JP2002205077A - Method and apparatus for treating organic sewage - Google Patents

Method and apparatus for treating organic sewage

Info

Publication number
JP2002205077A
JP2002205077A JP2001000634A JP2001000634A JP2002205077A JP 2002205077 A JP2002205077 A JP 2002205077A JP 2001000634 A JP2001000634 A JP 2001000634A JP 2001000634 A JP2001000634 A JP 2001000634A JP 2002205077 A JP2002205077 A JP 2002205077A
Authority
JP
Japan
Prior art keywords
phosphorus
organic
aluminum hydroxide
organic wastewater
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001000634A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001000634A priority Critical patent/JP2002205077A/en
Publication of JP2002205077A publication Critical patent/JP2002205077A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating organic dirty water, by which phosphorus can be recovered as valuable resources, in which difficult-to-dehydrate sludge to be obtained by flocculation and settlement is not produced and which is excellent in phosphorus removing speed and phosphorus removing effect. SOLUTION: This method for treating the organic dirty water comprises a step to flocculate/separate SS in the organic dirty water by adding a cationic or amphoteric macromolecular flocculating agent, a step to subject the separated SS to anaerobic digestion treatment, a phosphorus removing step to adsorb/remove phosphorus by adding fine particles of iron hydroxide and/or aluminum hydroxide and the macromolecular flocculating agent to the SS-removed organic water and making the organic water thus prepared pass upward through a slurry-blanketed flocculating and settling unit in which a fluidized bed is formed, a step to subject the phosphorus- adsorbed/removed treated water to biological treatment, a step to desorb the phosphorus adsorbed on the iron hydroxide or the aluminum hydroxide contained in the slurry discharged from the flocculating and settling unit by making the slurry alkaline and recycle the phosphorus-desorbed iron hydroxide or the aluminum hydroxide to the phosphorus removing step and a step to recover phosphorus as HAP or MAP from the liquid containing the desorbed phosphorus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機性汚水の新規
な処理方法及び装置に関し、特に有機性汚水からリンを
充分回収し、かつ余剰汚泥の発生が少ない優れた有機性
汚水の処理方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method and apparatus for treating organic sewage, and more particularly to an excellent method for treating organic sewage, which sufficiently recovers phosphorus from organic sewage and generates little excess sludge. Related to the device.

【0002】[0002]

【従来の技術】従来の有機性汚水処理方法の多くは、有
機性汚水を最初沈殿池に流入させ、懸濁物質(SS)を
ある程度(40%程度)沈殿除去させた後、活性汚泥法
により処理するという処理法が多く採られている。最初
沈殿池で沈殿した汚泥は嫌気性消化工程に供給され、消
化処理を経た消化汚泥が脱水処理され、得られた脱水汚
泥は、別途処理される。この従来の処理方法は、図2に
示すように、有機性汚水1に凝集剤を添加せずに最初沈
殿池23に流入させて単純に沈殿させ、最初沈殿池23
からの有機性汚水1を活性汚泥曝気槽25に送り、無機
凝集剤26を添加して生物処理すると同時にSS分を凝
集させる。活性汚泥曝気槽25からの生物処理水27を
最終沈殿槽28に送り、上澄水を処理水11として得
る。最終沈殿槽28での沈殿汚泥は大部分が返送汚泥1
2として活性汚泥曝気槽25に返送し、残りは余剰汚泥
29として脱水機30へ送り、脱水ケーキとして系外へ
出す。最初沈殿池23で沈殿した沈殿汚泥24は嫌気性
処理槽8で嫌気性処理をする。嫌気性処理槽8で分離し
た液は脱離液8bとして有機性汚水1に混合する。嫌気
性処理槽8で得られる消化汚泥8cは脱水機13へ送
る。この方式では、最初沈殿池のSS除去率は40%程
度に過ぎないので、嫌気性消化工程への汚泥供給量が非
常に少ない。
2. Description of the Related Art In many conventional organic wastewater treatment methods, organic wastewater is first flowed into a sedimentation basin, and suspended substances (SS) are settled and removed to some extent (about 40%). Many processing methods of processing are employed. The sludge initially settled in the sedimentation basin is supplied to the anaerobic digestion step, the digested sludge that has undergone the digestion treatment is subjected to dehydration treatment, and the obtained dewatered sludge is separately treated. In this conventional treatment method, as shown in FIG. 2, the organic sewage 1 is allowed to flow into the first sedimentation basin 23 without adding a coagulant and simply settled thereinto.
Is sent to an activated sludge aeration tank 25, and an inorganic coagulant 26 is added for biological treatment, and at the same time, the SS content is coagulated. The biologically treated water 27 from the activated sludge aeration tank 25 is sent to the final settling tank 28, and the supernatant water is obtained as the treated water 11. Most of the settled sludge in the final settling tank 28 is returned sludge 1
It is returned to the activated sludge aeration tank 25 as 2 and the remainder is sent to the dehydrator 30 as surplus sludge 29 and is discharged out of the system as a dewatered cake. The settled sludge 24 that has first settled in the settling basin 23 is subjected to anaerobic treatment in the anaerobic treatment tank 8. The liquid separated in the anaerobic treatment tank 8 is mixed with the organic wastewater 1 as a desorbing liquid 8b. The digested sludge 8c obtained in the anaerobic treatment tank 8 is sent to the dehydrator 13. In this method, since the SS removal rate of the first settling basin is only about 40%, the amount of sludge supplied to the anaerobic digestion process is very small.

【0003】しかしながら、このような上記従来の代表
的な有機性汚水処理法にあっては、以下のような、なお
解決を要する大きな問題点が残されている。 1)リンが資源として回収できない。 2)嫌気性消化工程におけるガスの発生量が少ないの
で、エネルギー回収量が少ない。 3)活性汚泥処理工程からの難脱水性の余剰汚泥の発生
量が多い。 4)リンの除去率が低いため、有機性汚水処理水が放流
される河川等の公共用水域の富栄養化を招く。 5)塩化第2鉄、硫酸アルミニウム等の無機凝集剤を活
性汚泥法の曝気槽に添加すればリンは効果的に除去され
るが、難脱水性の無機汚泥が大量に発生し、その処理処
分を極めて困難にする。
[0003] However, in the above-mentioned conventional typical organic sewage treatment method, the following major problems still need to be solved. 1) Phosphorus cannot be recovered as a resource. 2) Since the amount of gas generated in the anaerobic digestion process is small, the amount of energy recovered is small. 3) A large amount of hardly dewaterable surplus sludge is generated from the activated sludge treatment process. 4) The low removal rate of phosphorus causes eutrophication of public water bodies such as rivers from which organic wastewater is discharged. 5) Phosphorus can be effectively removed by adding an inorganic flocculant such as ferric chloride and aluminum sulfate to the activated sludge aeration tank, but a large amount of hardly dewaterable inorganic sludge is generated and disposed of. Make it extremely difficult.

【0004】リンの除去方法(脱リン方法)のうち、代
表的な処理方法として凝集沈殿法が挙げられる。従来の
凝集沈殿法は、リン含有水に対して硫酸アルミニウム、
ポリ塩化アルミニウム、塩化第2鉄およびポリ硫酸鉄等
の無機凝集剤を添加し、撹拌することによって、リン酸
アルミニウム、もしくはリン酸第2鉄のフロック状沈殿
を生成させてリンを除去する方法である。凝集沈殿法
は、操作が簡便であり、維持管理性においても優れてお
り、実用性が高いが、従来の凝集沈殿法にあっては、な
お、以下に記載するような致命的欠点を有する。
[0004] Among the phosphorus removal methods (phosphorus removal methods), a typical treatment method is an aggregation precipitation method. Conventional coagulation and precipitation methods use aluminum sulfate,
By adding an inorganic flocculant such as polyaluminum chloride, ferric chloride and polyferrous sulfate and stirring, a floc-like precipitate of aluminum phosphate or ferric phosphate is formed to remove phosphorus. is there. The coagulation-sedimentation method is simple in operation, excellent in maintenance and controllability, and highly practical, but the conventional coagulation-sedimentation method still has the following fatal drawbacks.

【0005】すなわち、多量に生成するリン酸アルミニ
ウムもしくはリン酸第2鉄のフロック状沈殿(汚泥と呼
ばれる)は、その沈降濃縮性及び濃縮脱水性が極めて悪
いということである。このような脱水性の劣る汚泥は、
処理・処分に際して著しい不利益をもたらし、このた
め、近年では、粒状の吸着材をカラムに充填して処理す
る吸着脱リン法や晶析脱リン法が検討されているが、こ
れらの脱リン法は何れも以下に記載するような欠点を有
するため、凝集沈殿法に比べて実用性がかなり劣る技術
として評価されている。即ち、 1.吸着剤(活性アルミナ、酸化チタン、酸化ジルコニ
ウム等の粒状物)自体の価格が高価であること。 2.晶析脱リン法は、脱炭酸工程を必要とする等、プロ
セス自体が煩雑であり、リン晶析材の活性劣化も招き易
いこと。
[0005] That is, floc-like precipitation of aluminum phosphate or ferric phosphate (referred to as sludge) generated in a large amount is extremely poor in sedimentation concentration and concentration dehydration. Such sludge with poor dehydration properties
It brings significant disadvantages in the treatment and disposal. For this reason, in recent years, adsorption dephosphorization and crystallization dephosphorization methods in which granular adsorbents are packed in columns and treated are being studied. All have the following drawbacks, and are evaluated as a technique that is considerably less practical than the coagulation sedimentation method. That is, 1. The price of the adsorbent (granular substances such as activated alumina, titanium oxide, and zirconium oxide) itself is expensive. 2. In the crystallization dephosphorization method, the process itself is complicated, for example, a decarboxylation step is required, and the activity of the phosphorus crystallization material is likely to be deteriorated.

【0006】[0006]

【発明が解決しようとする課題】本発明は、前記、従来
技術において認められる諸欠点を完全に解決することを
課題にするものであり、具体的には、以下に列記する諸
事項のすべてを克服できる新技術を提供すること目的に
する。すなわち、 1)リンが有価資源として回収できること。 2)難濃縮性、難脱水性の凝集沈殿汚泥が生成しないこ
と。 3)リンの除去速度が大きいこと。 4)リンの除去効果が優れていること。 5)リンの回収効率が優れていること。 6)嫌気性消化工程からのメタンガス発生量が増加する
こと。 7)活性汚泥処理工程の硝化が進むこと。 8)活性汚泥処理工程から発生する余剰活性汚泥量を減
少できること。
SUMMARY OF THE INVENTION An object of the present invention is to completely solve the above-mentioned drawbacks recognized in the prior art. Specifically, all of the matters listed below are described. The aim is to provide new technologies that can be overcome. 1) Phosphorus can be recovered as a valuable resource. 2) No hard-to-concentrate and hard-to-dehydrate flocculated sludge is not generated. 3) The removal rate of phosphorus is high. 4) The phosphorus removal effect is excellent. 5) The recovery efficiency of phosphorus is excellent. 6) The amount of methane gas generated from the anaerobic digestion process increases. 7) Nitrification in the activated sludge treatment process proceeds. 8) The amount of excess activated sludge generated from the activated sludge treatment step can be reduced.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、前記諸事項について鋭意研究した結果、以下の知見
を得て本発明に達した。即ち、本発明者の研究による
と、水酸化第2鉄や水酸化アルミニウム(ここで、水酸
化第2鉄や水酸化アルミニウムは、水和酸化第2鉄や水
和酸化アルミニウムを含む総称として用いる)のそれぞ
れ単独又はそれらの混合物からなる粒子含有スラリーを
後述の方法で製造しておき、このスラリーをポリマで凝
集させて流動層(ブランケット)の状態にさせながら、
有機性汚水のカチオンポリマー凝集沈殿処理水を接触さ
せると、原水からリンを速やかに、且、高い除去率で除
去できることが判明した。上記の研究結果により得られ
た各種の知見に基づいて、本発明に到達した。
Means for Solving the Problems In order to achieve the above object, as a result of diligent research on the above-mentioned matters, the present inventors have obtained the following findings and reached the present invention. That is, according to the study of the present inventors, ferric hydroxide and aluminum hydroxide (here, ferric hydroxide and aluminum hydroxide are used as a generic term including hydrated ferric oxide and hydrated aluminum oxide A) or a particle-containing slurry composed of a mixture thereof is prepared by the method described below, and the slurry is agglomerated with a polymer to form a fluidized bed (blanket).
It has been found that when organic sewage water is brought into contact with cationic polymer coagulation sedimentation water, phosphorus can be rapidly removed from raw water at a high removal rate. The present invention has been achieved based on various findings obtained from the above research results.

【0008】本発明は、以下の手段により前記の課題を
解決した。 (1)有機性汚水にカチオン性又は両性高分子凝集剤を
添加して有機性汚水中のSSを凝集させ、固液分離によ
り凝集したSSを除去すると共に、分離したSSを嫌気
性消化処理し、一方、SSを除去した有機性汚水に水酸
化鉄及び/又は水酸化アルミニウム微粒子と高分子凝集
剤とを添加し、スラリーブランケット型凝集沈殿装置内
を上向流で通過させることにより、凝集粒子の流動層を
形成させるリン除去工程で、リンを吸着除去し、続い
て、該リンを吸着除去した処理水を生物処理し、前記凝
集沈殿装置からのリン吸着水酸化鉄及び/又は水酸化ア
ルミニウム含有スラリをアルカリ性にしてリンを脱着さ
せ、リン脱着水酸化鉄及び/又は水酸化アルミニウムを
前記リン除去工程にリサイクルし、リン脱着液からリン
をハイドロキシアパタイト又はマグネシウムアパタイト
として回収することを特徴とする有機性汚水の処理方
法。
The present invention has solved the above-mentioned problems by the following means. (1) A cationic or amphoteric polymer flocculant is added to the organic wastewater to aggregate the SS in the organic wastewater, the SS aggregated by solid-liquid separation is removed, and the separated SS is subjected to anaerobic digestion treatment. On the other hand, iron hydroxide and / or aluminum hydroxide fine particles and a polymer flocculant are added to the organic wastewater from which the SS has been removed, and the flocculant is passed through a slurry blanket-type flocculating and settling apparatus in an upward flow. In the phosphorus removal step of forming a fluidized bed, phosphorus is adsorbed and removed, and then the treated water from which the phosphorus is adsorbed and removed is biologically treated, and the phosphorus-adsorbed iron hydroxide and / or aluminum hydroxide from the coagulation and sedimentation apparatus is used. Phosphorus is desorbed by making the contained slurry alkaline, phosphorus desorbed iron hydroxide and / or aluminum hydroxide are recycled to the phosphorus removing step, and phosphorus is desorbed from the phosphorus desorbing solution by hydroxyapa. Method of treating organic wastewater and recovering as site or magnesium apatite.

【0009】(2)分離したSSの嫌気性消化処理で生
じた消化脱離液を、前記リン除去工程における水酸化鉄
及び/又はアルミニウム添加段階の前の有機性汚水に供
給することを特徴とする前記(1)記載の有機性汚水の
処理方法。 (3)嫌気性消化汚泥の脱水分離液を、前記リン除去工
程における水酸化鉄及び/又はアルミニウム添加段階の
前の有機性汚水に供給することを特徴とする有機性汚水
の処理方法。 (4)流入有機性汚水又はカチオン性又は両性高分子凝
集剤添加凝集分離処理水の一部を分岐して生物工程に供
給することを特徴とする有機性汚水処理方法。
(2) The digested and desorbed liquid produced in the anaerobic digestion treatment of the separated SS is supplied to organic wastewater before the step of adding iron hydroxide and / or aluminum in the phosphorus removal step. The method for treating organic sewage according to (1) above. (3) A method for treating organic sewage, comprising supplying a dewatered separated solution of anaerobic digested sludge to organic sewage before the step of adding iron hydroxide and / or aluminum in the phosphorus removal step. (4) An organic sewage treatment method characterized in that a part of inflowing organic sewage or water treated by addition of a cationic or amphoteric polymer coagulant is separated and supplied to a biological process.

【0010】(5)カチオン性又は両性高分子凝集剤を
添加した有機性汚水を導入して有機性汚水中のSSを凝
集分離する凝集分離槽、前記凝集分離槽で分離したSS
を嫌気性消化処理する嫌気性消化装置、SSを除去した
有機性汚水に水酸化鉄及び/又は水酸化アルミニウム微
粒子と高分子凝集剤とを添加して上向流で導入し、凝集
粒子の流動層を形成しリンを吸着除去するスラリーブラ
ンケット型凝集沈殿装置、該リンを吸着除去した処理水
を導入して生物処理する生物処理装置、前記凝集沈殿装
置からのリン吸着水酸化鉄及び/又は水酸化アルミニウ
ム含有スラリをアルカリ性にしてリンを脱着させるリン
脱着装置、前記リン脱着装置からリン脱着水酸化鉄及び
/又は水酸化アルミニウムを前記凝集沈殿装置にリサイ
クルする循環導管、及び前記リン脱着装置からのリン脱
着液からリンをハイドロキシアパタイト又はマグネシウ
ムアパタイトとして回収するリン回収装置を有すること
を特徴とする有機性汚水の処理装置。
(5) A flocculation / separation tank for flocculating and separating SS in organic sewage by introducing organic sewage to which a cationic or amphoteric polymer flocculant is added, and the SS separated in the flocculation / separation tank.
Anaerobic digester for anaerobic digestion, iron hydroxide and / or aluminum hydroxide fine particles and a polymer flocculant are added to organic wastewater from which SS has been removed, and the mixture is introduced in an upward flow to flow the flocculated particles. A slurry blanket-type coagulation / sedimentation apparatus for forming a layer and adsorbing and removing phosphorus, a biological treatment apparatus for performing biological treatment by introducing treated water from which the phosphorus has been adsorbed and removed, and phosphorus-adsorbed iron hydroxide and / or water from the coagulation / sedimentation apparatus A phosphorus desorption device for debasing phosphorus by making the aluminum oxide-containing slurry alkaline, a circulation conduit for recycling phosphorus desorbed iron hydroxide and / or aluminum hydroxide from the phosphorus desorption device to the coagulation and sedimentation device, and a phosphorus desorption device. Organic having a phosphorus recovery device for recovering phosphorus as hydroxyapatite or magnesium apatite from a phosphorus desorption solution Sewage processing equipment.

【0011】本発明に使用する水酸化鉄及び/又は水酸
化アルミニウムスラリーは、例えば、下記のようにして
調製することができる。すなわち、鉄塩及び/又はアル
ミニウム塩の酸性溶液にアルカリ剤を添加して、該鉄
塩、アルミニウム塩の溶液のpH値を高めて、生成する
水酸化第2鉄、水酸化アルミニウムからなる粒子を含有
するスラリーを調製する方法、あるいは、鉄塩、アルミ
ニウム塩の酸性溶液にマグネシウム系又はカルシウム系
のアルカリ剤を添加して、該鉄塩、アルミニウム塩の溶
液のpH値を高めて、生成する水酸化第2鉄、水酸化ア
ルミニウムからなる粒子により、沈降濃縮性が良好なス
ラリーを調製する方法等が好ましい。
The slurry of iron hydroxide and / or aluminum hydroxide used in the present invention can be prepared, for example, as follows. That is, an alkaline agent is added to an acidic solution of an iron salt and / or an aluminum salt to increase the pH value of the solution of the iron salt and the aluminum salt, and the resulting ferric hydroxide and aluminum hydroxide particles are formed. A method of preparing a slurry containing, or adding a magnesium-based or calcium-based alkaline agent to an acidic solution of an iron salt or an aluminum salt to increase the pH value of the solution of the iron salt or the aluminum salt, thereby forming water to be produced. A method of preparing a slurry having good sedimentation and concentration properties by using particles composed of ferric oxide and aluminum hydroxide is preferable.

【0012】従来の凝集沈殿法においては、リン含有
水、例えば有機性汚水処理水に対して、塩化第2鉄、ポ
リ硫酸鉄、硫酸アルミニウム、ポリ塩化アルミニウム等
の無機凝集剤を直接添加して撹拌することにより、急速
にリン酸第2鉄もしくはリン酸アルミニウムのフロック
状沈殿を生成させる。この場合、下記の様な沈殿反応、
即ち、 M3++PO4 3-→ MPO4 ↓・・・・・(1) M3++3OH- → M (OH)3 ↓・・・(2) (上記の反応式で、M3+はFe3+又はAl3+を表わす)
の沈殿生成反応が生じ、リンが除去されると同時に、極
めて難濃縮性で、かつ又、難脱水性のMPO4やM (O
H)3 の沈殿が付随して生成する不都合があった。
In the conventional coagulation precipitation method, an inorganic coagulant such as ferric chloride, polyiron sulfate, aluminum sulfate, or polyaluminum chloride is directly added to phosphorus-containing water, for example, treated sewage water. By stirring, a floc-like precipitate of ferric phosphate or aluminum phosphate is rapidly formed. In this case, the following precipitation reaction,
In other words, M 3+ + PO 4 3- → MPO 4 ↓ ····· (1) M 3+ + 3OH - → M (OH) 3 ↓ ··· (2) ( in the above reaction formula, M 3+ is (Represents Fe 3+ or Al 3+ )
A precipitate formation reaction occurs and phosphorus is removed, and at the same time, MPO 4 and M (O
H) There was the inconvenience that precipitation of 3 was accompanied.

【0013】これに対し、本発明にあっては、鉄塩又は
アルミニウム塩の酸性水溶液に前もって、アルカリ剤を
添加するので、スラリーを調製する槽内では、上記反応
式(2)に示す反応(低pHの環境から中性pHに変化
していく環境下で進行するために、沈降濃縮脱水性の良
いM (OH)3 の沈殿を再現性よく生成させることが可
能になる。また、アルカリ剤として、NaOH以外のM
g(OH)2 、MgO、Ca(OH)2 、CaO、Ca
CO3 等のアルカリを用いると、さらに沈降濃縮脱水性
の良好なMg(OH)3 の沈殿を生成させることができ
る。本発明の水酸化第2鉄スラリー、水酸化アルミニウ
ムスラリーを高分子凝集剤で凝集させて生成させたスラ
リーブランケットによるリンの吸着速度は、活性アルミ
ナ等の粒状リン吸着剤(粒径3〜5mm程度)をカラム
に充填して、リン含有水を通水し、該粒状リン吸着剤に
よりリンを吸着する速度に比べて著しく大きい。
On the other hand, according to the present invention, since an alkaline agent is added to an acidic aqueous solution of an iron salt or an aluminum salt in advance, the reaction represented by the above reaction formula (2) is carried out in a tank for preparing a slurry. Since the process proceeds in an environment in which the environment changes from a low pH to a neutral pH, it is possible to reproducibly form a precipitate of M (OH) 3 having good sedimentation, concentration, and dehydration properties. As M other than NaOH
g (OH) 2 , MgO, Ca (OH) 2 , CaO, Ca
When an alkali such as CO 3 is used, a precipitate of Mg (OH) 3 having better sedimentation, concentration, and dehydration properties can be generated. The adsorption rate of phosphorus by a slurry blanket formed by aggregating the ferric hydroxide slurry and aluminum hydroxide slurry of the present invention with a polymer flocculant is a granular phosphorus adsorbent such as activated alumina (particle diameter of about 3 to 5 mm). ) Is packed in a column, the phosphorus-containing water is passed through, and the rate of adsorbing phosphorus by the particulate phosphorus adsorbent is significantly higher.

【0014】本発明の水酸化鉄微粒子にポリマーを添加
して、スラリーブランケット層を形成させて原水と接触
させると、大きな上昇流速においてスラリー濃度を顕著
に高く維持することが出来るため、リンの吸着除去速度
が顕著に大きくなる。リンが原水から除去されて高濃度
に濃縮されたスラリーに対して、少量のNaOHを添加
し、pH値を11以上(好ましくはpH12〜12.
5)にすると、吸着されていたリンが容易に脱着される
ので、スラリーの再生が容易で、再生コストも安価であ
る。
[0014] When a polymer is added to the iron hydroxide fine particles of the present invention to form a slurry blanket layer and come into contact with raw water, the slurry concentration can be kept remarkably high at a large rising flow rate. The removal rate is significantly increased. A small amount of NaOH is added to the highly concentrated slurry in which phosphorus has been removed from the raw water to adjust the pH value to 11 or more (preferably pH 12 to 12.
In the case of (5), the adsorbed phosphorus is easily desorbed, so that the slurry can be easily regenerated and the regeneration cost is low.

【0015】以下に述べる本発明の具体的態様から明ら
かなように、前記した特徴によって、リンを含有する原
水からリンを永続的に除去・回収することが可能とな
る。従って、本発明のリン除去方法の工程からは、凝集
沈殿法における汚泥状の廃棄物が一切発生せず、また、
リン吸着剤の交換・補給も不要になる。その上、本発明
のリン除去方法の工程によって得られた固液分離濃縮水
に含まれるリンの濃度は、極めて高濃度であり、その
上、純度も高いので、化学的方法により、これら含有さ
れるリンをリンの化合物の形態にして、極めて容易に回
収することができる。そこで用い得るリン回収の化学的
方法を例示すると、Ca(OH)2 、CaOを添加し
て、リン酸カルシウム沈殿として回収する方法、M
2+,NH4 + を添加してリン酸マグネシウムアンモン
(NH4 MgPO4 )として回収する方法等が挙げられ
る。
As will be apparent from the specific embodiments of the present invention described below, the above-mentioned features make it possible to permanently remove and recover phosphorus from raw water containing phosphorus. Therefore, no sludge-like waste is generated in the coagulation sedimentation method from the step of the phosphorus removal method of the present invention, and
Replacement and replenishment of the phosphorus adsorbent becomes unnecessary. In addition, the concentration of phosphorus contained in the solid-liquid separation concentrated water obtained by the step of the phosphorus removal method of the present invention is extremely high, and furthermore, the purity is high. The phosphorus in the form of a phosphorus compound can be recovered very easily. Examples of the chemical method of phosphorus recovery that can be used therefor include a method of adding Ca (OH) 2 and CaO and recovering as calcium phosphate precipitate.
A method of adding g 2+ and NH 4 + to recover as ammonium ammonium phosphate (NH 4 MgPO 4 ).

【0016】[0016]

【発明の実施の形態】以下において、図1を参照して本
発明の実施態様を具体的に説明する。下水処理場に流入
する有機性汚水(例えば下水)1に、カチオンポリマー
又は両性ポリマー2(アニオン、ノニオンポリマーは効
果が少ない)を添加して、図示しない撹拌槽内で数分間
撹拌すると、速やかに有機性汚水中のSSが凝集して粒
径の大なフロックが形成するので、これを凝集分離槽
3、又は粗大粒径濾材が充填された濾過槽に供給して、
凝集フロックを分離することによって、有機性汚水1の
SSの95%以上が除去され、SSが数mg/リットル
以下の分離水4が流出する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to FIG. When a cationic polymer or amphoteric polymer 2 (anion and nonionic polymer are less effective) is added to an organic wastewater (for example, sewage) 1 flowing into a sewage treatment plant and stirred for several minutes in a stirring tank (not shown), Since SS in the organic sewage aggregates to form flocs having a large particle diameter, the floc is supplied to the aggregation separation tank 3 or a filtration tank filled with a coarse-grained filter medium,
By separating the flocculated floc, 95% or more of the SS of the organic wastewater 1 is removed, and the separated water 4 having an SS of several mg / liter or less flows out.

【0017】このような除濁処理によって、有機性汚水
1中の有機性SSを高度に分離、除去し、この分離汚泥
7を嫌気性消化槽8に供給してメタン発酵させ、生成し
た消化ガス(メタンガス)8aの回収量を、従来の有機
性汚水処理方式(図2)よりも2倍以上にすることがで
きる。しかして、カチオン又は両性ポリマー2による凝
集分離処理の処理水4に、水酸化鉄微粒子(水酸化アル
ミニウムでも良いが、記述に煩雑を避けるため、以下に
おいては水酸化鉄にて代表させる)とポリマー(高分子
凝集剤)を添加し、スラリーブランケット型凝集沈殿装
置5に供給する。なお、前記水酸化鉄微粒子は、後記沈
殿分離部16から循環されるものを添加する。
By such a turbidity treatment, organic SS in the organic sewage 1 is highly separated and removed, and the separated sludge 7 is supplied to an anaerobic digestion tank 8 to be subjected to methane fermentation to produce digested gas. The recovery amount of (methane gas) 8a can be twice or more as compared with the conventional organic sewage treatment method (FIG. 2). The treated water 4 of the coagulation / separation treatment with the cation or the amphoteric polymer 2 contains fine particles of iron hydroxide (aluminum hydroxide may be used, but for the sake of simplicity of description, it is represented by iron hydroxide in the following). (Polymer coagulant) is added and supplied to the slurry blanket type coagulation sedimentation apparatus 5. The iron hydroxide fine particles to be circulated from the sedimentation / separation unit 16 described later are added.

【0018】添加するポリマーは、アニオンポリマー、
ノニオンポリマーが水酸化鉄を凝集させる作用が最も大
きいので、これらを用いることが好ましいが、カチオ
ン、両性ポリマーを採用しても何ら差し支えはない。前
記凝集沈殿装置において、水酸化鉄微粒子はポリマー
(種類は任意)の添加によって強烈に凝集し、沈降性が
極めて大なペレット状フロックを形成し、固形物濃度が
極めて高い(30g/リットル程度)の水酸化鉄凝集粒
子のブランケット(流動層)を形成する。この結果、有
機性汚水中のリン酸イオンは、この高濃度ブランケット
を構成する水酸化鉄凝集粒子により、迅速に吸着除去さ
れることになり、例えば、有機性汚水1のリン濃度が3
mg/リットルの場合、凝集沈殿装置5のブランケット
層の通過時間が5分と短時間でリンが90%以上除去さ
れる。
The polymer to be added is an anionic polymer,
Since the nonionic polymer has the greatest effect of aggregating iron hydroxide, it is preferable to use these, but it is no problem to use a cationic or amphoteric polymer. In the coagulation sedimentation apparatus, the iron hydroxide fine particles are strongly agglomerated by the addition of a polymer (arbitrary type), form pelletized flocs having extremely large sedimentation properties, and have a very high solids concentration (about 30 g / liter). To form a blanket (fluidized bed) of agglomerated particles of iron hydroxide. As a result, phosphate ions in the organic sewage are quickly adsorbed and removed by the iron hydroxide aggregated particles constituting the high-concentration blanket.
In the case of mg / liter, 90% or more of phosphorus is removed in a short time of 5 minutes through the blanket layer of the coagulation / sedimentation apparatus 5.

【0019】次に、リンが除去された凝集沈殿処理水6
を生物処理槽(活性汚泥処理槽)9に供給して、前記処
理水6中のBOD、COD及び含窒素化合物等を生物学
的に分解除去する。その際、処理水6中にはリン除去工
程(凝集沈殿装置5)の流出水中のBOD、COD及び
含窒素化合物等が含まれているので、これらは前記生物
処理槽9で除かれる。前記生物処理工程としては活性汚
泥処理法や生物学的硝化脱窒素法等の任意の方法を採用
することができる。生物処処理水9aは沈殿槽10に流
入し、沈殿分離後の処理水11とし流出する。沈殿した
汚泥は返送汚泥12として、凝集沈殿処理水6に供給さ
れ、生物処理槽9に循環される。なお、嫌気性消化槽8
で生じた汚泥8cは、汚泥脱水機13に送られ、汚泥脱
水機13で得られる脱水ケーキ13aは外部に排出さ
れ、またそこで得られる脱水分離液13bは凝集分離工
程処理水4のラインに供給される。
Next, the coagulated sedimentation treated water 6 from which phosphorus has been removed
Is supplied to a biological treatment tank (activated sludge treatment tank) 9 to biologically decompose and remove BOD, COD, nitrogen-containing compounds and the like in the treated water 6. At that time, since the treated water 6 contains BOD, COD, nitrogen-containing compounds, and the like in the effluent of the phosphorus removal step (the coagulation sedimentation apparatus 5), these are removed in the biological treatment tank 9. As the biological treatment step, any method such as an activated sludge treatment method and a biological nitrification denitrification method can be adopted. The biological treatment water 9a flows into the sedimentation tank 10 and flows out as the treated water 11 after sedimentation. The settled sludge is supplied to the coagulation settling water 6 as returned sludge 12 and circulated to the biological treatment tank 9. The anaerobic digester 8
The sludge 8c generated in the above is sent to the sludge dewatering machine 13, the dewatered cake 13a obtained by the sludge dewatering machine 13 is discharged to the outside, and the dewatered separated liquid 13b obtained there is supplied to the line of the treated water 4 in the coagulation separation step. Is done.

【0020】一方、凝集沈殿装置5においてリンを吸着
した水酸化鉄のスラリ−14は、凝集沈殿装置5から適
宜排出され、水酸化鉄粒子からリンを脱着させる工程、
すなわち、リン脱着部15に送られる。リン脱着部15
にあっては、前記スラリー14にアルカリ剤18とし
て、例えばNaOH等(限定しない)を添加する。アル
カリ剤18を添加したアルカリ性スラリー18aは、図
示しない撹拌槽内に30分間程度滞留すると、吸着され
ていたリンの脱着が生じ、リンが液側に溶出する。
On the other hand, the slurry 14 of iron hydroxide to which phosphorus has been adsorbed in the coagulation and sedimentation apparatus 5 is appropriately discharged from the coagulation and sedimentation apparatus 5 to desorb phosphorus from the iron hydroxide particles.
That is, it is sent to the phosphorus attaching / detaching section 15. Phosphorous desorption part 15
In this case, for example, NaOH or the like (not limited) is added to the slurry 14 as the alkaline agent 18. When the alkaline slurry 18a to which the alkaline agent 18 is added stays in a stirring tank (not shown) for about 30 minutes, the adsorbed phosphorus is desorbed, and the phosphorus elutes to the liquid side.

【0021】次に、リンが溶出したスラリー15aは沈
殿分離部16に移行し、ここで水酸化鉄19が沈殿す
る。沈殿分離された水酸化鉄19は、リサイクルされて
凝集分離槽3の処理水4に添加される。このリサイクル
において、水酸化鉄19は、再びリン吸着力の高い水酸
化鉄微粒子としての機能を発揮する水酸化鉄19を分離
したリンを含む沈殿分離部16の分離水20は高濃度の
リン酸ナトリウムを含むアルカリ水溶液であり、これに
Ca又はMgとアンモニウムイオンを添加すると、リン
酸カルシウム(HAP)又はリン酸マグネシウムアンモ
ニウム(MAP)として晶析し沈殿してくる。以上のプ
ロセスによって、永続的に有機性汚水から凝集沈殿汚泥
を発生させることなく、リンを除去するだけではなく、
リン資源として回収し続けることが可能になる。本発明
のリンの除去、回収工程からは、凝集沈殿法において
は、不可避的に発生した汚泥が一切発生しない。
Next, the slurry 15a from which phosphorus has been eluted moves to the sedimentation / separation section 16, where the iron hydroxide 19 precipitates. The precipitated and separated iron hydroxide 19 is recycled and added to the treated water 4 in the coagulation / separation tank 3. In this recycling, the iron hydroxide 19 is again used as the iron hydroxide fine particles having a high phosphorus adsorption power. This is an alkaline aqueous solution containing sodium, and when Ca or Mg and ammonium ions are added thereto, it is crystallized and precipitated as calcium phosphate (HAP) or magnesium ammonium phosphate (MAP). By the above process, not only phosphorus is removed without generating coagulated sludge from organic wastewater permanently,
It becomes possible to continue to recover as phosphorus resources. From the phosphorus removal and recovery step of the present invention, in the coagulation sedimentation method, no unavoidable sludge is generated.

【0022】リンを吸着した水酸化鉄からリンを放出さ
せるのに添加するアルカリ剤としては、NaOH、KO
Hが好ましく、Ca(OH)2 、CaOを用いると、リ
ンがヒドロキシアパタイト、リン酸カルシウムとして固
相となり析出してしまいリンを高濃度に含有する液を取
り出せないので好ましくない。以上のプロセスによっ
て、リン含有有機性汚水からリンを永続的に除去・回収
することが可能となり、本発明の工程からは、凝集沈殿
法における汚泥状の廃棄物が一切発生せず、また、リン
吸着剤の交換も不要になる。
The alkaline agent added to release phosphorus from the iron hydroxide to which phosphorus has been adsorbed includes NaOH and KO.
H is preferable, and when Ca (OH) 2 or CaO is used, it is not preferable because phosphorus becomes a solid phase as hydroxyapatite and calcium phosphate and precipitates, and a liquid containing phosphorus at a high concentration cannot be taken out. The above process makes it possible to permanently remove and recover phosphorus from phosphorus-containing organic wastewater. From the process of the present invention, no sludge-like waste is generated in the coagulation sedimentation method. There is no need to change the adsorbent.

【0023】[0023]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明は、これらの実施例に限定されるものでは
ない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.

【0024】実施例1 SS120mg/リットル、BOD100mg/リット
ル、リン5.6mg/リットル濃度の有機性汚水(下
水)に対して本発明を適用する試験を行なった。 (SSの凝集分離)先ず、有機性汚水にDAM系カチオ
ンポリマー(エバクロースC104G;荏原製品)を3
mg/リットル添加して2分間撹拌した結果、粒径1c
m程度の大粒径フロックが生成し、沈殿速度が250m
m/minという大きな沈降性が得られた。5分間静置
後の上澄水のSSは3.6mg/リットルと少なく、有
機性汚水中のSSの97%が除去された。SS性リンが
除去されたのでリン濃度は3.2mg/リットルに減少
した。両性ポリマー(エバクロースB304;荏原製
品)を3mg/リットル注入した場合は、更に大粒径の
フロックが形成され、沈降速度は340mm/minで
あった。一方、アニオンポリマー、ノニオンポリマーを
添加して同様の処理を行なったところ、フロックの形成
は認められなかった。
Example 1 A test was conducted to apply the present invention to organic wastewater (sewage) having a concentration of 120 mg / L SS, 100 mg / L BOD, and 5.6 mg / L phosphorus. (SS Coagulation Separation) First, DAM-based cationic polymer (Evacloth C104G; EBARA product) was added to organic wastewater.
mg / liter and stirred for 2 minutes.
m large particle size floc is generated and the sedimentation speed is 250 m
A large sedimentability of m / min was obtained. The SS of the supernatant water after standing for 5 minutes was as small as 3.6 mg / liter, and 97% of the SS in the organic wastewater was removed. Since the SS phosphorus was removed, the phosphorus concentration was reduced to 3.2 mg / liter. When 3 mg / liter of the amphoteric polymer (Evacloth B304; Ebara product) was injected, flocs having a larger particle size were formed, and the sedimentation velocity was 340 mm / min. On the other hand, when the same treatment was performed by adding an anionic polymer and a nonionic polymer, formation of flocs was not recognized.

【0025】(沈殿汚泥の嫌気性消化)上記カチオンポ
リマーで凝集させた沈殿汚泥を35℃の中温消化、消化
日数30日で嫌気性消化したところ、汚泥の消化率は6
5%、消化ガス発生量は汚泥1Kg・SS当たり620
リットルであった。従って、有機性汚水1000m3
たり73m3 の消化ガスが回収できた。従来の有機性汚
水処理の最初沈殿地汚泥を嫌気性消化する場合は、有機
性汚水1000m3 当たり、消化ガスを24m3 しか回
収できなかったので、有機性汚水からのエネルギー回収
量は約3倍に増加した。
(Anaerobic digestion of settled sludge) When the settled sludge agglomerated with the above cationic polymer was digested anaerobically in 35 days at a medium temperature and digested for 30 days, the sludge digestibility was 6%.
5%, digestion gas generation amount is 620 slg / kg / SS
Liters. Therefore, 73 m 3 of digested gas could be recovered per 1000 m 3 of organic wastewater. In the case of anaerobic digestion of the first sediment sludge in the conventional organic wastewater treatment, only 24 m 3 of digestive gas can be recovered per 1000 m 3 of organic waste water, so the amount of energy recovered from organic waste water is about three times. Increased.

【0026】(凝集沈殿・リンの除去工程)次に、水酸
化鉄微粒子を上記のカチオンポリマ凝集分離水に80m
g/リットル添加し、更に、アニオン系ポリマー(エバ
クロースA153)を1mg/リットル添加し、直ちに
ブランケット型凝集沈殿槽に上昇流速200mm/mi
nの上向流で流入させた。この結果、水酸化鉄粒子は、
ポリマーによって強烈に凝集し、高濃度(SS32g/
リットル)ペレット状凝集粒子がブランケット内に形成
された。ブランケット層高さを1mに設定して運転し、
原水がブランケットを通過する時間を5分に設定した。
この結果、ブランケット層からの流出水のリン濃度を測
定したところ、0.13〜0.21mg/リットル、濁
度0.15と極めて低濃度であり、原水中のリンと添加
した水酸化鉄微粒子が高速・高度に除去できた。
(Step of Coagulation Precipitation / Phosphorus Removal) Next, the iron hydroxide fine particles were added to the above-mentioned cationic polymer coagulation separation water by 80 m.
g / l, and further, 1 mg / l of an anionic polymer (ebacrose A153) was added. Immediately, an ascending flow rate of 200 mm / mi was added to the blanket-type coagulation / sedimentation tank.
n in an upward flow. As a result, the iron hydroxide particles
Agglomerated strongly by polymer, high concentration (32g SS /
L) Agglomerated pellet-like particles formed in the blanket. Drive with the blanket layer height set to 1m,
The time for the raw water to pass through the blanket was set to 5 minutes.
As a result, when the phosphorus concentration of the effluent from the blanket layer was measured, the concentration was 0.13 to 0.21 mg / liter and the turbidity was 0.15, which was extremely low. Was removed at high speed and high altitude.

【0027】(リンの脱着工程)ブランケット高さが
1.2mになった時点で、ブランケット内スラリーを排
出し、ブランケット高さ1mに戻した。排出スラリーに
NaOHを1500mg/リットル添加し、pH12.
2に調整して1時間撹拌後、沈殿分離させた結果、リン
が水酸化鉄から完全に脱着した。リン脱着沈殿スラリー
は再び原水にリサイクルしてブランケットに流入させ
た。この時点では、新鮮な水酸化鉄は添加しなかった。
処理水のリン濃度は、0.11〜0.23mg/リット
ルであり、リサイクル使用した水酸化鉄を使用しても、
原水のリンは高度に除去されることが確認された。
(Step of Desorbing Phosphorus) When the blanket height reached 1.2 m, the slurry in the blanket was discharged and returned to the blanket height of 1 m. Add 1500 mg / L of NaOH to the discharged slurry, and add pH12.
After adjusting to 2 and stirring for 1 hour, the precipitate was separated and, as a result, phosphorus was completely desorbed from the iron hydroxide. The phosphorus desorbed sediment slurry was recycled to raw water again and allowed to flow into the blanket. At this point, no fresh iron hydroxide was added.
The phosphorus concentration of the treated water is 0.11 to 0.23 mg / L, and even if recycled iron hydroxide is used,
It was confirmed that phosphorus in raw water was highly removed.

【0028】(生物処理工程)次に、リンが除去された
処理水を標準活性汚泥処理施設に流入させた。この際、
リンが少なすぎて、活性汚泥がリン不足になるのを防止
するため、カチオンポリマー凝集沈殿処理水の一部を分
岐して活性汚泥処理曝気槽に流入させ、曝気槽流入水の
リンが0.3mg/リットルになるようにした。この結
果、活性汚泥水のリンは、安定して0.1mg/リット
ル以下であった。また、余剰活性汚泥の発生量は、有機
性汚水1m3 当たり、22g・ssと非常に少なかっ
た。(従来の有機性汚水処理方式では余剰活性汚泥発生
量は97g・ss/m3 有機性汚水である)。
(Biological treatment step) Next, the treated water from which phosphorus has been removed was allowed to flow into a standard activated sludge treatment facility. On this occasion,
In order to prevent the activated sludge from becoming phosphorus-deficient due to too little phosphorus, a portion of the cationic polymer coagulated sedimentation treated water is branched and allowed to flow into the activated sludge treatment aeration tank. It was adjusted to 3 mg / liter. As a result, the phosphorus in the activated sludge water was stably 0.1 mg / liter or less. Further, the amount of surplus activated sludge generated was very small, 22 g · ss / m 3 of organic wastewater. (In the conventional organic wastewater treatment method, the amount of surplus activated sludge generated is 97 g · ss / m 3 of organic wastewater.)

【0029】(リン回収工程)一方、リン除去工程から
排出したスラリーをアルカリ処理後沈殿させた上澄水の
リン濃度は、1000〜1200mg/リットルと極め
て高濃度であり、有機性汚水中のリンが400倍程度と
高度に濃縮されていた。この液に塩化カルシウムを(C
a/PO4 )モル比で2になるように添加し、5分撹拌
した結果、肥料原料として価値の大きいヒドロキシアパ
タイト沈殿が速やかに生成した。沈殿上澄水のリン濃度
は0.3mg/リットル以下であり、リンがほぼ100
%回収できた。
(Phosphorus recovery step) On the other hand, the slurry discharged from the phosphorus removal step is subjected to alkali treatment and then precipitated, and the supernatant has a very high phosphorus concentration of 1000 to 1200 mg / liter. It was highly concentrated, about 400 times. Add calcium chloride (C
a / PO 4 ) The molar ratio was adjusted to 2 and the mixture was stirred for 5 minutes. As a result, a hydroxyapatite precipitate having a high value as a fertilizer raw material was quickly formed. The phosphorus concentration of the supernatant supernatant water is 0.3 mg / liter or less, and
% Could be recovered.

【0030】(嫌気性消化脱離液)次に嫌気性消化脱離
液中のリンを回収するために、消化脱離液(リン濃度1
53mg/リットル)と消化汚泥を汚泥脱水機13で脱
水したときの脱水分離液(リン濃度126mg/リット
ル)を、本発明のカチオンポリマー凝集分離工程前段の
流入水に返送混合した場合の試験を行なった。この場合
は、リン除去工程流入水のリン濃度が4.8mg/リッ
トルに増加したので、水酸化鉄微粒子添加量を110m
g/リットルに増加させた。それ以外の変更は行なわな
かった。この結果、ブランケット層流出水のリン濃度は
0.15〜0.23mg/リットルと高度にリンが除去
されていた。したがって、本発明によって有機性汚水の
水系だけではなく、汚泥系からもリン資源が効果的に回
収できることが確認できた。
(Anaerobic digestion / elimination liquid) Next, in order to recover phosphorus in the anaerobic digestion / elimination liquid, the digestion / elimination liquid (phosphorus concentration 1) was used.
(53 mg / l) and a dewatered separation liquid (phosphorus concentration 126 mg / l) obtained by dewatering digested sludge with the sludge dewatering machine 13 were returned and mixed with the influent water at the previous stage of the cationic polymer coagulation separation step of the present invention. Was. In this case, since the phosphorus concentration of the inflow water in the phosphorus removal step was increased to 4.8 mg / liter, the amount of the added iron hydroxide fine particles was reduced to 110 m.
g / liter. No other changes were made. As a result, the phosphorus concentration in the effluent of the blanket layer was as high as 0.15 to 0.23 mg / liter, and phosphorus was highly removed. Therefore, it was confirmed that phosphorus resources can be effectively recovered not only from the organic wastewater system but also from the sludge system according to the present invention.

【0031】[0031]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載される顕著な効果が得られる。 1)従来の有機性汚水処理法では不可能であった有機性
汚水からのリン回収が極めて簡単なシステムで実現する
ことができる。リンは、世界的に枯渇資源であり、日本
はリン鉱石を100%輸入しなければならないので、農
作物収穫の必須元素であるリンを有機性汚水から大量に
回収できる本発明の意義は極めて大である。 2)本発明の方法では、凝集沈殿法によるリンの除去に
おける最大の問題点(難脱水性無機水酸化物汚泥)が発
生しない。従って、リン除去に起因する汚泥の処理・処
分が不要である。 3)有機性汚水中の有機性SSが、高度に分離されてそ
れが嫌気性消化されるので、有機性汚水からのメタンガ
ス回収量が従来よりも大幅に増加する。
Since the present invention is configured as described above, the following remarkable effects can be obtained. 1) Phosphorus recovery from organic sewage, which was impossible with conventional organic sewage treatment methods, can be realized with an extremely simple system. Phosphorus is a depleted resource worldwide, and Japan must import 100% of phosphate ore. Therefore, the significance of the present invention, which can recover a large amount of phosphorus, an essential element for crop harvesting, from organic wastewater is extremely large. is there. 2) In the method of the present invention, the greatest problem (removable inorganic hydroxide sludge) in removing phosphorus by the coagulation sedimentation method does not occur. Therefore, there is no need to treat and dispose sludge resulting from phosphorus removal. 3) Since the organic SS in the organic wastewater is highly separated and anaerobically digested, the amount of methane gas recovered from the organic wastewater is significantly increased.

【0032】4)有機性汚水のSSが活性汚泥処理工程
に流入しないので、生物処理工程での余剰活性汚泥発生
量が従来よりも大幅に減少する。この結果、余剰汚泥の
処理工程が際立って改善される。 5)リン除去工程が、粒状活性アルミナ等の高価なリン
吸着剤をカラムに充填して、リン含有水を通水してリン
を除去する従来のリン除去方法に比較して、ランニング
コストが安価であり、また、吸着速度が著しく大きいの
で、装置がコンパクトになり設備費も安価である。 6)リン除去工程に入る有機性汚水はSSが前もって高
度に除去されているため、流動層によるリン除去工程に
有機性汚水のSSがほとんど流入しないので、流動層に
有機性汚水中ののSSがほとんど蓄積しない。従って、
流動層内の水酸化鉄又は水酸化アルミニウム凝集粒子が
不活性SSによって汚染されない。
4) Since the SS of the organic wastewater does not flow into the activated sludge treatment step, the amount of surplus activated sludge generated in the biological treatment step is significantly reduced as compared with the conventional case. As a result, the process of treating excess sludge is significantly improved. 5) In the phosphorus removal step, the running cost is lower than the conventional phosphorus removal method in which an expensive phosphorus adsorbent such as granular activated alumina is packed in a column and phosphorus-containing water is passed through to remove phosphorus. In addition, since the adsorption speed is extremely high, the apparatus is compact and the equipment cost is low. 6) Since the organic wastewater entering the phosphorus removal step has a high degree of SS removed in advance, the organic wastewater SS hardly flows into the phosphorus removal step using a fluidized bed. Hardly accumulates. Therefore,
Agglomerated particles of iron hydroxide or aluminum hydroxide in the fluidized bed are not contaminated by inert SS.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の有機性汚水処理方法の処理系統を示す
図。
FIG. 1 is a diagram showing a treatment system of an organic wastewater treatment method of the present invention.

【図2】従来の有機性汚水処理方法の処理系統を示す
図。
FIG. 2 is a diagram showing a treatment system of a conventional organic sewage treatment method.

【符号の説明】[Explanation of symbols]

1 有機性汚水 2 カチオン又は両性ポリマー 3 凝集分離槽 4 凝集分離処理水 5 凝集沈殿装置 6 凝集沈殿処理水 7 分離汚泥 8 嫌気性消化槽 8a 消化ガス 8b 消化脱離液 8c 消化汚泥 9 活性汚泥処理槽(生物処理槽) 9a 生物処理水 10 沈殿槽 11 処理水 12 返送汚泥 13 汚泥脱水機 13a 脱水ケーキ 13b 脱水分離液 14 水酸化鉄スラリー 15 リン脱着部 15a スラリー 16 沈殿分離部 17 リン回収部 18 アルカリ剤 18a アルカリスラリー 19 水酸化鉄 20 分離水 21 回収リン 22 リン回収水 23 最初沈殿池 24 沈殿汚泥 25 活性汚泥曝気槽 26 無機凝集剤 27 生物処理水 28 最終沈殿池 29 余剰汚泥 30 脱水機 DESCRIPTION OF SYMBOLS 1 Organic sewage 2 Cationic or amphoteric polymer 3 Flocculation separation tank 4 Flocculation separation treatment water 5 Flocculation sedimentation apparatus 6 Flocculation settling water 7 Separation sludge 8 Anaerobic digestion tank 8a Digestion gas 8b Digestion separation liquid 8c Digestion sludge 9 Activated sludge treatment Tank (biological treatment tank) 9a biological treatment water 10 sedimentation tank 11 treated water 12 return sludge 13 sludge dewatering machine 13a dehydration cake 13b dehydration separation liquid 14 iron hydroxide slurry 15 phosphorus desorption part 15a slurry 16 precipitation separation part 17 phosphorus recovery part 18 Alkaline agent 18a Alkaline slurry 19 Iron hydroxide 20 Separated water 21 Recovered phosphorus 22 Phosphorous recovered water 23 First sedimentation basin 24 Precipitated sludge 25 Activated sludge aeration tank 26 Inorganic coagulant 27 Biologically treated water 28 Final sedimentation basin 29 Excess sludge 30 Dehydrator

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 3/12 C02F 3/12 V 4G066 11/04 11/04 A Fターム(参考) 4D015 BA05 BA19 BB05 BB08 BB12 CA18 DA04 DA13 DA16 DC06 DC07 DC08 EA14 EA32 FA22 FA26 4D024 AA04 AB12 BA13 BA14 BB01 BC04 DA10 4D028 AB00 AC01 AC03 AC09 BC18 BD16 4D059 AA06 BA12 BE49 CA22 4D062 BA05 BA19 BB05 BB08 BB12 CA18 DA04 DA13 DA16 DC06 DC07 DC08 EA14 EA32 FA22 FA26 4G066 AA20B AA27B GA11 GA25 GA34 GA37 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (Reference) C02F 3/12 C02F 3/12 V 4G066 11/04 11/04 A F term (Reference) 4D015 BA05 BA19 BB05 BB08 BB12 CA18 DA04 DA13 DA16 DC06 DC07 DC08 EA14 EA32. GA25 GA34 GA37

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 有機性汚水にカチオン性又は両性高分子
凝集剤を添加して有機性汚水中のSSを凝集させ、固液
分離により凝集したSSを除去すると共に、分離したS
Sを嫌気性消化処理し、一方、SSを除去した有機性汚
水に水酸化鉄及び/又は水酸化アルミニウム微粒子と高
分子凝集剤とを添加し、スラリーブランケット型凝集沈
殿装置内を上向流で通過させることにより、凝集粒子の
流動層を形成させるリン除去工程で、リンを吸着除去
し、続いて、該リンを吸着除去した処理水を生物処理
し、前記凝集沈殿装置からのリン吸着水酸化鉄及び/又
は水酸化アルミニウム含有スラリをアルカリ性にしてリ
ンを脱着させ、リン脱着水酸化鉄及び/又は水酸化アル
ミニウムを前記リン除去工程にリサイクルし、リン脱着
液からリンをハイドロキシアパタイト又はマグネシウム
アパタイトとして回収することを特徴とする有機性汚水
の処理方法。
1. A cationic or amphoteric polymer flocculant is added to an organic wastewater to aggregate the SS in the organic wastewater, and the aggregated SS is removed by solid-liquid separation.
S is subjected to an anaerobic digestion treatment, while iron hydroxide and / or aluminum hydroxide fine particles and a polymer flocculant are added to the organic wastewater from which the SS has been removed, and the slurry is subjected to upward flow in a slurry blanket type flocculating and settling apparatus. In the phosphorus removal step of forming a fluidized bed of aggregated particles by passing through, phosphorus is adsorbed and removed, and then the treated water from which the phosphorus is adsorbed and removed is biologically treated, and the phosphorus adsorption and hydroxylation from the coagulation sedimentation apparatus The slurry containing iron and / or aluminum hydroxide is made alkaline to desorb phosphorus, and the phosphorus-desorbed iron hydroxide and / or aluminum hydroxide is recycled to the phosphorus removal step, and phosphorus is removed from the phosphorus desorbed solution as hydroxyapatite or magnesium apatite. A method for treating organic wastewater, comprising recovering the organic wastewater.
【請求項2】 分離したSSの嫌気性消化処理で生じた
消化脱離液を、前記リン除去工程における水酸化鉄及び
/又は水酸化アルミニウム添加段階の前の有機性汚水に
供給することを特徴とする有機性汚水の処理方法。
2. The method according to claim 1, wherein the digested and desorbed liquid produced in the anaerobic digestion treatment of the separated SS is supplied to organic wastewater before the step of adding iron hydroxide and / or aluminum hydroxide in the phosphorus removal step. Organic wastewater treatment method.
【請求項3】 嫌気性消化汚泥の脱水分離液を、前記リ
ン除去工程における水酸化鉄及び/又は水酸化アルミニ
ウム添加段階の前の有機性汚水に供給することを特徴と
する有機性汚水の処理方法。
3. A process for treating organic sewage, comprising supplying a dewatered separated solution of anaerobic digested sludge to organic sewage before the step of adding iron hydroxide and / or aluminum hydroxide in the phosphorus removal step. Method.
【請求項4】 流入有機性汚水又はカチオン性又は両性
高分子凝集剤添加凝集分離処理水の一部を分岐して生物
工程に供給することを特徴とする有機性汚水処理方法。
4. A method for treating organic sewage, characterized in that a part of inflowing organic sewage or water treated by coagulation and separation with a cationic or amphoteric polymer flocculant is branched and supplied to a biological process.
【請求項5】 カチオン性又は両性高分子凝集剤を添加
した有機性汚水を導入して有機性汚水中のSSを凝集分
離する凝集分離槽、前記凝集分離槽で分離したSSを嫌
気性消化処理する嫌気性消化装置、SSを除去した有機
性汚水に水酸化鉄及び/又は水酸化アルミニウム微粒子
と高分子凝集剤とを添加して上向流で導入し、凝集粒子
の流動層を形成しリンを吸着除去するスラリーブランケ
ット型凝集沈殿装置、該リンを吸着除去した処理水を導
入して生物処理する生物処理装置、前記凝集沈殿装置か
らのリン吸着水酸化鉄及び/又は水酸化アルミニウム含
有スラリをアルカリ性にしてリンを脱着させるリン脱着
装置、前記リン脱着装置からリン脱着水酸化鉄及び/又
は水酸化アルミニウムを前記凝集沈殿装置にリサイクル
する循環導管、及び前記リン脱着装置からのリン脱着液
からリンをハイドロキシアパタイト又はマグネシウムア
パタイトとして回収するリン回収装置を有することを特
徴とする有機性汚水の処理装置。
5. An agglutination / separation tank for introducing and separating organic sewage to which a cationic or amphoteric polymer coagulant is added, and for aggregating and separating SS in the organic sewage; Anaerobic digester, adding iron hydroxide and / or aluminum hydroxide fine particles and a polymer flocculant to the organic wastewater from which SS has been removed and introducing the polymer flocculant in an upward flow to form a fluidized bed of the flocculated particles, A slurry blanket-type coagulation-sedimentation device for adsorbing and removing the water, a biological treatment device for introducing the treated water from which the phosphorus is adsorbed and removed, and a biological treatment device, and a slurry containing iron-adsorbed iron hydroxide and / or aluminum hydroxide from the coagulation-sedimentation device. A phosphorus desorption device for desorbing phosphorus by making it alkaline, a circulation conduit for recycling phosphorus desorbed iron hydroxide and / or aluminum hydroxide from the phosphorus desorption device to the coagulation and precipitation device, and An organic wastewater treatment device, comprising: a phosphorus recovery device that recovers phosphorus as hydroxyapatite or magnesium apatite from the phosphorus desorption solution from the phosphorus desorption device.
JP2001000634A 2001-01-05 2001-01-05 Method and apparatus for treating organic sewage Pending JP2002205077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001000634A JP2002205077A (en) 2001-01-05 2001-01-05 Method and apparatus for treating organic sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001000634A JP2002205077A (en) 2001-01-05 2001-01-05 Method and apparatus for treating organic sewage

Publications (1)

Publication Number Publication Date
JP2002205077A true JP2002205077A (en) 2002-07-23

Family

ID=18869385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001000634A Pending JP2002205077A (en) 2001-01-05 2001-01-05 Method and apparatus for treating organic sewage

Country Status (1)

Country Link
JP (1) JP2002205077A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004209424A (en) * 2003-01-07 2004-07-29 Mie Prefecture Sludge treatment agent and sludge treatment method using the same
JP2004330022A (en) * 2003-05-02 2004-11-25 Ebara Corp Method and apparatus for removing phosphor in water
WO2009063456A1 (en) * 2007-11-12 2009-05-22 Technion Research And Development Foundation Ltd Method for adsorption of phosphate contaminants from water solutions and its recovery
JP2013226149A (en) * 2013-06-10 2013-11-07 Universal Bio Research Co Ltd Method for separating and collecting organism-related substance
JP2015211941A (en) * 2014-05-02 2015-11-26 旭化成ケミカルズ株式会社 Phosphorous recovery system and phosphorous recovery method
WO2017108930A1 (en) * 2015-12-21 2017-06-29 Kemira Oyj Recovery of phosphorus compounds from wastewater
CN107082479A (en) * 2017-06-02 2017-08-22 北京大学 A kind of iron system phosphate eliminating flocculant with slow-release function and its preparation method and application
JP2019507082A (en) * 2015-12-21 2019-03-14 ケミラ ユルキネン オサケイティエKemira Oyj Method for producing phosphorus products from wastewater
CN111804271A (en) * 2020-06-17 2020-10-23 中山大学 Preparation for removing characteristic pollutants of wastewater in electronic industry and preparation method and application thereof
CN114890517A (en) * 2021-05-10 2022-08-12 叶涛 Improved flocculation water purification method and device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004209424A (en) * 2003-01-07 2004-07-29 Mie Prefecture Sludge treatment agent and sludge treatment method using the same
JP2004330022A (en) * 2003-05-02 2004-11-25 Ebara Corp Method and apparatus for removing phosphor in water
WO2009063456A1 (en) * 2007-11-12 2009-05-22 Technion Research And Development Foundation Ltd Method for adsorption of phosphate contaminants from water solutions and its recovery
JP2013226149A (en) * 2013-06-10 2013-11-07 Universal Bio Research Co Ltd Method for separating and collecting organism-related substance
JP2015211941A (en) * 2014-05-02 2015-11-26 旭化成ケミカルズ株式会社 Phosphorous recovery system and phosphorous recovery method
JP2019505368A (en) * 2015-12-21 2019-02-28 ケミラ ユルキネン オサケイティエKemira Oyj Recovery of phosphorus compounds from wastewater
CN108883999A (en) * 2015-12-21 2018-11-23 凯米罗总公司 Phosphorus compound is recycled from waste water
WO2017108930A1 (en) * 2015-12-21 2017-06-29 Kemira Oyj Recovery of phosphorus compounds from wastewater
JP2019507082A (en) * 2015-12-21 2019-03-14 ケミラ ユルキネン オサケイティエKemira Oyj Method for producing phosphorus products from wastewater
US10633272B2 (en) 2015-12-21 2020-04-28 Kemira Oyj Recovery of phosphorus compounds from wastewater
EP3393968B1 (en) * 2015-12-21 2021-11-24 Kemira Oyj Process for producing a phosphorus product from wastewater
JP7018393B2 (en) 2015-12-21 2022-02-10 ケミラ ユルキネン オサケイティエ Methods for producing phosphorus products from wastewater
CN108883999B (en) * 2015-12-21 2022-02-18 凯米拉公司 Recovery of phosphorus compounds from wastewater
CN107082479A (en) * 2017-06-02 2017-08-22 北京大学 A kind of iron system phosphate eliminating flocculant with slow-release function and its preparation method and application
CN107082479B (en) * 2017-06-02 2021-06-15 北京大学 Iron-based dephosphorization flocculant with slow release function and preparation method and application thereof
CN111804271A (en) * 2020-06-17 2020-10-23 中山大学 Preparation for removing characteristic pollutants of wastewater in electronic industry and preparation method and application thereof
CN114890517A (en) * 2021-05-10 2022-08-12 叶涛 Improved flocculation water purification method and device
CN114890517B (en) * 2021-05-10 2024-08-20 叶涛 Improved flocculation water purifying method and device

Similar Documents

Publication Publication Date Title
JP2019505368A (en) Recovery of phosphorus compounds from wastewater
CS274259B2 (en) Method of suspended materials removal and equipment for realization of this method
JP5128735B2 (en) Recovery and reuse of phosphorus and flocculant in wastewater
JP4693128B2 (en) Phosphorus recovery method and phosphorus recovery system
JP2002205077A (en) Method and apparatus for treating organic sewage
JP3767800B2 (en) Nitrogen-phosphorus-containing wastewater treatment method and apparatus
Rodriguez-Freire et al. Technologies for fractionation of wastewater and resource recovery
CN103253725A (en) Method for removing organic matters in reclaimed water by using in situ FeOxHy
JP3373033B2 (en) How to remove phosphorus from water
JP2003300095A (en) Method and apparatus for sewage treatment
JP3496773B2 (en) Advanced treatment method and apparatus for organic wastewater
JP4337303B2 (en) How to remove sulfate ions
JP2002316192A (en) Method and apparatus for treating organic foul water
JP2001232372A (en) Treatment process for water containing boron
JP2002326088A (en) Method and apparatus for treating phosphorous and cod- containing water
JPH10156391A (en) Treatment of phosphorus recovered from treated water of sewerage
JP3414511B2 (en) Advanced treatment method for organic wastewater
CN116444105B (en) High-hardness and high-mineralization coal mine water recycling pretreatment method and device
JP2002316191A (en) Method and apparatus for treating organic foul water
JP3516311B2 (en) Advanced treatment method and apparatus for organic wastewater
JP6407052B2 (en) Phosphorus recovery apparatus and phosphorus recovery method
JPH0433518B2 (en)
CN116444106B (en) High-hardness high-sulfate type coal mine water treatment method and device
JPH07100155B2 (en) Organic wastewater treatment method
JP2007007530A (en) Waste water treatment method and waste water treatment apparatus