface area are generally used. However, in the present invention, inactive SS components are not captured as much as possible in the system in the return water treatment, and useful bacterial cells are used. The filter medium having a large particle size is used for the reasons of increasing the number of filtration and reducing the type of filtration from the surface filtration to that of the volume filtration so as to increase the amount of trapped SS and reduce the frequency of backwashing. A part 20 of the treated water in the nitrification tank 9 is returned to the denitrification tank 8. BOD of return water 19
Since the / N ratio is mostly 3 or more, the biofilm inflow raw water 28
(High-speed granulated sedimentation water) can be sufficiently denitrified,
If OD / N <3, denitrification treatment is performed by adding methanol, isopropanol, etc. to the denitrification tank 8. The treated water 21 subjected to the biofilm treatment is first returned to the sedimentation basin 1 or the aeration tank 2 depending on the treated water quality.

【0010】図4は、複数の下水処理場A、B、C10
から発生する余剰汚泥、初沈汚泥、消化汚泥等の汚泥1
6を、配管を利用して送泥するにより一ヵ所の汚泥処理
基地に移送し、該汚泥16を濃縮4、脱水5、6より排
出される返流水19に凝集剤を添加し、濃縮槽付き高速
造粒沈殿処理装置7を用いて返流水中のSS、りんを処
理し、その後、生物膜ろ過処理8、9によりBOD、窒
素等を処理する例である。返流水処理した処理水は、近
隣に下水処理場がある場合は下水処理場に戻す。近隣に
下水処理場が無い場合は、生物膜処理の後段に後処理設
備22を設け、直接放流23する。後処理設備は放流水
基準に応じた処理を行う。汚泥集約処理に本発明を適用
する場合は、処理場返水21の場合と直接放流23の場
合とで要求される水質が異なるため、生物膜処理のフロ
ーも異なってくる。図4に両ケースに対応した生物膜処
理フローを示す。処理場返水21の場合はT−N除去率
は高くなくても済むため、(a)のように一段の窒素処
理でよい。一方、直接放流23の場合はT−N除去率を
高くしなければならないため、(b)のような二段の窒
素処理となる。
FIG. 4 shows a plurality of sewage treatment plants A, B, and C10.
Sludge such as surplus sludge, primary sludge, digested sludge, etc. generated from coal
6 is transferred to one sludge treatment base by sending sludge using a pipe, and the sludge 16 is concentrated 4, and the flocculant is added to the return water 19 discharged from the dehydration 5 and 6, and a sludge tank is provided. This is an example in which SS and phosphorus in return water are treated using a high-speed granulation / sedimentation treatment apparatus 7, and then BOD, nitrogen, and the like are treated by biofilm filtration treatments 8 and 9. If there is a sewage treatment plant nearby, the treated water that has undergone the return water treatment is returned to the sewage treatment plant. If there is no sewage treatment plant in the vicinity, a post-treatment facility 22 is provided at the latter stage of the biofilm treatment, and the wastewater is directly discharged 23. The post-treatment equipment performs treatment according to the effluent standard. When the present invention is applied to the sludge concentration treatment, the required water quality differs between the case of the treatment plant return water 21 and the case of the direct discharge 23, so that the flow of the biofilm treatment also differs. FIG. 4 shows a biofilm treatment flow corresponding to both cases. In the case of the treatment plant return water 21, since the TN removal rate does not need to be high, a single-stage nitrogen treatment as shown in FIG. On the other hand, in the case of the direct discharge 23, the TN removal rate must be increased, so that a two-stage nitrogen treatment as shown in FIG.

【0011】このように、本発明では、凝集処理に濃縮
槽付き高速造粒沈殿処理装置を使用するため、汚泥の沈
降濃縮性に優れている。このため、凝集沈殿では、排泥
汚泥を濃縮工程に戻してから脱水処理を行っていたのに
対し、本発明では、排泥汚泥濃度が高くとれるため、直
接脱水が可能となった。また、本発明では、生物処理に
生物膜処理を適用したため、高い硝化速度、脱窒速度が
得られ、活性汚泥処理に比べコンパクトな処理設備とな
った。さらに、返流水のような窒素濃度が高い場合、活
性汚泥処理では硝化液循環量を絞ると処理水にNOx−
Nが残存し、沈殿池で脱窒による汚泥浮上が生じ、曝気
槽での汚泥維持が困難になる。これに対し、本発明では
沈殿池を用いない生物膜ろ過処理を適用したため、硝化
槽から脱窒槽への硝化液の循環量を任意に調節でき、処
理水質に応じた運転が可能となった。特に、汚泥集約処
理における処理場返水の場合、及び直接放流の場合、ど
ちらのケースについても設備の大幅な改造を行わなく
て、対応ができる。
As described above, in the present invention, since the high-speed granulation-sedimentation treatment apparatus equipped with a concentration tank is used for the coagulation treatment, the sedimentation and sedimentation of sludge is excellent. For this reason, in the coagulation sedimentation, the dewatered sludge is returned to the concentration step and then subjected to the dehydration treatment. On the other hand, in the present invention, since the concentration of the discharged sludge can be increased, direct dewatering becomes possible. Further, in the present invention, since the biofilm treatment is applied to the biological treatment, a high nitrification rate and a denitrification rate can be obtained, and the treatment equipment is more compact than the activated sludge treatment. Furthermore, when the nitrogen concentration is high, as in the case of the return water, the activated sludge treatment reduces NOx-
N remains and sludge floats due to denitrification in the sedimentation basin, making it difficult to maintain sludge in the aeration tank. On the other hand, in the present invention, since the biofilm filtration treatment without using the sedimentation basin is applied, the circulation amount of the nitrification solution from the nitrification tank to the denitrification tank can be arbitrarily adjusted, and the operation according to the quality of the treated water becomes possible. In particular, in the case of return to the treatment plant in the sludge concentration treatment and in the case of the direct discharge, it is possible to cope with any of the cases without the need for extensive remodeling of the equipment.

【0012】[0012]

【実施例】以下、本発明を実施例により、具体的に説明
する。 実施例1 下水処理場の濃縮分離水と脱水ろ液の混合返流水につい
て、本発明の方法(濃縮槽付き高速造粒沈殿処理+浮上
性ろ材を用いた生物膜処理)Aと従来法(凝集沈殿処理
+担体添加循環式活性汚泥処理)Bの比較実験を行っ
た。表1に返流水水質を示す。
The present invention will be specifically described below with reference to examples. Example 1 Regarding the mixed return water of the concentrated separated water and the dehydrated filtrate in the sewage treatment plant, the method of the present invention (high-speed granulation / sedimentation treatment with a concentration tank + biofilm treatment using a buoyant filter medium) A and the conventional method (coagulation) A comparison experiment of B) (precipitation treatment + circulation activated sludge treatment with carrier addition) was performed. Table 1 shows the return water quality.

【0013】[0013]

【表1】 [Table 1]

【0014】また、本発明方法A、従来法Bの実験結果
を表2に示す。
Table 2 shows the experimental results of the method A of the present invention and the conventional method B.

【表2】 注1)凝集処理における無機凝集剤、硫酸バンド、高分子凝集剤アニオ ンポリマーを使用。 注2)生物処理の水温は20℃[Table 2] Note 1) Inorganic coagulant, sulfate band, and high molecular coagulant anion polymer used in coagulation treatment. Note 2) Water temperature for biological treatment is 20 ℃

【0015】表2において、従来法Bの凝集沈殿と本発
明方法Aの濃縮槽付き高速造粒沈殿では、処理水質につ
いてはほとんど差がないが、分離速度は凝集沈殿で40
m/d、濃縮槽付き高速造粒沈殿100m/d、排泥汚
泥濃度は凝集沈殿で1%、濃縮槽付き高速造粒沈殿3%
が得られ、従来法Bと本法Aとでは大きな差が見られ
た。一方、生物処理では、従来法Bでは硝化速度0.2
kg/m3 ・d、脱窒速度0.4kg/m3 ・dに対
し、本法Aでは硝化速度0.8kg/m3 ・d、脱窒速
度1.6kg/m3 ・dが得られ、本法Aは従来法Bの
4倍もの硝化速度、脱窒速度が得られた。
In Table 2, there is almost no difference in the quality of treated water between the coagulated sediment of the conventional method B and the high-speed granulated sedimentation with the concentrating tank of the method A of the present invention.
m / d, high-speed granulated sediment with a thickening tank 100 m / d, sludge concentration is 1% by coagulation sedimentation, high-speed granulated sediment with a thickening tank 3%
Was obtained, and a large difference was observed between the conventional method B and the present method A. On the other hand, in biological treatment, the nitrification rate was 0.2 in the conventional method B.
kg / m 3 · d, to the denitrification rate 0.4kg / m 3 · d, nitrification rate in Act A 0.8kg / m 3 · d, is denitrification rate 1.6kg / m 3 · d obtained In the method A, the nitrification rate and the denitrification rate were four times as high as those in the conventional method B.

【0016】[0016]

【発明の効果】上記のように、下水返流水処理に濃縮槽
付き高速造粒沈殿処理装置と浮上性ろ材を用いた生物膜
処理を組み合わせることで、従来法(凝集沈殿+循環式
活性汚泥法)で処理するより高速な処理が可能となっ
た。特に、敷地面積に制約がある汚泥集約処理の返流水
処理では、コンパクトな返流水処理施設を提供すること
を可能とした。
As described above, the conventional method (agglomerated sedimentation + circulating activated sludge method) is achieved by combining the high-speed granulation and sedimentation treatment apparatus with a concentration tank with the sewage return water treatment and the biofilm treatment using a buoyant filter medium. ) Can be processed at higher speed. In particular, in the case of sludge-intensive return water treatment, which has a limited site area, it has become possible to provide a compact return water treatment facility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の下水返流水の処理方法を行う全体工程
図。
FIG. 1 is an overall process diagram for performing a method for treating sewage return water according to the present invention.

【図2】本発明で用いる濃縮槽付き高速造粒沈殿処理装
置の概略構成図。
FIG. 2 is a schematic configuration diagram of a high-speed granulation / sedimentation treatment apparatus with a concentration tank used in the present invention.

【図3】複数の下水処理場の汚泥を集約した処理に本発
明の処理方法を用いる全体工程図。
FIG. 3 is an overall process diagram in which the treatment method of the present invention is used for treating sludge in a plurality of sewage treatment plants.

【図4】本発明の処理方法に適用できる種々の生物膜処
理の工程図。
FIG. 4 is a process chart of various biofilm treatments applicable to the treatment method of the present invention.

【符号の説明】[Explanation of symbols]

1:最初沈殿池、2:曝気槽、2′:消化処理工程、
3:最終沈殿池、4:濃縮工程、5:脱水工程、6:焼
却工程、7:濃縮槽付き高速造粒沈殿処理装置、8:生
物膜脱窒処理、9:生物膜硝化処理、10:下水処理
場、11:流入下水、12:放流水、13:初沈汚泥、
14:返送汚泥、15:余剰汚泥、16:混合生汚泥、
17:濃縮分離水、18:脱水ろ液、18′:消化脱離
液、19:返流水、19′:洗煙排水、20:循環水、
21:生物処理返流水、22:後処理、23:放流水、
25:フロック形成槽、26:濃縮部、27:排泥、2
8:流出水、29:水素供与体、a:集約処理の汚泥処
理プラント、b:生物処理
1: first settling basin, 2: aeration tank, 2 ': digestion treatment step,
3: Final sedimentation basin, 4: Concentration step, 5: Dehydration step, 6: Incineration step, 7: High-speed granulation / sedimentation treatment apparatus with concentration tank, 8: Biofilm denitrification treatment, 9: Biofilm nitrification treatment, 10: Sewage treatment plant, 11: inflow sewage, 12: effluent, 13: primary sludge,
14: returned sludge, 15: surplus sludge, 16: mixed raw sludge,
17: concentrated separated water, 18: dehydrated filtrate, 18 ': digestion / desorbed liquid, 19: return water, 19': smoke washing wastewater, 20: circulating water,
21: biological treatment return water, 22: post treatment, 23: discharge water,
25: floc forming tank, 26: thickening section, 27: sludge, 2
8: effluent, 29: hydrogen donor, a: intensive sludge treatment plant, b: biological treatment

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北村 輝明 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 野口 廣 埼玉県北本市西高尾6丁目53番地 (72)発明者 石井 英俊 東京都中野区江古田1丁目9番17号 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Teruaki Kitamura 11-1 Haneda Asahimachi, Ota-ku, Tokyo Ebara Corporation (72) Inventor Hiroshi Noguchi 6-53 Nishitakao, Kitamoto City, Saitama Prefecture (72) Inventor Hidetoshi Ishii 1-9-17 Ekoda, Nakano-ku, Tokyo

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下水処理場から発生する余剰汚泥、初沈
汚泥を含む汚泥を濃縮工程、消化工程、脱水工程を含む
汚泥処理工程で処理し、該工程より排出される返流水を
処理する方法において、該返流水に凝集剤を添加して、
濃縮槽付き高速造粒沈殿処理装置を用いて凝集処理し、
返流水中のSS、りんを除去後、生物膜ろ過処理によ
り、残存するBOD、窒素を除去することを特徴とする
下水返流水の処理方法。
1. A method of treating sludge including excess sludge and primary sludge generated from a sewage treatment plant in a sludge treatment step including a concentration step, a digestion step, and a dewatering step, and treating return water discharged from the step. In the above, adding a flocculant to the return water,
Aggregation treatment using a high-speed granulation and sedimentation treatment device with a concentration tank,
A method for treating sewage return water, comprising removing residual BOD and nitrogen by a biofilm filtration treatment after removing SS and phosphorus in the return water.
【請求項2】 前記下水処理場から発生する汚泥は、複
数の下水処理場で発生する汚泥を一ヵ所に集めた汚泥で
あることを特徴とする請求項1記載の下水返流水の処理
方法。
2. The method for treating sewage return water according to claim 1, wherein the sludge generated from the sewage treatment plant is sludge obtained by collecting sludge generated from a plurality of sewage treatment plants in one place.
【請求項3】 前記生物膜ろ過処理は、浮上性ろ材を用
いることを特徴とする請求項1又は2記載の下水返流水
の処理方法。
3. The method for treating sewage return water according to claim 1, wherein the biofilm filtration treatment uses a buoyant filter medium.
【請求項4】 前記生物膜ろ過処理は、脱窒及び硝化処
理であることを特徴とする請求項1、2又は3記載の下
水返流水の処理方法。
4. The method for treating sewage return water according to claim 1, wherein the biofilm filtration treatment is a denitrification and nitrification treatment.
JP14294597A 1997-05-19 1997-05-19 Sewage return water treatment method and equipment Expired - Lifetime JP4007639B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14294597A JP4007639B2 (en) 1997-05-19 1997-05-19 Sewage return water treatment method and equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14294597A JP4007639B2 (en) 1997-05-19 1997-05-19 Sewage return water treatment method and equipment

Publications (2)

Publication Number Publication Date
JPH10314757A true JPH10314757A (en) 1998-12-02
JP4007639B2 JP4007639B2 (en) 2007-11-14

Family

ID=15327312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14294597A Expired - Lifetime JP4007639B2 (en) 1997-05-19 1997-05-19 Sewage return water treatment method and equipment

Country Status (1)

Country Link
JP (1) JP4007639B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017000980A (en) * 2015-06-12 2017-01-05 水ing株式会社 Wastewater treatment method and system
JP2020192509A (en) * 2019-05-29 2020-12-03 住友重機械工業株式会社 Sewage treatment system and sewage treatment method
CN113998772A (en) * 2020-07-28 2022-02-01 株洲中车机电科技有限公司 Activated sludge culture control equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102091712A (en) * 2010-12-17 2011-06-15 大庆大丰油田科技有限公司 Comprehensive utilization method for sludge generated in ASP flooding sewage treatment process
JP6444560B1 (en) 2018-08-30 2018-12-26 株式会社マイクロブラッドサイエンス Blood collection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017000980A (en) * 2015-06-12 2017-01-05 水ing株式会社 Wastewater treatment method and system
JP2020192509A (en) * 2019-05-29 2020-12-03 住友重機械工業株式会社 Sewage treatment system and sewage treatment method
CN113998772A (en) * 2020-07-28 2022-02-01 株洲中车机电科技有限公司 Activated sludge culture control equipment

Also Published As

Publication number Publication date
JP4007639B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP3672117B2 (en) Organic wastewater treatment method and apparatus
KR100957851B1 (en) Method of water treatment
JP3368938B2 (en) Wastewater treatment method and apparatus
JP2019107593A (en) Deodorization treatment system and organic matter treatment method
JP2796909B2 (en) Wastewater treatment method
JPH10314757A (en) Method for treating sewage turned back water
JP3700938B2 (en) Method and apparatus for treating combined sewage in rainy weather
JP2003062591A (en) Method for purifying organic waste water
JP2002316192A (en) Method and apparatus for treating organic foul water
JPH05345195A (en) Method for treating waste water
JP2939156B2 (en) Sewage treatment equipment
JP2002316191A (en) Method and apparatus for treating organic foul water
JP2704109B2 (en) Sewage return water treatment method
JPH0230320B2 (en)
JPH0649197B2 (en) Organic wastewater treatment method
JP2001219186A (en) Method and apparatus for treating organic wastewater
JP5063975B2 (en) Organic wastewater treatment method and treatment apparatus
JP3229806B2 (en) Human wastewater treatment equipment
JPH1028995A (en) Treatment of waste water
JPS5955391A (en) Treatment of activated sludge
JPH0741275B2 (en) Sludge treatment method and equipment for organic wastewater
JPS5851995A (en) Treatment of night soil
JPH01274899A (en) Treatment of organic filthy water
JP2002307093A (en) Treatment method and apparatus for discharging high concentration organic wastewater to sewerage
JPS64119B2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term