JP3672117B2 - Organic wastewater treatment method and apparatus - Google Patents
Organic wastewater treatment method and apparatus Download PDFInfo
- Publication number
- JP3672117B2 JP3672117B2 JP26025395A JP26025395A JP3672117B2 JP 3672117 B2 JP3672117 B2 JP 3672117B2 JP 26025395 A JP26025395 A JP 26025395A JP 26025395 A JP26025395 A JP 26025395A JP 3672117 B2 JP3672117 B2 JP 3672117B2
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- liquid
- biological treatment
- solid
- separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Activated Sludge Processes (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Treatment Of Sludge (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、下水等の有機性汚水を生物処理する新技術に関するものであり、特に汚水の生物処理にともなう余剰汚泥発生量を、処理水の水質を悪化させることなく、著しく削減できる新技術に関するものである。
【0002】
【従来の技術】
従来から、活性汚泥法などの生物処理にともなって発生する余剰汚泥量の削減法として特開平6−206088号公報が公知である。この技術は、有機性汚水をオゾン酸化して可溶化した後、汚水処理工程の曝気槽に返送し、好気性微生物により生物学的にCO2 、H2 Oに分解することによって汚泥減量化を行うものである。
【0003】
しかし、有機性汚水をオゾン酸化して可溶化した後、汚水処理工程の曝気槽に返送する前記従来技術を本発明者が追試した結果、次のような今まで知られていなかった大きな欠点があるこが判明した。すなわち、
▲1▼ オゾン酸化する汚泥量を増加し、汚泥減容化率を高めるほど、無機リン、COD濃度が悪化する。この原因を調べたところ汚泥をオゾン酸化すると汚泥からリンおよび難生物分解性のCODが溶出するためであることが判明した。
▲2▼ 汚泥減容化率を高めるほど、汚泥から窒素成分の溶出量が増加し、処理水の窒素濃度を悪化させる。
つまり前記従来技術は、汚泥減容化効果はある反面、処理水質の悪化を引き起こし汚水処理の本来の目的である汚水の浄化を満足させることができない技術であることが判明した。
【0004】
【発明が解決しようとする課題】
本発明は、処理水質の悪化を引き起こすことなく、余剰汚泥の発生量を大幅に削減可能にする新技術を提供することを課題とする。
【0005】
【課題を解決するための手段】
本発明の上記課題は、下記の手段により解決した。
(1)有機性汚水を生物処理する工程において、生物処理流出液を固液分離し、固液分離からの分離汚泥の一部を生物処理工程に返送し、前記分離汚泥の他部および/または前記生物処理工程からの引抜汚泥からなる移送汚泥をオゾン酸化した後、オゾン酸化した可溶化汚泥を固液分離し、分離された濃縮可溶化汚泥を前記生物処理工程に返送し、分離された分離液に無機凝集剤を添加し、凝集分離してリン、CODを除去し、凝集分離で生じた凝集分離液を前記生物処理工程に返送することを特徴とする有機性汚水の処理方法。
(2)前記生物処理工程が活性汚泥法による処理工程であることを特徴とする前記(1)に記載の有機性汚水の処理方法。
【0006】
(3)前記生物処理する工程が硝化脱窒素法による処理工程であり、前記オゾン酸化後の凝集分離液を前記工程の嫌気的脱窒素槽に返送することを特徴とする前記(1)に記載の有機性汚水の処理方法。
(4)前記生物処理する工程が生物脱リン法による処理工程であり、前記オゾン酸化後の凝集分離液を前記工程の嫌気的リン吐き出し槽に返送することを特徴とする請求項1に記載の有機性汚水の処理方法。
(5)有機性汚水を生物処理する装置において、生物処理装置からの流出液を固液分離する固液分離装置、固液分離装置からの分離汚泥の一部を生物処理装置に返送する配管、前記分離汚泥の他部および/または前記生物処理装置からの引抜汚泥からなる移送汚泥をオゾン酸化するオゾン酸化装置、オゾン酸化装置からの可溶化汚泥を固液分離する固液分離装置、固液分離装置からの濃縮可溶化汚泥を前記生物処理装置に返送する配管、固液分離装置からの分離液に無機凝集剤を添加し、凝集分離してリン、CODを除去する凝集分離装置、凝集分離装置からの凝集分離液を前記生物処理装置に返送する配管を有することを特徴とする有機性汚水の処理装置。
【0007】
【発明の実施の形態】
前記(1)に記載の本発明の有機性汚水の生物処理工程の内標準的な活性汚泥法の工程のフローを図1に示し、以下に図1を用いて本発明を説明する。なお前記生物処理工程としては、活性汚泥法の他に生物学的脱窒素法や生物脱リン法などが採用できる。
【0008】
図1において、生物処理工程が活性汚泥法による処理工程であり、前記活性汚泥処理が、例えば曝気槽1で行う場合において、曝気槽1に下水など原水2を供給する。曝気槽1において生物処理を行い、曝気槽1から流出するスラリ状汚泥3(以下単にスラリとよぶ。)を沈澱槽5に導き沈澱分離する。
本発明においては、先ず活性汚泥法の常法に従って、沈澱汚泥6の大部分は返送汚泥7として曝気槽1に返送し、沈澱汚泥の残部8および曝気槽1から引き抜いた引抜汚泥9を共に移送汚泥10としてオゾン酸化槽11に送り移送汚泥10をオゾン酸化し、可溶化する。可溶化された汚泥を可溶化汚泥12という。
この時、曝気槽1内に常に所定濃度のMLSSが維持されているように返送汚泥7の量を制御することが生物処理を最も効率よいものとする上、次工程のオゾン酸化処理の負荷を最も少なくするのに役立つ。
【0009】
移送汚泥10はをオゾン酸化されることにより、汚泥中の生物細胞はコロイド化、可溶化され、生物分解性有機物(BOD)、難生物分解性物(COD)、リン、窒素を溶出する。オゾンの添加量は、汚泥SS重量あたり10%〜20%が好適である。オゾン量が少なすぎると汚泥可溶化が充分に進まず、また過剰であるとオゾンが無駄になりコスト高になる。なお、生物細胞のオゾン酸化反応はpH10〜11のアルカリ条件下で効果的にすすむことが認められた。
【0010】
本発明において、オゾン酸化された可溶化汚泥12は、沈澱や遠心分離などの公知の固液分離手段13によって固液分離し、分離された分離液16を凝集槽15に移送し、凝集槽15において鉄系凝集剤、アルミニウム系凝集剤、石灰などのリン、CODを同時に凝集除去できる凝集剤4を添加してリン、CODを凝集剤4と共に凝集沈澱させる。凝集沈澱した凝集汚泥は系外に取り出す。この時可溶性の有機物(BOD)は凝集除去されない。凝集分離液17には生物分解性有機物が含まれているので曝気槽1に返送する。リン、CODの凝集反応は早いので、攪拌時間は10分間程度で良い。また凝集フロックの沈澱時間は1時間程度で良い。
この方法では、固液分離され、濃縮された可溶化汚泥は、生物処理工程に返送して処理することができるので、可溶化汚泥12を固液分離しない場合より余剰汚泥が少なくなり好ましい。
【0011】
既に前記したように、オゾン酸化槽11に供給される移送汚泥10の量は、曝気槽1内に常に所定濃度範囲のMLSSが維持されているように返送汚泥7の量を制御された残りの汚泥(残部汚泥8)に引抜汚泥9を加えた量とされる。前記曝気槽1内に維持されるMLSSの濃度範囲は、有機性汚水1リットルあたり4000〜5000mgが適当である。曝気槽内のMLSSの濃度範囲を前記の値に維持することは曝気槽内にMLSS自動測定器を設置することで容易に行うことができる。
曝気槽1内のMLSSの濃度を常に所定濃度範囲に維持するこによって、余剰汚泥発生量を大きく減少させることができ、条件によってはほぼゼロにすることが可能である。従って、本発明においては系外に排出される固形物は少量の凝集スラッジのみとすることができる。
【0012】
なお、生物処理工程としては、前記説明した活性汚泥法の他に生物学的硝化脱窒素法が採用できる。この生物学的硝化脱窒素法を用いた本発明の生物処理工程のうち可溶化汚泥を固液分離する好ましい態様について図2に示して説明する。
図2において、原水2は脱窒素槽20に供給され、硝化槽21を経てスラリ状汚泥は沈澱槽22に移送され、沈澱槽22で固液分離され、分離液23(処理水)は系外に排出する。
濃縮汚泥の1部は返送汚泥24として脱窒素槽20に還流され、他の1部は移送汚泥25としてオゾン酸化槽11で可溶化され、可溶化汚泥26は、沈澱や遠心分離などの公知の固液分離手段12によって固液分離し、分離液27は凝集槽15において前記リン、CODを同時に凝集除去できる凝集剤4を添加してリン、CODを凝集剤4と共に凝集沈澱させる。分離液27よりリン、CODを凝集除去された凝集分離液17は脱窒素槽20に返送する。
この方法では、可溶化汚泥26を固液分離して、濃縮した可溶化汚泥28は生物処理工程に返送して処理することができる。
【0013】
また生物処理工程としていまひとつ生物学的脱リン法が採用できる。この場合のうち可溶化汚泥を固液分離する好ましい態様について図3に示した。
生物脱リン法とは、汚水を嫌気槽、好気槽の順で流下させ、活性汚泥を好気槽の後に設けられた沈殿池にて分離し、分離汚泥を嫌気槽にリサイクルさせるこにより、嫌気槽において活性汚泥からリンを吐き出させた後、好気槽において吐き出した量以上のリンを活性汚泥細胞内に取り込みリンを除去する方法である。
図3では、好気槽31からの流出スラリは沈澱槽32で固液分離され、分離液33(処理水)は系外に排出し、濃縮汚泥の1部は返送汚泥34として嫌気槽30に還流され、他の1部は移送汚泥35としてオゾン酸化槽11で可溶化され、可溶化汚泥36は、沈澱や遠心分離などの公知の固液分離手段12によって固液分離し、分離液37に前記リン、CODを同時に凝集除去できる凝集剤4を添加してリン、CODを凝集剤4と共に凝集沈澱させる。分離液37よりリン、CODが除去された凝集分離液17は嫌気槽30に返送する。
この方法では、可溶化汚泥36を固液分離して、濃縮した可溶化汚泥38は生物処理工程に返送して処理することができる。
【0014】
【実施例】
図1の工程に基づいて、下水を対象として、曝気槽を用いた有機性汚水の活性汚泥法による浄化処理を行った。
実施例1
処理に使用した下水の水質を第1表に示す。
第1表
曝気槽の容積、下水の処理量、曝気槽のMLSS量は第2表の通りである。
第2表
曝気槽容積 : 6 リットル
曝気槽MLSS : 3500 mg/リットル
下水処理量 : 24 リットル/日
【0015】
曝気槽における沈殿汚泥および沈殿槽において沈殿した汚泥の大部分は曝気槽に返送する。この返送量は、曝気槽に備えたMLSS自動測定器により、曝気槽内のMLSS量を管理しながら行った。その結果、オゾン酸化処理を行わず、曝気槽に返送する返送汚泥量は20リットル/日であった。
一方オゾン酸化を行うための移送汚泥量は、本処理の場合1.5〜1.7g・ss/日である。
オゾン酸化の条件を第3表に示す。
第3表
オゾン酸化槽容積 : 1リットル
オゾン酸化槽pH : 10
オゾン添加量 : 15%(流入SS当たり)
【0016】
オゾン酸化した可溶化汚泥は沈澱分離し、沈澱した汚泥は曝気槽に返送し、分離した液は凝集分離槽で凝集剤を添加してリン、およびCOD成分を凝集沈澱させて系外に排出し、分離液は曝気槽に返送する。
凝集剤の添加条件を第4表に示す。
第4表
凝集剤(塩化第2鉄)添加量: 2000〜3000 mg/リットル
凝集pH : 6
【0017】
以上の条件で1年間処理を行った結果、処理水の水質は第5表の通りである。
第5表
となり、極めて良好な水質の処理水が得られ、リン、CODの悪化は認められなかった。また、余剰生物汚泥発生量は下水1m3 あたり2.8〜4.8g・ssと極めてすくなかった。なお、標準活性汚泥法における余剰生物汚泥発生量は下水1m3 あたり40〜50g・ssである。
【0018】
比較例1
図1に示した汚水の処理工程において、オゾン酸化後の固液分離および凝集分離工程を除去した以外は表2〜表3に示した条件と同一条件で比較試験を行った。その結果、処理水の水質は第5表の通りであり、本発明の実施例の処理水の水質と比較してCODの値が32mg/リットルと悪化した。
第5表
【0019】
【発明の効果】
本発明により下水など有機性汚水を対象とし、活性汚泥法、硝化脱窒素法あるいは生物脱リン法を適用して生物処理するにあたり、好ましくは、
▲1▼活性汚泥法では曝気槽から流出するスラリ状汚泥を固液分離し、濃縮汚泥をオゾン酸化可溶化処理し、可溶化汚泥を固液分離し、濃縮汚泥は曝気槽に返送し、その分離液に凝集剤を添加してリン、CODを除去する。
▲2▼硝化脱窒素法では脱窒素槽と硝化槽を通ったスラリ状汚泥を固液分離し、濃縮汚泥をオゾン酸化可溶化処理し、可溶化汚泥を固液分離し、濃縮汚泥は脱窒素槽に返送し、その分離液に凝集剤を添加してリン、CODを除去する。
▲3▼生物脱リン法では脱リンするための嫌気槽、つづいて好気槽を通ったスラリ状汚泥を固液分離し、濃縮汚泥をオゾン酸化可溶化処理し、可溶化汚泥を固液分離し、濃縮汚泥は嫌気槽にに返送し、その分離液に凝集剤を添加してリン、CODを除去する。
前記▲1▼〜▲3▼の生物処理する方法を行った結果、
(1)処理工程から余剰汚泥が殆ど発生しない。
(2)処理水の水質(特にリン、COD)の悪化がない。
という優れた効果が得られる。
また、前記▲1▼〜▲3▼の生物処理する方法において、可溶化汚泥を固液分離することなく、それに凝集剤を添加して凝集沈殿させて、可溶化汚泥からリン、CODを除去し、凝集分離液を処理系に返送する方法によって余剰汚泥を少なくでき、かつ処理水の水質の悪化させずに生物処理することができる。
【図面の簡単な説明】
【図1】活性汚泥法による本発明の有機性汚水の生物処理のフローの1例を示す説明図である。
【図2】硝化脱窒素法による本発明の有機性汚水の生物処理のフローの1例を示す説明図である。
【図3】生物脱リン法による本発明の有機性汚水の生物処理のフローの1例を示す説明図である。
【符号の説明】
1 曝気槽
2 原水
3 スラリー
4 凝集剤
5 沈殿槽
6 沈殿汚泥
7 返送汚泥
8 汚泥残部
9 引抜汚泥
10 移送汚泥
11 オゾン酸化槽
12 可溶化汚泥
13 固液分離手段
14 凝集汚泥
15 凝集槽
16 分離液
17 凝集分離液
20 脱窒素槽
21 硝化槽
22 沈澱槽
23 分離液(処理水)
24 返送汚泥
25 移送汚泥
26 可溶化汚泥
27 分離液
28 濃縮可溶化汚泥
30 嫌気槽
31 好気槽
32 沈澱槽
33 分離液(処理水)
34 返送汚泥
35 移送汚泥
36 可溶化汚泥
37 分離液
38 濃縮可溶化汚泥[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a new technology for biologically treating organic sewage such as sewage, and particularly to a new technology that can significantly reduce the amount of excess sludge generated by biological treatment of sewage without deteriorating the quality of the treated water. Is.
[0002]
[Prior art]
Conventionally, Japanese Patent Laid-Open No. 6-206088 is known as a method for reducing the amount of surplus sludge generated with biological treatment such as the activated sludge method. In this technology, organic sewage is solubilized by ozone oxidation, then returned to the aeration tank in the sewage treatment process, and biologically decomposed into CO 2 and H 2 O by aerobic microorganisms to reduce sludge. Is what you do.
[0003]
However, as a result of the inventor's additional trial of the above prior art for returning the organic sewage to the aeration tank in the sewage treatment step after solubilizing the organic sewage with ozone, the following major drawbacks have not been known so far: It turns out that there is. That is,
(1) The concentration of inorganic phosphorus and COD worsens as the amount of sludge to be oxidized by ozone increases and the volume reduction rate of sludge increases. As a result of investigating the cause, it was found that phosphorus and hardly biodegradable COD were eluted from the sludge when the sludge was oxidized with ozone.
(2) As the sludge volume reduction rate increases, the amount of nitrogen components eluted from the sludge increases, and the nitrogen concentration of the treated water deteriorates.
In other words, it has been found that the above-mentioned prior art has a sludge volume reduction effect, but does not satisfy the purification of sewage, which is the original purpose of sewage treatment, because the quality of the treated water is deteriorated.
[0004]
[Problems to be solved by the invention]
This invention makes it a subject to provide the new technique which makes it possible to reduce significantly the generation amount of an excess sludge, without causing the deterioration of treated water quality.
[0005]
[Means for Solving the Problems]
The above-described problems of the present invention have been solved by the following means.
(1) In the step of biologically treating organic sewage, the biological treatment effluent is subjected to solid-liquid separation, a part of the separated sludge from the solid-liquid separation is returned to the biological treatment step, and the other part of the separated sludge and / or After the transfer sludge consisting of the extracted sludge from the biological treatment process is ozone-oxidized, the ozone-oxidized solubilized sludge is separated into solid and liquid, and the separated concentrated solubilized sludge is returned to the biological treatment process and separated. An organic sewage treatment method characterized by adding an inorganic flocculant to a liquid , coagulating and separating to remove phosphorus and COD, and returning the coagulated separation liquid produced by the coagulation separation to the biological treatment step.
(2) The method for treating organic sewage according to (1) above, wherein the biological treatment step is a treatment step by an activated sludge method.
[0006]
(3) In the case of processing steps biological treatment for step by nitrification denitrification method, according to (1), characterized in that to return the coagulation and separation liquid after the ozone oxidation in anaerobic denitrification tank of step Treatment method of organic wastewater.
(4) In the case of processing steps biological treatment to steps by an organism dephosphorization method, according to claim 1, characterized in that to return the coagulation and separation liquid after the ozone oxidation in anaerobic phosphorus discharging vessel of step Organic sewage treatment method.
(5) In a device for biologically treating organic sewage, a solid-liquid separation device for solid-liquid separation of the effluent from the biological treatment device, a pipe for returning a part of the separated sludge from the solid-liquid separation device to the biological treatment device, Ozone oxidizer for ozone-oxidizing the other part of the separated sludge and / or transported sludge composed of drawn sludge from the biological treatment device, solid-liquid separator for solid-liquid separation of solubilized sludge from the ozone oxidizer, solid-liquid separation A pipe for returning the concentrated solubilized sludge from the apparatus to the biological treatment apparatus, an aggregating agent added to the separation liquid from the solid-liquid separation apparatus, and aggregating and separating to remove phosphorus and COD; An apparatus for treating organic sewage, comprising a pipe for returning the flocculated and separated liquid from the biological treatment apparatus.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The flow of the standard activated sludge process in the biological treatment process of organic sewage according to the present invention described in (1) is shown in FIG. 1, and the present invention will be described below with reference to FIG. In addition to the activated sludge method, a biological denitrification method or a biological dephosphorization method can be employed as the biological treatment step.
[0008]
In FIG. 1, when the biological treatment process is a treatment process by an activated sludge method and the activated sludge treatment is performed in, for example, the aeration tank 1,
In the present invention, first, most of the precipitated sludge 6 is returned to the aeration tank 1 as a return sludge 7 in accordance with a conventional method of the activated sludge method, and the remaining portion 8 of the precipitated sludge and the drawn sludge 9 extracted from the aeration tank 1 are transferred together. The sludge 10 is sent to the
At this time, controlling the amount of the returned sludge 7 so that the predetermined concentration of MLSS is always maintained in the aeration tank 1 makes the biological treatment most efficient, and the load of ozone oxidation treatment in the next step is reduced. Helps to minimize.
[0009]
As the transported sludge 10 is oxidized with ozone, the biological cells in the sludge are colloided and solubilized to elute biodegradable organic substances (BOD), hardly biodegradable substances (COD), phosphorus and nitrogen. The amount of ozone added is preferably 10% to 20% per sludge SS weight. If the amount of ozone is too small, solubilization of sludge will not proceed sufficiently, and if it is excessive, ozone will be wasted and cost will increase. In addition, it was recognized that the ozone oxidation reaction of biological cells can proceed effectively under alkaline conditions of pH 10-11.
[0010]
In the present invention, the ozone-oxidized solubilized sludge 12 is subjected to solid-liquid separation by a known solid-liquid separation means 13 such as precipitation or centrifugation, and the separated separation liquid 16 is transferred to a
This method is preferable because the solubilized sludge separated and concentrated by solid-liquid separation can be returned to the biological treatment process for processing, and therefore , excess sludge is reduced as compared with the case where the solubilized sludge 12 is not solid-liquid separated .
[0011]
As described above, the amount of the transfer sludge 10 supplied to the
By always maintaining the concentration of MLSS in the aeration tank 1 within a predetermined concentration range, it is possible to greatly reduce the amount of excess sludge generation, and it is possible to make it almost zero depending on the conditions. Therefore, in the present invention, the solid matter discharged out of the system can be only a small amount of agglomerated sludge.
[0012]
In addition to the activated sludge method described above, a biological nitrification denitrification method can be employed as the biological treatment process. A preferred embodiment of solid-liquid separation of solubilized sludge in the biological treatment process of the present invention using this biological nitrification denitrification method is shown in FIG.
In FIG. 2,
One part of the concentrated sludge is returned to the denitrification tank 20 as a return sludge 24, the other part is solubilized in the
In this method, the solubilized sludge 28 is separated into solid and liquid, and the concentrated solubilized sludge 28 can be returned to the biological treatment process for processing.
[0013]
In addition, another biological dephosphorization method can be adopted as a biological treatment process. FIG. 3 shows a preferred embodiment for solid-liquid separation of the solubilized sludge in this case.
The biological dephosphorization method is to drain sewage in the order of an anaerobic tank and an aerobic tank, separate activated sludge in a sedimentation pond provided after the aerobic tank, and recycle the separated sludge to the anaerobic tank. This is a method of removing phosphorus from activated sludge in an anaerobic tank, and then taking in more phosphorus than the amount discharged in the aerobic tank into activated sludge cells.
In FIG. 3, the outflow slurry from the aerobic tank 31 is solid-liquid separated in the precipitation tank 32, the separation liquid 33 (treated water) is discharged out of the system, and a part of the concentrated sludge is returned to the anaerobic tank 30 as return sludge 34. The other part is solubilized in the
In this method, the solubilized
[0014]
【Example】
Based on the process of FIG. 1, the purification process by the activated sludge method of the organic sewage using the aeration tank was performed for sewage.
Example 1
Table 1 shows the quality of sewage used in the treatment.
Table 1
Table 2 shows the volume of the aeration tank, the treatment amount of sewage, and the MLSS amount of the aeration tank.
Table 2 Aeration tank volume: 6 liters Aeration tank MLSS: 3500 mg / liter Sewage treatment amount: 24 liters / day
Most of the sludge settled in the aeration tank and sludge settled in the settling tank is returned to the aeration tank. This return amount was performed while managing the MLSS amount in the aeration tank by an MLSS automatic measuring device provided in the aeration tank. As a result, the amount of sludge returned to the aeration tank without performing the ozone oxidation treatment was 20 liters / day.
On the other hand, the amount of transferred sludge for performing ozone oxidation is 1.5 to 1.7 g · ss / day in the case of this treatment.
The conditions for ozone oxidation are shown in Table 3.
Table 3. Volume of ozone oxidation tank: 1 liter ozone oxidation tank pH: 10
Ozone addition amount: 15% (per inflow SS)
[0016]
Ozone-oxidized solubilized sludge is separated and precipitated, and the precipitated sludge is returned to the aeration tank. The separated liquid is added to the flocculant separation tank, and the phosphorus and COD components are agglomerated and precipitated and discharged out of the system. The separated liquid is returned to the aeration tank.
Table 4 shows the conditions for adding the flocculant.
Table 4: Coagulant (ferric chloride) addition amount: 2000 to 3000 mg / liter aggregation pH: 6
[0017]
As a result of the treatment for one year under the above conditions, the quality of the treated water is as shown in Table 5.
Table 5
Thus, treated water with extremely good water quality was obtained, and no deterioration of phosphorus and COD was observed. Moreover, the surplus biological sludge generation amount was extremely low at 2.8 to 4.8 g · ss per 1 m 3 of sewage. In addition, the surplus biological sludge generation amount in the standard activated sludge method is 40 to 50 g · ss per 1 m 3 of sewage.
[0018]
Comparative Example 1
In the wastewater treatment process shown in FIG. 1, a comparative test was performed under the same conditions as those shown in Tables 2 to 3 except that the solid-liquid separation and the aggregation separation process after ozone oxidation were removed. As a result, the quality of the treated water is as shown in Table 5. Compared with the quality of the treated water of the example of the present invention, the COD value was deteriorated to 32 mg / liter.
Table 5
[0019]
【The invention's effect】
In subjecting organic sewage such as sewage according to the present invention to biological treatment by applying activated sludge method, nitrification denitrogenation method or biological dephosphorization method, preferably,
(1) In the activated sludge method, the sludge sludge flowing out from the aeration tank is solid-liquid separated, the concentrated sludge is solubilized by ozone oxidation, the solubilized sludge is solid-liquid separated, and the concentrated sludge is returned to the aeration tank. A flocculant is added to the separation liquid to remove phosphorus and COD.
(2) In the nitrification and denitrification method, slurry sludge that has passed through the denitrification tank and nitrification tank is solid-liquid separated, the concentrated sludge is solubilized by ozone oxidation, the solubilized sludge is separated into solid and liquid, and the concentrated sludge is denitrogenated. It returns to a tank and a flocculant is added to the separated liquid to remove phosphorus and COD.
(3) In the biological dephosphorization method, the anaerobic tank for dephosphorization, followed by the slurry sludge that passed through the aerobic tank is solid-liquid separated, the concentrated sludge is solubilized by ozone oxidation, and the solubilized sludge is solid-liquid separated. The concentrated sludge is returned to the anaerobic tank, and a flocculant is added to the separated liquid to remove phosphorus and COD.
As a result of performing the biological treatment method of (1) to (3) above,
(1) Surplus sludge is hardly generated from the treatment process.
(2) The quality of treated water (especially phosphorus, COD) is not deteriorated.
An excellent effect is obtained.
In addition, in the above biological treatment methods (1) to (3), the solubilized sludge is not subjected to solid-liquid separation, but a coagulant is added and coagulated to remove phosphorus and COD from the solubilized sludge. By the method of returning the flocculated separation liquid to the treatment system, excess sludge can be reduced, and biological treatment can be performed without deteriorating the quality of the treated water.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an example of a biological treatment flow of organic sewage of the present invention by an activated sludge method.
FIG. 2 is an explanatory diagram showing an example of a biological treatment flow of organic wastewater according to the present invention by a nitrification denitrification method.
FIG. 3 is an explanatory diagram showing an example of a biological treatment flow of the organic wastewater of the present invention by a biological dephosphorization method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1
24 Return sludge 25 Transfer sludge 26 Solubilized sludge 27 Separation liquid 28 Concentrated solubilized sludge 30 Anaerobic tank 31 Aerobic tank 32 Precipitation tank 33 Separation liquid (treated water)
34
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26025395A JP3672117B2 (en) | 1995-10-06 | 1995-10-06 | Organic wastewater treatment method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26025395A JP3672117B2 (en) | 1995-10-06 | 1995-10-06 | Organic wastewater treatment method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0999292A JPH0999292A (en) | 1997-04-15 |
JP3672117B2 true JP3672117B2 (en) | 2005-07-13 |
Family
ID=17345485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26025395A Expired - Fee Related JP3672117B2 (en) | 1995-10-06 | 1995-10-06 | Organic wastewater treatment method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3672117B2 (en) |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3787745B2 (en) * | 1999-01-18 | 2006-06-21 | 株式会社荏原製作所 | Method and apparatus for treating organic sewage containing endocrine disrupting substance or carcinogenic substance |
JP2000254683A (en) * | 1999-03-09 | 2000-09-19 | Yaskawa Electric Corp | Method for controlling supply of excess sludge to sewage treatment facility and biological reaction vessel |
JP4124902B2 (en) * | 1999-03-15 | 2008-07-23 | 前澤工業株式会社 | Wastewater treatment equipment |
JP2000296399A (en) * | 1999-04-13 | 2000-10-24 | Maezawa Ind Inc | Waste water treating apparatus |
JP3919999B2 (en) * | 2000-02-29 | 2007-05-30 | 株式会社荏原製作所 | Organic wastewater treatment method and apparatus |
JP3693320B2 (en) * | 2000-09-06 | 2005-09-07 | 株式会社荏原製作所 | Method and apparatus for methane fermentation treatment of organic waste |
JP4680403B2 (en) * | 2001-03-09 | 2011-05-11 | 住友重機械エンバイロメント株式会社 | Wastewater treatment method and apparatus |
JP2002320992A (en) * | 2001-04-25 | 2002-11-05 | Ebara Corp | Method for treating organic waste water and equipment therefor |
JP2002361278A (en) * | 2001-06-12 | 2002-12-17 | Hitachi Kiden Kogyo Ltd | Method for removing phosphorus in sludge |
JP2003047988A (en) * | 2001-08-03 | 2003-02-18 | Ebara Corp | Method and apparatus for treating organic polluted water |
JP2003071487A (en) * | 2001-08-30 | 2003-03-11 | Ebara Corp | Method and apparatus for treating organic wastewater |
WO2003062154A1 (en) * | 2002-01-18 | 2003-07-31 | Sumitomo Precision Products Co., Ltd | Method of treating waste water |
JP2003211178A (en) * | 2002-01-25 | 2003-07-29 | Hitachi Kiden Kogyo Ltd | Sludge treatment method |
JP3954917B2 (en) * | 2002-07-12 | 2007-08-08 | 株式会社日立プラントテクノロジー | Sludge solubilization and phosphorus recovery method |
FR2844788A1 (en) * | 2002-09-25 | 2004-03-26 | Ondeo Degremont | Reducing sludge production in wastewater treatment plants comprises using separate means dedicated to sludge reduction and phosphorus precipitation |
FR2844787A1 (en) * | 2002-09-25 | 2004-03-26 | Ondeo Degremont | Reducing sludge production in wastewater treatment plants comprises using separate means dedicated to sludge reduction and phosphorus precipitation |
JP2004188380A (en) * | 2002-12-13 | 2004-07-08 | Hitachi Metals Ltd | Method for recovering phosphorus from organic wastewater |
JP4693337B2 (en) * | 2003-04-24 | 2011-06-01 | 三菱電機株式会社 | Method and apparatus for treating organic waste liquid |
JP4266329B2 (en) * | 2003-06-20 | 2009-05-20 | 三菱電機株式会社 | Organic waste liquid processing method and processing apparatus |
JP4632397B2 (en) * | 2003-08-26 | 2011-02-16 | アタカ大機株式会社 | Sewage treatment method and apparatus |
JP2005305253A (en) * | 2004-04-20 | 2005-11-04 | Hitachi Kiden Kogyo Ltd | Treatment method for sludge |
CN105668922A (en) * | 2016-01-14 | 2016-06-15 | 常州大学 | High-concentration polyester resin wastewater treatment equipment |
JP6877255B2 (en) * | 2017-06-14 | 2021-05-26 | 三菱電機株式会社 | Wastewater treatment system and wastewater treatment method |
-
1995
- 1995-10-06 JP JP26025395A patent/JP3672117B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0999292A (en) | 1997-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3672117B2 (en) | Organic wastewater treatment method and apparatus | |
JP3172965B2 (en) | Sewage treatment method | |
JP3473328B2 (en) | Biological dephosphorization equipment | |
JP3368938B2 (en) | Wastewater treatment method and apparatus | |
JP2004033897A (en) | Flocculation method of excretion-containing wastewater, flocculation equipment therefor, composting system equipped therewith | |
CN110902967A (en) | Wastewater treatment method and wastewater treatment system based on sequencing batch membrane biological reaction | |
JP3449862B2 (en) | Advanced purification method for organic wastewater | |
JPH07163995A (en) | Biological treatment of organic sewage and device therefor | |
JP3700938B2 (en) | Method and apparatus for treating combined sewage in rainy weather | |
JP2000093992A (en) | Wastewater treatment system | |
JP3483081B2 (en) | Organic wastewater treatment method and treatment device | |
JP2002316192A (en) | Method and apparatus for treating organic foul water | |
JP3311925B2 (en) | Organic wastewater treatment method | |
JP2000107797A (en) | Purification method and apparatus | |
JP2002316191A (en) | Method and apparatus for treating organic foul water | |
JP2003071487A (en) | Method and apparatus for treating organic wastewater | |
JPH11319889A (en) | Treatment of selenium-containing waste water and device therefor | |
JPH0661552B2 (en) | Organic wastewater treatment method | |
JP3400622B2 (en) | Method and apparatus for treating organic sewage | |
JP2001179284A (en) | Method for dephosphorizing excretion wastewater | |
CN211712879U (en) | Wastewater treatment system based on sequencing batch membrane bioreaction | |
JP3835610B2 (en) | Wastewater treatment method and apparatus | |
JPH0459959B2 (en) | ||
JP3392295B2 (en) | Method and apparatus for treating organic sewage | |
JPH10249376A (en) | Treatment of organic waste water such as sewage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050112 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050311 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050413 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050414 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090428 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100428 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100428 Year of fee payment: 5 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100428 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110428 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120428 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130428 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |