JP3767800B2 - Nitrogen-phosphorus-containing wastewater treatment method and apparatus - Google Patents

Nitrogen-phosphorus-containing wastewater treatment method and apparatus Download PDF

Info

Publication number
JP3767800B2
JP3767800B2 JP2001132291A JP2001132291A JP3767800B2 JP 3767800 B2 JP3767800 B2 JP 3767800B2 JP 2001132291 A JP2001132291 A JP 2001132291A JP 2001132291 A JP2001132291 A JP 2001132291A JP 3767800 B2 JP3767800 B2 JP 3767800B2
Authority
JP
Japan
Prior art keywords
phosphorus
water
nitrogen
fine particles
packed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001132291A
Other languages
Japanese (ja)
Other versions
JP2002320961A (en
Inventor
克之 片岡
和彰 島村
俊博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2001132291A priority Critical patent/JP3767800B2/en
Publication of JP2002320961A publication Critical patent/JP2002320961A/en
Application granted granted Critical
Publication of JP3767800B2 publication Critical patent/JP3767800B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、下水の生物処理水等のリン、窒素含有排水から高度にリン、窒素を同時に除去でき、リンを有価資源として回収可能な新技術に関するものである。
【0002】
【従来の技術】
有機性汚水中の窒素成分を除去する代表的技術は、生物学的硝化脱窒素法である。この技術の基本的考え方は、汚水中のアンモニア性窒素を生物学的にほぼ完全に硝化し、硝化液を脱窒素部に循環し、汚水のBODを利用して生物学的に脱窒素するというものである。従って、処理水中には、アンモニア及びアンモニア性窒素を有する化合物はほとんど残留せず、NOx が残留するという特徴がある。残留NOx 濃度は原水のBOD/N比、硝化液循環率に支配されるので、BOD/N比が小さい下水の場合は、窒素除去率80%程度が限界であり、窒素除去率を90%以上にするためには、第2脱窒素部を設け、ここにメタノール等の高価な有機炭素源を、外部から添加しない限り不可能であった。
【0003】
また、アンモニアの化学的除去法として、ゼオライト系鉱物(ゼオライト、クリノブチライト、モルデナイト、合成ゼオライト等)による、アンモニアの選択的イオン交換法が知られているが、ゼオライト系鉱物のみを用いるだけでは、下水からリンと窒素を同時に除去することはできなかった。リン除去技術としては、生物脱リン法が知られているが、リン除去効果が不安定であり、しかも、熟練した細心の運転管理が必要であるという欠点があった。
硫酸アルミニウム等の凝集剤添加によるリン除去方法は、確実なリン除去ができるが、難脱水性汚泥が発生する欠点があつた。これらのリン除去技術によっては、下水からリンと窒素を同時に除去することはできない。また、リンを再利用し易い資源として回収することはできなかった。
【0004】
【発明が解決しようとする課題】
本発明は、従来の個々の技術の長所を広くかつ充分に活用すると共に、従来の個々の技術の欠点を解決し、リン、窒素を同時に除去し、かつその除去率を高度化することを達成できる新技術を確立することを課題とする。また、リンを単に除去するだけでなく、資源として回収可能な新技術を提供することを課題とする。
我国の下水に含まれるリンの大部分は、輸入された外国のリン鉱石資源に起源する。リン鉱石資源は、近い将来枯渇すると指摘されているので、下水からリン資源を回収できる技術を確立する意義は極めて大きい。
【0005】
【課題を解決するための手段】
上記課題を解決するため、本発明は次の構成からなる。
(1)窒素−リン含有排水にリン吸着性微粒子を添加して、粒状ゼオライト充填層に通水して、排水中のアンモニア性の窒素分を粒状ゼオライトに吸着除去せしめ、該充填層のろ過抵抗が所定値に増加した時点で、該充填層を水で洗浄して捕捉されていた前記微粒子を排出する工程A、
前記充填層から排出された前記微粒子を含有する懸濁水に、アルカリ剤を添加し、該微粒子に吸着されたリンを脱着させ、脱着リン含有水に、Ca又はMg剤を添加して不溶性リン化合物粒子を析出させ、固液分離する工程B、
リン吸着性微粒子を添加した窒素−リン含有排水の前記粒状ゼオライト充填層への通水において、該充填層流出水のアンモニア性窒素濃度が所定値に増加した時点で、該充填層に対し、前記工程Bで前記不溶性リン化合物を析出させ、固液分離した際に出るアルカリ排水を供給しながら酸素含有ガスで曝気して、粒状ゼオライトに吸着されていたアンモニアを、ゼオライト表面に固定化された硝化菌によって生物学的に硝化させ、硝酸性窒素含有水をゼオライト充填層から流出させる工程C、
からなる3工程を含むことを特徴とするリン−窒素含有排水の処理方法。
(2)工程Bにおいて、脱着リン含有水に、Ca又はMg剤を添加して不溶性リン化合物粒子を析出させる際に、脱着リン含有水に下水汚泥の嫌気性消化脱離液、汚泥脱水分離液、汚泥濃縮分離液の少なくともいずれか一つを添加してアンモニア分を補給することを特徴とする前記(1)記載のリン−窒素含有排水の処理方法。
【0006】
(3)流通抵抗を測定する測定器を備えた粒状ゼオライト充填層を有する吸着槽、リン吸着性微粒子を添加した窒素−リン含有排水の導入管、前記測定器の信号により動作する電磁弁を備えた洗浄水導入管、洗浄排水排出管、生物再生時にアルカリ排水を導入する導入管、及び底部に設置した酸素含有ガスを噴出する散気管を設け、前記洗浄排水排出管の他端に接続された固液分離装置、前記固液分離装置からの汚泥にアルカリを添加してリン吸着微粒子からリンを脱着するアルカリ処理装置、前記アルカリ処理装置からの処理液を脱着リン吸着性微粒子と脱着リン含有水とに固液分離する固液分離装置、前記固液分離装置からの脱着リン含有水にCa又はMg剤を添加して不溶性リン化合物粒子を析出させる晶析装置、前記固液分離装置からの脱着リン吸着性微粒子を窒素−リン含有排水の導入管に送る送液管、及び前記晶析装置からのアルカリ排水を前記吸着槽の生物再生時に前記吸着槽に送る送液管を有することを特徴とするリン−窒素含有排水の処理装置。
【0007】
【発明の実施の形態】
下水処理水への適用例を示す図1に基づいて、本発明の実施の形態を説明する。
図1において、リン−窒素含有排水の例として、下水を活性汚泥法等によって生物処理した生物処理水1を処理する場合を示す。生物処理水(以下「原水」ともいう)1に水酸化第2鉄などのリン吸着性微粒子2を添加し、粒径が1〜3mm程度の粒状ゼオライト鉱物を充填した充填層3Aを有する吸着槽3に通水する。ゼオライト鉱物としては、例えば、ゼオライト、クリノブチライト、モルデナイト、合成ゼオライト等アンモニアを吸着する物質が挙げられる。
【0008】
原水1中のリン酸イオンは、水酸化鉄微粒子などのリン吸着性微粒子2によって吸着除去され、リンを吸着した微粒子がゼオライト充填層3Aでろ過捕捉され、かつ原水1中のアンモニア性窒素は、粒状ゼオライト鉱物のイオン交換作用によって吸着除去される。
また、原水1中の微細活性汚泥などのSSは、ゼオライト充填層3Aを通過する間にろ過除去される。かくして、原水1がゼオライト充填層3Aを通過する過程でSS、リン、アンモニアが一挙に除去され、清澄な処理水4が流出する。
このように本発明では、単一の充填層が、SS、リン、アンモニアを一挙に除去するという複合機能を発揮する点が、従来技術に見られない特徴である。
【0009】
しかし、ゼオライト充填層3Aへの原水の通水を続けると、原水1中のSSとリン吸着性微粒子2のゼオライト充填層3A内の捕捉量が増加し、ろ過抵抗が増加するので、所定ろ過抵抗値(水頭で1m程度に設定するのが通常)に達した時点で(運転開始後通常12〜24時間)、ゼオライト充填層3A中を洗浄用水5を上向流で流して、ゼオライト粒子を流動化させて逆流洗浄(逆洗)する。6は洗浄排水である。洗浄排水6を沈殿、膜ろ過などの固液分離を行う装置、この場合は沈殿槽7に流入させ、洗浄排水6中の微粒子2を分離する。沈殿槽7は洗浄排水の貯槽も兼ねることもできる。
逆流洗浄を終了してろ過抵抗が小さくなったゼオライト充填層3Aに対し、再び原水1を通水して処理を続行し、この操作を繰り返すことにより、ゼオライト充填層3AからSS、リン、アンモニア濃度が非常に低い処理水4が得られる。
そして、このように運転を続けると、(通常1〜2日通水後に、)ゼオライト充填層3A中の粒状ゼオライトのアンモニア吸着容量が飽和に近づき、粒状ゼオライト充填層3Aの処理水4のアンモニア濃度だけが、所定値(通常5mg/リットルに設定する)に悪化する。
【0010】
この時点で原水の通水を停止し、工程Aを行った後、ゼオライト充填層3Aの生物学的な再生処理を開始する。
ゼオライト充填層への原水通水を停止するのは、次のケースである。
ケース(1)…充填層3AのSSの捕捉量が増加し、ろ過抵抗が所定値に到達したとき。
ケース(2)…充填層3Aの流出水(処理水)4のアンモニア濃度が所定値に到達したとき。
このケース(1)の場合には、ゼオライト充填層を前記のように逆洗のみであれば、通水を再開できるが、ケース(2)の場合には、ゼオライト充填層のアンモニア吸着容量が飽和に近づいているので、ゼオライト充填層を再生しなければ通水を再開できない。
ゼオライト充填層3Aの再生処理は、次の様に行う。ゼオライト充填層3Aの再生処理(アンモニア吸着能力が減少したゼオライト鉱物のアンモニア吸着能力を、再度回復させる処理を意味する)は、アルカリ分を添加した再生用水19をゼオライト充填層3Aに下向流又は上向流で通水しながら、吸着器3の底部の設けた散気装置21から空気、純酸素、酸素富化空気などの酸素含有ガス20を通気することによって、効果的に行われる。
【0011】
すなわち、アンモニアを多量に吸着した状態のゼオライト粒子に、酸素とアルカリ度が十分ある再生用水19を供給すると、ゼオライト粒子の表面に、自然増殖して付着固定化された硝化菌によって、ゼオライトに吸着された状態のアンモニアが、生物学的に硝酸性窒素もしくは亜硝酸性窒素に酸化される。
硝酸性窒素もしくは亜硝酸性窒素は、ゼオライト吸着されない性質があるので、ゼオライトから脱着し、生物再生排水22とともに、系外に流出してゆく。
【0012】
本発明の最重要骨子の一つは、粒状ゼオライト用の再生用水19に、後記するリン回収工程から流出するアルカリ分を含んだアルカリ排水18を添加するという思想にある。
すなわち、ゼオライトに吸着されているアンモニア1kgを、生物学的に硝化して硝酸性窒素に酸化するには、約8kgのアルカリ分を必要とするため、単に水と酸素含有ガスをゼオライト充填層3Aに供給すると、アンモニアの硝化によって生成する水素イオンによってpH低下が起き、硝化活性が顕著に悪化し、ゼオライトに吸着されているアンモニアの生物学的硝化が、円滑に進行しなくなるのである。
本発明では、この問題点を、後記するリン回収工程から排出されるアルカリ排水18を、再生用水19に添加することによって解決できた。再生用水19としては、原水1、処理水4などを使用する。
【0013】
次にリン回収工程を説明する。
リンを吸着した状態のリン吸着性微粒子2が付着したゼオライト充填層3Aの洗浄排水6もしくは生物再生排水22を、沈殿槽7などの固液分離工程に供給し、リン吸着性微粒子2を分離した沈殿スラリ8に、NaOH、KOHなどの苛性アルカリのアルカリ剤10を添加し、pHを11以上(好ましくはpH11.2〜12.2)に調整し、攪拌槽11中で10〜30分攪拌すると、OHイオンが水酸化鉄などの微粒子2に吸着し、その結果、微粒子2に吸着されていたリンがリン吸着性微粒子2から脱着する。
【0014】
その後、固液分離槽12で分離し、リンが脱着されたリン吸着性微粒子15と脱着リンを含有するアルカリ性の脱着リン含有水13を得る。
リンが脱着されたリン吸着性微粒子15は、リン吸着能力が回復しているので、再び原水1に添加すると、原水1中のリン酸イオンを吸着除去する。
脱着リン含有水13に、Ca剤もしくはMg剤14を添加して、アルカリ性条件で攪拌すると、ヒドロキシアパタイト(HAP)などのリン酸カルシウム、又はリン酸マグネシウムアンモニウム(MAP)17が晶析するので、これを晶析装置16で固液分離し、肥料原料などの資源として有効利用する。晶析装置16としては、周知の任意の装置が利用できる。
【0015】
リンを析出させる晶析装置(固液分離装置)16からの排水18は、アルカリ性が高いので、これを前記のようにゼオライト充填層3の生物再生用のアルカリ分として利用する。そのためこの排水をアルカリ排水18という。
従って、NaOHなどのアルカリ剤10を、リン吸着性微粒子2からの脱着及び、ゼオライト充填層の生物再生のための硝化のために、アルカリ分の二重目的に利用できるという顕著な効果がある。
【0016】
脱着リン含有水13からMAP17を生成させる場合には、アンモニア性窒素が不可欠であるが、本発明では、アンモニアを補給するために、次の様な手段を創案した。
すなわち、下水処理に本発明を適用する場合、下水汚泥の嫌気性消化脱離液、汚泥脱水分離液、汚泥濃縮分離液には、汚泥が嫌気性にさらされた結果として腐敗し、アンモニア性窒素が汚泥から多量に生成しているので、嫌気性消化脱離液、汚泥脱水分離液、汚泥濃縮分離液のどれかを、本発明工程のリン析出工程(晶析装置16)への流入水に混合すると、アンモニア性窒素が十分量補給でき、MAP生成反応を効果的に起こすことが可能である。従って、塩化アンモニウムなどの薬品を購入する必要がなく、低コスト化が可能であり、かつ、汚泥処理系からのアンモニアのバックロードも、軽減できる効果がある。
【0017】
【実施例】
以下、実施例により本発明を具体的に説明するが、本発明は、この実施例により何等制限されるものではない。
【0018】
実施例1
窒素−リン含有水としてA下水処理施設の標準活性汚泥法処理水を採取し、本発明の方法により試験を行った。前記窒素−リン含有水(原水)の水質を第1表に記す。
【0019】
【表1】

Figure 0003767800
【0020】
(試験条件)
以下に試験条件、方法を記す。
直径15cm、高さ3mの円筒カラムに、粒状ゼオライト(山形県産出、平均粒径3.5mm)を、充填高さ2mに装填して吸着槽を構成した。
この吸着器に、前記試験対象水を、ろ過速度120m/dで下向流で通水した。原水には、水酸化第2鉄微粒子(製造法は、塩化第2鉄液に苛性ソーダを添加して、pH6に中和して、水酸化第2鉄微粒子を生成させた)を20mg/リットル添加し、かつ、アニオン性高分子凝集剤(エバグロースLEA601;荏原製品)を0.5mg/リットル添加し、管路内で20秒攪拌させた後、ゼオライト充填層に供給した。
【0021】
この条件で運転を続けた結果、ろ過抵抗(水柱圧で)が1mに達するまでのろ過継続時間は、約32時間であった。また、32時間通水後の処理水水質は、SS0.5mg/リットル、リン0.4mg/リットル、アンモニア性窒素1.5mg/リットルと効果的にSS、リン、アンモニアが除去された。
32時間後に原水の通水を止め、ゼオライト充填層の洗浄を行った。
洗浄は、原水を上向流(流速500m/d)で10分間供給し、充填層内のSSを追い出して、水酸化第2鉄微粒子を含む排水を流出させた。
【0022】
しかる後、このゼオライト充填層に対し、原水に後記するリン回収工程からのアルカリ排水を添加することにより調製したゼオライト生物再生用水をSV2(1/h)で供給し、かつ、空気を散気装置21から該充填層に散気して、再生排水の溶存酸素を1mg/リットル以上に制御した。該充填層にこの条件で24時間通水した結果、ゼオライトに吸着されていたアンモニアは完全に硝化され、ゼオライトのアンモニア吸着能力が回復した。回復したかの確認方法は、生物再生後のゼオライト充填層に、pH12のNaOH水溶液を供給し、流出水のアンモニア濃度を測定する方法によった。生物再生が不十分である場合は、アンモニア性窒素が検出される。
【0023】
生物再生時に流出する生物再生排水には、亜硝酸性もしくは硝酸性窒素が含まれているので、この再生排水を、下水の2次処理工程の生物学的脱窒素工程(図示せず)に供給すると、下水中のBODを水素供与体として、再生排水中の亜硝酸性もしくは硝酸性窒素の生物学的脱窒素(窒素ガスへの還元)が進行するので、ゼオライト充填層生物再生排水の処理装置を、設置する必要はない。
【0024】
次に、先の洗浄操作で出たリンを吸着した水酸化鉄微粒子を含有するゼオライト充填層洗浄排水に、苛性ソーダを添加し、pH12に調整し、30分攪拌した後、リンが脱着した水酸化鉄微粒子を沈殿させ、沈殿後のリン分を含有する分離水にCaイオン(塩化カルシウムを使用)を、リン(濃度35mg/リットル)に対しモル比で2になるように添加し、10分間攪拌してHAPの結晶を析出させ後、析出したHAPを沈殿させ、リン資源として回収した。沈殿により分離したリン脱着水酸化鉄微粒子は、循環的に使用し定量的(20〜25mg/リットル)に原水に添加し、リン吸着材として再利用した。その際に出るHAP回収後のpH12のアルカリ性分離液はアルカリ排水として、ゼオライト生物再生用水に添加した。
【0025】
以上のような態様で6ヶ月間運転を継続したところ、ゼオライト充填層処理水の水質は、SS0.7mg/リットル、リン0.3〜0.6mg/リットル、アンモニア性窒素1.1〜2.3mg/リットルが安定して得られ、ゼオライトの生物学的再生、及びリン吸着水酸化鉄からのリン脱着が良好に行われたことが確認された。
【0026】
【発明の効果】
以上のように、本発明によれば次のような顕著な効果を発揮でき、下水の生物処理水等から、リンを有価資源として回収可能な革新的な汚水処理プロセスが得られる。
(1)単一の充填層によって、SS、リン、アンモニアの高度の除去が一挙に達成できる。すなわち、従来行われたいる、下水の活性汚泥処理水を砂ろ過層に通水しSSをろ過除去する三次処理工程における砂ろ過材の代わりに、粒状ゼオライトを充填し、窒素−リン含有排水にリン吸着性微粒子を添加するだけでSS、リン、アンモニアが同時に除去できるという顕著な効果がある。
(2)従来の脱リン用の無機凝集剤を使用しないので、水酸化アルミニウム、水酸化鉄などを含有する難脱水性の凝集沈殿汚泥が発生しないため、汚泥処理が不要である。
(3)リンが、HAP、MAPなどの有価リン資源として回収できる。
(4)リン回収工程から流出するアルカリ排水を、ゼオライトの生物再生時に必要な硝化反応のアルカリとして有効利用できるので、ゼオライトの生物再生時にpH低下が起きず、生物再生が効果的に行われる。
【図面の簡単な説明】
【図1】本発明のリン−窒素含有排水の処理方法を示すブロック図である。
【符号の説明】
1 生物処理水(原水)
2 リン吸着性微粒子
3 吸着槽
3A ゼオライト充填層
4 処理水
5 洗浄用水
6 洗浄排水
7 沈殿槽
8 沈殿スラリ
9 分離水
10 アルカリ剤
11 攪拌槽
12 固液分離槽
13 脱着リン含有水
14 Ca剤又はMg剤
15 脱着リン吸着性微粒子
16 晶析装置
17 HAP又はMAP
18 アルカリ排水
19 再生用水
20 酸素含有ガス
21 散気装置
22 生物再生水[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a new technology capable of simultaneously removing phosphorus and nitrogen from phosphorus and nitrogen-containing wastewater such as biologically treated water of sewage and recovering phosphorus as a valuable resource.
[0002]
[Prior art]
A typical technique for removing nitrogen components from organic wastewater is a biological nitrification denitrification method. The basic idea of this technology is to biologically nitrify ammoniacal nitrogen in wastewater almost completely, circulate the nitrification solution to the denitrification section, and biologically denitrify using BOD of the wastewater. Is. Accordingly, there is a feature that almost no compound containing ammonia and ammonia nitrogen remains in the treated water, and NO x remains. Since the residual NO x concentration is governed by the BOD / N ratio of raw water and the nitrification liquid circulation rate, in the case of sewage with a small BOD / N ratio, the nitrogen removal rate is about 80% and the nitrogen removal rate is 90%. In order to achieve the above, it was impossible to provide a second denitrification section and add an expensive organic carbon source such as methanol from the outside.
[0003]
As a chemical removal method of ammonia, a selective ion exchange method of ammonia using zeolitic minerals (zeolite, clinobutyrite, mordenite, synthetic zeolite, etc.) is known. It was not possible to remove phosphorus and nitrogen simultaneously from the sewage. As a phosphorus removal technique, a biological dephosphorization method is known. However, there is a drawback that the phosphorus removal effect is unstable, and that skilled and careful operation management is required.
The phosphorus removal method by adding a flocculant such as aluminum sulfate can surely remove phosphorus, but has a disadvantage that hardly dewatering sludge is generated. These phosphorus removal techniques cannot remove phosphorus and nitrogen from sewage simultaneously. Moreover, phosphorus could not be recovered as a resource that can be easily reused.
[0004]
[Problems to be solved by the invention]
The present invention broadly and fully utilizes the advantages of conventional individual technologies, solves the drawbacks of conventional individual technologies, achieves simultaneous removal of phosphorus and nitrogen, and enhances the removal rate. The objective is to establish new technologies that can be used. Another object of the present invention is to provide a new technology that not only removes phosphorus but also recovers it as a resource.
Most of the phosphorus in our sewage comes from imported foreign phosphorus ore resources. Since it has been pointed out that phosphorus ore resources will be depleted in the near future, it is extremely important to establish technology that can recover phosphorus resources from sewage.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has the following configuration.
(1) Phosphorus-adsorbing fine particles are added to nitrogen-phosphorus-containing wastewater, and water is passed through the granular zeolite packed bed, so that the ammoniacal nitrogen content in the drainage is adsorbed and removed by the granular zeolite, and the filtration resistance of the packed bed When A increases to a predetermined value, the packed bed is washed with water to discharge the captured fine particles A,
An insoluble phosphorus compound is prepared by adding an alkaline agent to the suspended water containing the fine particles discharged from the packed bed, desorbing phosphorus adsorbed on the fine particles, and adding Ca or Mg agent to the desorbed phosphorus-containing water. Step B in which particles are precipitated and solid-liquid separated,
In passing water through the granular zeolite packed bed of nitrogen-phosphorus containing wastewater to which phosphorus-adsorbing fine particles have been added, when the concentration of ammoniacal nitrogen in the packed bed effluent increases to a predetermined value, Nitrification in which the insoluble phosphorus compound is precipitated in Step B and aerated with oxygen-containing gas while supplying alkaline drainage that is produced when solid-liquid separation is performed, so that ammonia adsorbed on the granular zeolite is immobilized on the zeolite surface. Step C, which is biologically nitrified by fungi and causes nitrate-containing water to flow out of the zeolite packed bed,
A method for treating phosphorus-nitrogen-containing wastewater, comprising three steps comprising:
(2) In step B, when Ca or Mg agent is added to desorbed phosphorus-containing water to precipitate insoluble phosphorus compound particles, anaerobic digestion and desorption liquid of sewage sludge, sludge dewatered separation liquid in desorbed phosphorus-containing water The method for treating phosphorus-nitrogen-containing wastewater according to (1) above, wherein ammonia content is replenished by adding at least one of the sludge concentrate and separation liquid.
[0006]
(3) An adsorption tank having a granular zeolite packed bed equipped with a measuring device for measuring flow resistance, an introduction pipe for nitrogen-phosphorus-containing wastewater to which phosphorus-adsorbing fine particles are added, and an electromagnetic valve that operates according to the signal of the measuring device. wash water inlet, detergent drain discharge pipe, inlet tube for introducing alkali waste water during biological reproduction, and only set the diffuser tube ejecting placed oxygen containing gas in the bottom, connected to the other end of the prior SL detergent drain discharge pipe Solid-liquid separation device, alkali treatment device for adding alkali to sludge from the solid-liquid separation device and desorbing phosphorus from phosphorus-adsorbed fine particles, treatment liquid from the alkali treatment device desorbing phosphorus-adsorbing fine particles and desorbed phosphorus Solid-liquid separation device for solid-liquid separation into contained water, crystallization device for adding Ca or Mg agent to desorbed phosphorus-containing water from the solid-liquid separation device to precipitate insoluble phosphorus compound particles, A liquid feed pipe for sending the desorbed phosphorus-adsorbing fine particles to a nitrogen-phosphorus-containing waste water introduction pipe, and a liquid feed pipe for sending the alkaline waste water from the crystallizer to the adsorption tank during biological regeneration of the adsorption tank. A phosphorus-nitrogen-containing wastewater treatment apparatus.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described based on FIG. 1 showing an application example to treated sewage water.
In FIG. 1, the case where the biologically treated water 1 which biologically treated the sewage by the activated sludge method etc. is shown as an example of phosphorus-nitrogen containing waste water. An adsorption tank having a packed bed 3A in which phosphorus-adsorbing fine particles 2 such as ferric hydroxide are added to biologically treated water (hereinafter also referred to as “raw water”) 1 and filled with granular zeolite mineral having a particle size of about 1 to 3 mm. Pass water through 3. Examples of the zeolite mineral include substances that adsorb ammonia, such as zeolite, clinobutyrite, mordenite, and synthetic zeolite.
[0008]
Phosphate ions in raw water 1 are adsorbed and removed by phosphorus-adsorbing fine particles 2 such as iron hydroxide fine particles, and fine particles adsorbing phosphorus are filtered and trapped in zeolite packed bed 3A, and ammonia nitrogen in raw water 1 is It is adsorbed and removed by the ion exchange action of the granular zeolite mineral.
Further, SS such as fine activated sludge in the raw water 1 is removed by filtration while passing through the zeolite packed bed 3A. Thus, SS, phosphorus, and ammonia are removed all at once in the course of the raw water 1 passing through the zeolite packed bed 3A, and the clear treated water 4 flows out.
As described above, in the present invention, it is a feature not seen in the prior art that a single packed bed exhibits a combined function of removing SS, phosphorus, and ammonia all at once.
[0009]
However, if the raw water flow into the zeolite packed bed 3A is continued, the amount of SS in the raw water 1 and the amount of phosphorus adsorbing fine particles 2 trapped in the zeolite packed bed 3A increases, and the filtration resistance increases. When the value (usually set to about 1 m with water head) is reached (usually 12 to 24 hours after the start of operation), the washing water 5 flows upward in the zeolite packed bed 3A, and the zeolite particles flow. And backwash (backwash). 6 is washing waste water. The washing waste water 6 is allowed to flow into an apparatus for solid-liquid separation such as precipitation and membrane filtration, in this case, the precipitation tank 7, and the fine particles 2 in the washing waste water 6 are separated. The settling tank 7 can also serve as a storage tank for washing waste water.
The zeolite packed bed 3A, whose filtration resistance has been reduced after the backwashing, is continued by passing the raw water 1 again, and by repeating this operation, the concentration of SS, phosphorus, ammonia from the zeolite packed bed 3A is repeated. Treated water 4 is obtained.
When the operation is continued in this way, the ammonia adsorption capacity of the granular zeolite in the zeolite packed bed 3A approaches the saturation (usually after passing water for 1-2 days), and the ammonia concentration of the treated water 4 in the granular zeolite packed bed 3A Only deteriorates to a predetermined value (usually set to 5 mg / liter).
[0010]
At this time, the flow of the raw water is stopped, and after performing step A, the biological regeneration treatment of the zeolite packed bed 3A is started.
In the following case, the raw water flow to the zeolite packed bed is stopped.
Case (1): When the trapped amount of SS in the packed bed 3A increases and the filtration resistance reaches a predetermined value.
Case (2) When the ammonia concentration in the effluent water (treated water) 4 of the packed bed 3A reaches a predetermined value.
In this case (1), water flow can be resumed if the zeolite packed bed is only backwashed as described above. However, in case (2), the ammonia adsorption capacity of the zeolite packed bed is saturated. Therefore, the water flow cannot be resumed unless the zeolite packed bed is regenerated.
The regeneration treatment of the zeolite packed bed 3A is performed as follows. The regeneration treatment of the zeolite packed bed 3A (meaning the treatment to restore again the ammonia adsorption ability of the zeolite mineral whose ammonia adsorption ability has decreased) is caused to flow downwardly into the zeolite packed bed 3A with the regeneration water 19 added with an alkali component. This is performed effectively by ventilating an oxygen-containing gas 20 such as air, pure oxygen, or oxygen-enriched air from an air diffuser 21 provided at the bottom of the adsorber 3 while passing water upward.
[0011]
That is, when water for regeneration 19 having sufficient oxygen and alkalinity is supplied to zeolite particles in which a large amount of ammonia has been adsorbed, they are adsorbed to the zeolite by the nitrifying bacteria that naturally grow and adhere to the surface of the zeolite particles. The resulting ammonia is biologically oxidized to nitrate nitrogen or nitrite nitrogen.
Since nitrate nitrogen or nitrite nitrogen has the property that zeolite is not adsorbed, it is desorbed from the zeolite and flows out of the system together with the biological regeneration waste water 22.
[0012]
One of the most important points of the present invention is the idea that an alkaline drainage 18 containing an alkali component flowing out from a phosphorus recovery step described later is added to the regeneration water 19 for granular zeolite.
That is, in order to biologically nitrify 1 kg of ammonia adsorbed on zeolite and oxidize it to nitrate nitrogen, it requires about 8 kg of alkali, so water and oxygen-containing gas are simply passed through the zeolite packed bed 3A. When supplied to, the pH is lowered by hydrogen ions generated by nitrification of ammonia, the nitrification activity is remarkably deteriorated, and the biological nitrification of ammonia adsorbed on zeolite does not proceed smoothly.
In the present invention, this problem can be solved by adding the alkaline waste water 18 discharged from the phosphorus recovery process described later to the regeneration water 19. As the regeneration water 19, raw water 1, treated water 4 and the like are used.
[0013]
Next, the phosphorus recovery process will be described.
The washing wastewater 6 or the biological regeneration wastewater 22 of the zeolite packed bed 3A to which the phosphorus-adsorbing fine particles 2 in the state of adsorbing phosphorus are attached is supplied to a solid-liquid separation process such as a sedimentation tank 7 to separate the phosphorus-adsorbing fine particles 2. When caustic alkaline agent 10 such as NaOH or KOH is added to the precipitation slurry 8, the pH is adjusted to 11 or more (preferably pH 11.2 to 12.2), and stirred in the stirring tank 11 for 10 to 30 minutes. OH ions are adsorbed on the fine particles 2 such as iron hydroxide, and as a result, the phosphorus adsorbed on the fine particles 2 is desorbed from the phosphorus-adsorbing fine particles 2.
[0014]
Then, it isolate | separates with the solid-liquid separation tank 12, and the alkaline desorption phosphorus containing water 13 containing the phosphorus adsorption | suction fine particle 15 by which phosphorus was desorbed, and desorption phosphorus is obtained.
Phosphorus-adsorbing fine particles 15 from which phosphorus has been desorbed have recovered their phosphorus adsorption capacity, so when added to raw water 1 again, phosphate ions in raw water 1 are adsorbed and removed.
When Ca agent or Mg agent 14 is added to desorbed phosphorus-containing water 13 and stirred under alkaline conditions, calcium phosphate such as hydroxyapatite (HAP) or magnesium ammonium phosphate (MAP) 17 crystallizes. Solid-liquid separation is performed by the crystallizer 16 and effectively used as resources such as fertilizer raw materials. As the crystallization device 16, any known device can be used.
[0015]
Since the waste water 18 from the crystallizer (solid-liquid separator) 16 for depositing phosphorus has high alkalinity, it is used as the alkali for bioregeneration of the zeolite packed bed 3 as described above. Therefore, this waste water is called alkaline waste water 18.
Therefore, there is a remarkable effect that the alkali agent 10 such as NaOH can be used for the dual purpose of alkali for desorption from the phosphorus-adsorbing fine particles 2 and nitrification for biological regeneration of the zeolite packed bed.
[0016]
Ammonia nitrogen is indispensable when producing MAP 17 from the desorbed phosphorus-containing water 13, but in the present invention, the following means have been devised to supply ammonia.
That is, when the present invention is applied to sewage treatment, the anaerobic digestion and desorption liquid of sewage sludge, the sludge dehydrated separation liquid, and the sludge concentrated separation liquid are rotted as a result of the sludge being exposed to anaerobic and ammonia nitrogen. Is produced in large quantities from sludge, so any one of the anaerobic digestion and desorption liquid, sludge dewatering separation liquid, and sludge concentration separation liquid is used as the inflow water to the phosphorus precipitation step (crystallizer 16) of the present invention step. When mixed, a sufficient amount of ammonia nitrogen can be replenished, and a MAP production reaction can be effectively caused. Therefore, there is no need to purchase chemicals such as ammonium chloride, the cost can be reduced, and the back load of ammonia from the sludge treatment system can be reduced.
[0017]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not restrict | limited at all by this Example.
[0018]
Example 1
The standard activated sludge process water of the A sewage treatment facility was collected as nitrogen-phosphorus-containing water and tested by the method of the present invention. The water quality of the nitrogen-phosphorus-containing water (raw water) is shown in Table 1.
[0019]
[Table 1]
Figure 0003767800
[0020]
(Test conditions)
The test conditions and methods are described below.
A cylindrical column having a diameter of 15 cm and a height of 3 m was charged with granular zeolite (produced in Yamagata Prefecture, average particle size of 3.5 mm) at a packing height of 2 m to constitute an adsorption tank.
The test object water was passed through the adsorber in a downward flow at a filtration speed of 120 m / d. 20 mg / liter of ferric hydroxide fine particles (manufactured by adding caustic soda to ferric chloride solution and neutralizing to pH 6 to produce ferric hydroxide fine particles) in raw water In addition, 0.5 mg / liter of an anionic polymer flocculant (Ebagulose LEA601; Ebara product) was added, and the mixture was stirred for 20 seconds in a pipe, and then supplied to the zeolite packed bed.
[0021]
As a result of continuing the operation under these conditions, the filtration duration time until the filtration resistance (in water column pressure) reached 1 m was about 32 hours. In addition, SS, phosphorus and ammonia were effectively removed from the treated water after passing for 32 hours with SS 0.5 mg / liter, phosphorus 0.4 mg / liter and ammoniacal nitrogen 1.5 mg / liter.
After 32 hours, the flow of raw water was stopped, and the zeolite packed bed was washed.
In the cleaning, raw water was supplied in an upward flow (flow rate 500 m / d) for 10 minutes, the SS in the packed bed was driven out, and the waste water containing ferric hydroxide fine particles was discharged.
[0022]
Thereafter, the zeolite bioregeneration water prepared by adding alkaline waste water from the phosphorus recovery step described later to the raw water is supplied to the zeolite packed bed by SV2 (1 / h), and air is diffused. The gas was diffused from 21 to the packed bed, and the dissolved oxygen in the reclaimed waste water was controlled to 1 mg / liter or more. As a result of passing water through the packed bed under these conditions for 24 hours, the ammonia adsorbed on the zeolite was completely nitrified, and the ammonia adsorption ability of the zeolite was recovered. The recovery method was based on a method in which a pH 12 NaOH aqueous solution was supplied to the zeolite packed bed after bioregeneration and the ammonia concentration of the effluent water was measured. If the biological regeneration is insufficient, ammoniacal nitrogen is detected.
[0023]
Biological regeneration wastewater that flows out during biological regeneration contains nitrite or nitrate nitrogen, so this regeneration wastewater is supplied to the biological denitrification process (not shown) in the secondary treatment process of sewage. Then, biological denitrification (reduction to nitrogen gas) of nitrite or nitrate nitrogen in the reclaimed wastewater proceeds using BOD in the sewage as a hydrogen donor. Need not be installed.
[0024]
Next, caustic soda is added to the zeolite packed bed washing wastewater containing the iron hydroxide fine particles adsorbing the phosphorus adsorbed in the previous washing operation, adjusted to pH 12, stirred for 30 minutes, and then the hydroxylated desorbed phosphorus. Precipitating iron fine particles, adding Ca ions (using calcium chloride) to the separated water containing phosphorus after precipitation so that the molar ratio is 2 with respect to phosphorus (concentration 35 mg / liter) and stirring for 10 minutes Then, after HAP crystals were precipitated, the precipitated HAP was precipitated and recovered as phosphorus resources. Phosphorus-desorbed iron hydroxide fine particles separated by precipitation were cyclically used, added quantitatively (20 to 25 mg / liter) to raw water, and reused as a phosphorus adsorbent. At that time, the alkaline separation liquid having a pH of 12 after the recovery of HAP was added to the water for zeolite bioregeneration as alkaline drainage.
[0025]
When the operation was continued for 6 months in the above manner, the quality of the zeolite packed bed treated water was SS 0.7 mg / liter, phosphorus 0.3 to 0.6 mg / liter, ammoniacal nitrogen 1.1 to 2. 3 mg / liter was stably obtained, and it was confirmed that the biological regeneration of zeolite and phosphorus desorption from phosphorus-adsorbed iron hydroxide were performed satisfactorily.
[0026]
【The invention's effect】
As described above, according to the present invention, the following remarkable effects can be exhibited, and an innovative sewage treatment process capable of recovering phosphorus as a valuable resource from biologically treated water of sewage can be obtained.
(1) A high degree of removal of SS, phosphorus and ammonia can be achieved at once by a single packed bed. That is, instead of the sand filter material in the tertiary treatment process in which the activated sludge treated water of sewage is conventionally passed through the sand filtration layer and SS is removed by filtration, it is filled with granular zeolite to form nitrogen-phosphorus-containing wastewater. There is a remarkable effect that SS, phosphorus, and ammonia can be simultaneously removed by simply adding phosphorus-adsorbing fine particles.
(2) Since a conventional inorganic deaggregating agent for dephosphorization is not used, sludge treatment is unnecessary because hardly dewatering coagulating sedimentation sludge containing aluminum hydroxide, iron hydroxide or the like is not generated.
(3) Phosphorus can be recovered as valuable phosphorus resources such as HAP and MAP.
(4) Since the alkaline drainage flowing out from the phosphorus recovery step can be effectively used as an alkali for the nitrification reaction necessary for the biological regeneration of the zeolite, the pH is not lowered during the biological regeneration of the zeolite, and the biological regeneration is performed effectively.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a method for treating phosphorus-nitrogen-containing wastewater according to the present invention.
[Explanation of symbols]
1 Biologically treated water (raw water)
2 Phosphorus-adsorbing fine particles 3 Adsorption tank 3A Zeolite packed bed 4 Treated water 5 Washing water 6 Washing drainage 7 Precipitation tank 8 Precipitation slurry 9 Separation water 10 Alkaline agent 11 Stirring tank 12 Solid-liquid separation tank 13 Desorbed phosphorus-containing water 14 Ca agent or Mg agent 15 Desorbed phosphorus-adsorbing fine particles 16 Crystallizer 17 HAP or MAP
18 Alkaline drainage 19 Reclaimed water 20 Oxygen-containing gas 21 Aeration device 22 Biologically reclaimed water

Claims (3)

窒素−リン含有排水にリン吸着性微粒子を添加して、粒状ゼオライト充填層に通水して、排水中のアンモニア性の窒素分を粒状ゼオライトに吸着除去せしめ、該充填層のろ過抵抗が所定値に増加した時点で、該充填層を水で洗浄して捕捉されていた前記微粒子を排出する工程A、
前記充填層から排出された前記微粒子を含有する懸濁水に、アルカリ剤を添加し、該微粒子に吸着されたリンを脱着させ、脱着リン含有水に、Ca又はMg剤を添加して不溶性リン化合物粒子を析出させ、固液分離する工程B、
リン吸着性微粒子を添加した窒素−リン含有排水の前記粒状ゼオライト充填層への通水において、該充填層流出水のアンモニア性窒素濃度が所定値に増加した時点で、該充填層に対し、前記工程Bで前記不溶性リン化合物を析出させ固液分離した際に出るアルカリ排水を供給しながら酸素含有ガスで曝気して、粒状ゼオライトに吸着されていたアンモニアを、ゼオライト表面に固定化された硝化菌によって生物学的に硝化させ、硝酸性窒素含有水をゼオライト充填層から流出させる工程C、
からなる3工程を含むことを特徴とするリン−窒素含有排水の処理方法。
Phosphorus-adsorbing fine particles are added to the nitrogen-phosphorus-containing waste water, and water is passed through the granular zeolite packed bed, so that the ammonia nitrogen content in the drained water is adsorbed and removed by the granular zeolite. Step A in which the fine particles that have been trapped are discharged by washing the packed bed with water.
An insoluble phosphorus compound is prepared by adding an alkaline agent to the suspended water containing the fine particles discharged from the packed bed, desorbing phosphorus adsorbed on the fine particles, and adding Ca or Mg agent to the desorbed phosphorus-containing water. Step B in which particles are precipitated and solid-liquid separated,
In passing water through the granular zeolite packed bed of nitrogen-phosphorus containing wastewater to which phosphorus-adsorbing fine particles have been added, when the concentration of ammoniacal nitrogen in the packed bed effluent increases to a predetermined value, Nitrifying bacteria in which ammonia adsorbed on the granular zeolite was immobilized on the zeolite surface by aeration with an oxygen-containing gas while supplying the alkaline drainage produced when the insoluble phosphorus compound was precipitated and separated into solid and liquid in Step B Step C for biologically nitrifying by the process and allowing the nitrate nitrogen-containing water to flow out of the zeolite packed bed,
A method for treating phosphorus-nitrogen-containing wastewater, comprising three steps comprising:
工程Bにおいて、脱着リン含有水に、Ca又はMg剤を添加して不溶性リン化合物粒子を析出させる際に、脱着リン含有水に下水汚泥の嫌気性消化脱離液、汚泥脱水分離液、汚泥濃縮分離液の少なくとも一つを添加してアンモニア分を補給することを特徴とする請求項1記載のリン−窒素含有排水の処理方法。In step B, when Ca or Mg agent is added to desorbed phosphorus-containing water to precipitate insoluble phosphorus compound particles, anaerobic digestion and desorption liquid of sewage sludge, sludge dewatered separation liquid, sludge concentration in desorbed phosphorus-containing water The method for treating phosphorus-nitrogen-containing wastewater according to claim 1, wherein at least one of the separated liquids is added to replenish the ammonia content. 流通抵抗を測定する測定器を備えた粒状ゼオライト充填層を有する吸着槽、リン吸着性微粒子を添加した窒素−リン含有排水の導入管、前記測定器の信号により動作する電磁弁を備えた洗浄水導入管、洗浄排水排出管、生物再生時にアルカリ排水を導入する導入管、及び底部に設置した酸素含有ガスを噴出する散気管を設け、前記洗浄排水排出管の他端に接続された固液分離装置、前記固液分離装置からの汚泥にアルカリを添加してリン吸着微粒子からリンを脱着するアルカリ処理装置、前記アルカリ処理装置からの処理液を脱着リン吸着性微粒子と脱着リン含有水とに固液分離する固液分離装置、前記固液分離装置からの脱着リン含有水にCa又はMg剤を添加して不溶性リン化合物粒子を析出させる晶析装置、前記固液分離装置からの脱着リン吸着性微粒子を窒素−リン含有排水の導入管に送る送液管、及び前記晶析装置からのアルカリ排水を前記吸着槽の生物再生時に前記吸着槽に送る送液管を有することを特徴とするリン−窒素含有排水の処理装置。Washing water equipped with an adsorption tank having a granular zeolite packed bed equipped with a measuring device for measuring the flow resistance, a nitrogen-phosphorus-containing drainage pipe added with phosphorus-adsorbing fine particles, and an electromagnetic valve operated by the signal of the measuring device inlet tube, washed drainage discharge tube, inlet tube for introducing alkali waste water during biological reproduction, and only set the diffuser tube ejecting placed oxygen containing gas in the bottom, the solid was connected to the other end of the prior SL detergent drain discharge pipe A liquid separation device, an alkali treatment device for adding phosphorus to sludge from the solid-liquid separation device to desorb phosphorus from the phosphorus-adsorbed fine particles, a treatment liquid from the alkali treatment device, desorbing phosphorus-adsorbing fine particles, and desorbed phosphorus-containing water; A solid-liquid separation apparatus for solid-liquid separation, a crystallization apparatus for adding Ca or Mg agent to desorbed phosphorus-containing water from the solid-liquid separation apparatus to precipitate insoluble phosphorus compound particles, and desorption from the solid-liquid separation apparatus A liquid feed pipe for sending phosphorus-adsorbing fine particles to a nitrogen-phosphorus-containing waste water introduction pipe, and a liquid feed pipe for sending alkaline waste water from the crystallizer to the adsorption tank during biological regeneration of the adsorption tank, To treat wastewater containing phosphorus and nitrogen.
JP2001132291A 2001-04-27 2001-04-27 Nitrogen-phosphorus-containing wastewater treatment method and apparatus Expired - Fee Related JP3767800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001132291A JP3767800B2 (en) 2001-04-27 2001-04-27 Nitrogen-phosphorus-containing wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001132291A JP3767800B2 (en) 2001-04-27 2001-04-27 Nitrogen-phosphorus-containing wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2002320961A JP2002320961A (en) 2002-11-05
JP3767800B2 true JP3767800B2 (en) 2006-04-19

Family

ID=18980325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001132291A Expired - Fee Related JP3767800B2 (en) 2001-04-27 2001-04-27 Nitrogen-phosphorus-containing wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3767800B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332896C (en) * 2004-07-02 2007-08-22 桂林工学院 Process for removing nitrogen and phosphor from sewage capable of being built by separate periods
JP5260972B2 (en) * 2008-01-22 2013-08-14 Jx日鉱日石エネルギー株式会社 Wastewater treatment equipment
JP5414090B2 (en) * 2008-10-09 2014-02-12 独立行政法人農業・食品産業技術総合研究機構 Solid support on which microorganism group performing parallel dual mineralization reaction is immobilized, catalyst column, and method for producing solid medium for plant cultivation
CA2764112C (en) 2009-07-08 2018-01-16 Saudi Arabian Oil Company Low concentration wastewater treatment system and process
CN102548912B (en) 2009-07-08 2015-06-17 沙特阿拉伯石油公司 Wastewater treatment system and process including irradiation of primary solids
CN103833127A (en) * 2012-11-26 2014-06-04 杨志勇 Novel ammonia-nitrogen biologic processor
CN103936189A (en) * 2014-03-19 2014-07-23 北京博力扬环保科技有限公司 Processing method for recovery processing of high ammonia nitrogen wastewater
JP6407052B2 (en) * 2015-02-02 2018-10-17 クボタ環境サ−ビス株式会社 Phosphorus recovery apparatus and phosphorus recovery method
CN106277426B (en) * 2015-06-29 2019-08-27 宝山钢铁股份有限公司 A kind of cold rolling diluted alkaline bio-chemical effluent deep treatment method and system
CN105036294B (en) * 2015-08-18 2017-10-03 南京大学 A kind of novel packed tower for improving gas utilization efficiency
CN106186594A (en) * 2016-09-21 2016-12-07 东莞市联洲知识产权运营管理有限公司 The processing method of one way of life waste water high-efficiency denitrogenation dephosphorizing
CN109928577A (en) * 2019-04-04 2019-06-25 轻工业环境保护研究所 A kind of de- ammonium system of biogas slurry
CN112093981B (en) * 2020-09-10 2024-01-26 上海电力大学 Sewage treatment device and process for synchronous efficient pollutant removal and comprehensive recycling

Also Published As

Publication number Publication date
JP2002320961A (en) 2002-11-05

Similar Documents

Publication Publication Date Title
JP3767800B2 (en) Nitrogen-phosphorus-containing wastewater treatment method and apparatus
JP4834993B2 (en) Waste water treatment apparatus and treatment method
KR100644236B1 (en) Activated carbon body column for water purification plant and purifying methods using the same
KR20060086293A (en) A process and an apparatus for treating waters containing a biologically treated water
JP2002205077A (en) Method and apparatus for treating organic sewage
WO2014189773A1 (en) System and process for removing ammonium, soluble bod and suspended solids from a wastewater stream
JP2992692B2 (en) Sewage purification method and apparatus
KR102344489B1 (en) System for phosphate adsorption-desorption in aqueous phase using powdered-phosphate absorbent, and method for the same
JP3791760B2 (en) Method and apparatus for removing and recovering phosphorus from water containing SS and phosphorus
JP3845758B2 (en) Dephosphorization method of waste water
JP3438508B2 (en) Advanced water treatment method and apparatus
JP4439040B2 (en) Wastewater treatment equipment
JP3516311B2 (en) Advanced treatment method and apparatus for organic wastewater
JP3156956B2 (en) Advanced treatment of organic wastewater
JP3414511B2 (en) Advanced treatment method for organic wastewater
JP2004249245A (en) Phosphorus-containing organic sewage treatment apparatus
JP3555812B2 (en) Advanced treatment method for organic wastewater
JPH0352699A (en) Treatment of sewage of night soil system
JPH0694040B2 (en) Water purification method and device
JP4647814B2 (en) Organic wastewater treatment equipment
JP3348446B2 (en) Method and apparatus for removing nitrate ions and / or nitrite ions
KR20110095750A (en) Wastewater treatment system using filter paper filled with absorbent media coating hydroxide metal salt, and wastewater treatment method using the same
KR100491002B1 (en) A method for treatment wastewater containing chrome and nitrate
JP2001047062A (en) Treatment of leachate from landfill site
JPH0975921A (en) Recovering method of phosphorus from contaminated water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees