JPH0352699A - Treatment of sewage of night soil system - Google Patents

Treatment of sewage of night soil system

Info

Publication number
JPH0352699A
JPH0352699A JP18355089A JP18355089A JPH0352699A JP H0352699 A JPH0352699 A JP H0352699A JP 18355089 A JP18355089 A JP 18355089A JP 18355089 A JP18355089 A JP 18355089A JP H0352699 A JPH0352699 A JP H0352699A
Authority
JP
Japan
Prior art keywords
activated carbon
water
membrane
cod
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18355089A
Other languages
Japanese (ja)
Other versions
JPH0536119B2 (en
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP18355089A priority Critical patent/JPH0352699A/en
Publication of JPH0352699A publication Critical patent/JPH0352699A/en
Publication of JPH0536119B2 publication Critical patent/JPH0536119B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To surely prevent foaming and to greatly improve maintenance and management characteristics by adding an inorg. flocculating agent and powder activated carbon to the activated sludge slurry from a denitrification stage and bringing the permeated water formed by permeation of treated water through a membrane into contact with the granular activated carbon. CONSTITUTION:Sewage 1 flows into a biological nitrifying and denitrifying chamber 2 where the sewage is nitrified and denitrified and BOD and biologically decomposed COD are simultaneously removed therefrom. The slurry 3 is added with an alkaline agent 4 and the inorg. flocculating agent 5, such as FeCl3, and is thereby subjected to the flocculating treatment on a weakly acidic side of pH4 to 6, by which the non- biologically decomposable COD components, chromaticity components and PO4<3-> ions are insolubilized to flocs. The flocculation treated water flows into an activated carbon contact chamber 7 where the COD and chromaticity components are adsorbed and removed. Effluent liquid 8 is removed and separated. The membrane permeated water 11 of zero SS is supplied to a granular activated carbon adsorption column 15 where the COD components contained in the membrane permeated water are adsorbed away. This water is released as highly treated water 16 to the public water basin.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、し尿系汚水を簡潔な構或で、維持管理も容易
な新規プロセスにより処理し、高度に浄化された処理水
を安定的に得る方法に関する.(従来の技術) 窒素、リン、BOD,COD,SS、色度を多量に含む
し尿系汚水を処理する従来の最も代表的なプロセスは、
第2図に示したフローによるもので、膜分離方式と呼ば
れている。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention treats human waste water using a new process that has a simple structure and is easy to maintain and manage, thereby stably producing highly purified treated water. Regarding how to obtain it. (Prior art) The most typical conventional process for treating human waste wastewater containing large amounts of nitrogen, phosphorus, BOD, COD, SS, and chromaticity is as follows:
This method is based on the flow shown in Figure 2 and is called a membrane separation method.

この方式は、固液分離に限外濾過膜などの膜を用いるも
ので、常に完全な固液分離ができるため、非常に注目を
集めている新方式である。
This method uses a membrane such as an ultrafiltration membrane for solid-liquid separation, and is a new method that is attracting a lot of attention because it can always achieve complete solid-liquid separation.

しかし、この方式は、次のような欠点が未解決であって
、とうてい理想的プロセスとは言えない。
However, this method has the following unresolved drawbacks and cannot be called an ideal process.

■ 生物学的硝化脱窒素工程の発泡がすさまじく、消泡
剤添加と消泡機を設置しないと、泡が溢れ出し、運転不
能になる。
■ The biological nitrification and denitrification process produces a lot of foam, and unless an antifoaming agent is added and an antifoaming machine is installed, the foam will overflow and the system will become inoperable.

■ 粒状活性炭吸着塔に流入する液のCODが100m
g/ 1程度と高濃度であるため、活性炭吸着塔が破遇
するまでの時間が短かく、かなり頻繁な活性炭再生操作
を必要とするため、維持管理が煩雑である。活性炭処理
コストも高い。
■ The COD of the liquid flowing into the granular activated carbon adsorption tower is 100m
Since the concentration is as high as about 1 g/1, the time required for the activated carbon adsorption tower to fail is short, and maintenance is complicated because activated carbon regeneration operations are required quite frequently. Activated carbon treatment costs are also high.

(発明が解決しようとする課題) 本発明は、このような従来の膜方式の重大欠点を解決す
ることを目的とする。すなわち、■ 生物学的硝化脱窒
素工程の発泡を適確に防止し、該工程への消泡剤添加と
消泡機の設置を不要にする。
(Problems to be Solved by the Invention) The present invention aims to solve the serious drawbacks of such conventional membrane systems. That is, (1) foaming in the biological nitrification and denitrification process is accurately prevented, making it unnecessary to add an antifoaming agent to the process and to install an antifoaming machine.

■ 活性炭吸着塔の再生頻度を大幅に減少することを可
能にする。その結果、維持管理性を大きく向上させる。
■ It makes it possible to significantly reduce the regeneration frequency of activated carbon adsorption towers. As a result, maintenance efficiency is greatly improved.

を解決課題とするものである。is the problem to be solved.

(課題を解決するための手段) 本発明は、し尿系汚水を生物学的硝化脱窒素する脱窒工
程、脱窒工程からの活性汚泥スラリー又は生物処理水に
無機凝集剤および粉末活性炭を添加する凝集及び吸着工
程、吸着工程からの処理液を膜によりスランジと透過水
に分離する膜分離工程、及び前記脱窒工程に該スラッジ
を返送、添加する返送工程、及び前記透過水を粒状活性
炭と接触せしめる接触工程からなることを特徴とする処
理方法である。
(Means for Solving the Problems) The present invention involves adding an inorganic flocculant and powdered activated carbon to a denitrification process in which human waste water is biologically nitrified and denitrified, an activated sludge slurry from the denitrification process, or biologically treated water. a coagulation and adsorption step, a membrane separation step in which the treated liquid from the adsorption step is separated into sludge and permeated water by a membrane, a return step in which the sludge is returned and added to the denitrification step, and the permeated water is brought into contact with granular activated carbon. This is a processing method characterized by comprising a contact step.

本発明において、該スラッジは活性汚泥、凝集工程によ
って、非生物分解性のCOD成分、色度成分、PO4”
−イオンなどの汚水或分から不溶化して生成される凝集
フロック、凝集工程で除去されなかったそれら或分を吸
着保持した粉末活性炭等からなる。一方、膜透過水は粒
状活性炭と接触されて、更に残存する汚れ戒分を所望量
除・去して清澄な高度処理水として放流される。
In the present invention, the sludge is processed by activated sludge, coagulation process, non-biodegradable COD component, chromaticity component, PO4''
- Consists of agglomerated flocs produced by insolubilizing some of the waste water such as ions, and powdered activated carbon that adsorbs and retains some of these that were not removed in the aggregation process. On the other hand, the membrane-permeated water is brought into contact with granular activated carbon to further remove a desired amount of remaining contaminants, and is discharged as clear highly treated water.

該fi!透過水は、含有COD量を、20〜60mg,
好ましくは20〜40mg/ffi程度含有するように
該吸着工程で粉末活性炭を添加する。言い換えれば、吸
着工程において、粉末活性炭の添加量を被処理水の量及
びその汚水戒分量に応じて厳密にコントロールする管理
を大幅に軽減できると共に、粒状活性炭の寿命を著しく
長期化できる。
That fi! The permeated water has a COD content of 20 to 60 mg,
Powdered activated carbon is preferably added in the adsorption step so as to contain about 20 to 40 mg/ffi. In other words, in the adsorption step, the amount of powdered activated carbon added can be significantly reduced in strict control according to the amount of water to be treated and the amount of sewage treated, and the life of the granular activated carbon can be significantly extended.

粒状活性炭は、吸着能力が低下した時、例えば、放流水
のCOD濃度が約15mg/ Q以上、に達した時に再
生処理される。
Granular activated carbon is regenerated when its adsorption capacity decreases, for example, when the COD concentration in the effluent reaches about 15 mg/Q or more.

また、該膜分離されたスラッジは、返送工程において、
脱窒素工程ヘリサイクルされるが、この時、該スラッジ
の一部を凝集工程の前段に添加、リサイクルすることが
好ましい。
In addition, the membrane-separated sludge is returned in the return process.
The sludge is recycled to the denitrification process, but at this time, it is preferable to add and recycle a part of the sludge before the coagulation process.

本発明が適用されるフローシ一トの一例を示した第1図
を参照しながら、本発明の一実施態様を詳述する。
An embodiment of the present invention will be described in detail with reference to FIG. 1 showing an example of a flow sheet to which the present invention is applied.

し尿系汚水lは、まず脱窒工程で処理される.汚水1は
無希釈で、生物学的硝化脱窒素槽2に流入し、硝化・脱
窒され、同時にBOD、生物分解性CODも除去される
。硝化脱窒素槽2の反応型式としては、硝化液循環型、
回分投入型など公知の任意の方法が適用できる。
Human waste water is first treated in a denitrification process. The wastewater 1 flows undiluted into the biological nitrification and denitrification tank 2 where it is nitrified and denitrified, and at the same time BOD and biodegradable COD are also removed. The reaction type of the nitrification and denitrification tank 2 is the nitrification liquid circulation type,
Any known method such as a batch injection type can be applied.

硝化脱窒素槽2から流出する活性汚泥スラリ−3は、凝
集及び吸着工程で処理される。凝集工程において、該ス
ラリー3はpH調整用のアルカリ剤4と、FeCI!.
,、硫酸アルξ、ポリ塩化アルξ、ポリ硫酸鉄などから
選ばれる無機凝集剤5が添加され、pl{4〜6の弱酸
性側で凝集処理を受け、非生物分解性のCOD戒分、色
度戒分およびpo4’−イオンが不溶化しフロックとな
る。
The activated sludge slurry 3 flowing out from the nitrification and denitrification tank 2 is treated in a coagulation and adsorption process. In the aggregation step, the slurry 3 is mixed with an alkaline agent 4 for pH adjustment and FeCI! ..
,, an inorganic flocculant 5 selected from aluminum sulfate ξ, polyaluminum chloride ξ, polyferric sulfate, etc. is added and subjected to flocculation treatment on the weakly acidic side of pl{4 to 6, resulting in non-biodegradable COD preservatives, The chromaticity fraction and po4'- ions become insolubilized and form flocs.

次に、吸着工程において、凝集処理液は、粉末活性炭6
が添加されて、滞留時間1〜2hr程度の活性炭接触槽
7に流入し、凝集処理によっても除去されなかったCO
D、色度戒分を吸着除去する。
Next, in the adsorption step, the aggregation treatment liquid is powdered activated carbon 6
CO was added and flowed into the activated carbon contact tank 7 with a residence time of about 1 to 2 hours, and CO that was not removed even by the coagulation treatment.
D. Adsorb and remove chromaticity components.

活性炭接触槽7のかくはん法は、エアレーシッンによる
のが簡便であり、好都合である。
The method of stirring the activated carbon contact tank 7 is by air lacing, which is simple and convenient.

なお、第1図では、硝化脱窒素槽2における脱窒工程か
らの活性汚泥スラリ−3に、直接凝集剤5を添加するよ
うに示してあるが、活性汚泥スラリ−3を、沈澱、遠心
分離、膜分離など任意の固液分離手段によって、あらか
じめ、活性汚泥の大部分を分離してから、その分離液(
生物処理水)に対し、凝集剤5を添加するようにしても
もちろん差支えない。
Although FIG. 1 shows that the flocculant 5 is added directly to the activated sludge slurry 3 from the denitrification process in the nitrification and denitrification tank 2, the activated sludge slurry 3 is not subjected to sedimentation, centrifugation, etc. , most of the activated sludge is separated in advance by any solid-liquid separation means such as membrane separation, and then the separated liquid (
Of course, the flocculant 5 may also be added to the biologically treated water).

しかして、吸着工程からの処理液、即ち、粉末活性炭接
触槽7からの流出液8は、膜分離工程で処理される.こ
こで、流出水8をポンブ9によって、限外濾過膜(UF
)もしくは、精密濾過膜(MF)を用いる膜分離部10
に圧送し、活性汚泥、粉末活性炭、′a集フロックなど
のSSを完全に膜分離し、SSゼロの膜透過水11と、
膜分離スラッジ12に分離する。膜分離スラッジ12は
、その一部13を、生物学的硝化脱窒素槽2に供給し、
他部14を、凝集剤5の注入点の前段にリサイクルさせ
る。
Thus, the treated liquid from the adsorption process, ie, the effluent 8 from the powdered activated carbon contact tank 7, is treated in the membrane separation process. Here, the effluent water 8 is passed through an ultrafiltration membrane (UF) by a pump 9.
) or a membrane separation unit 10 using a microfiltration membrane (MF)
SS such as activated sludge, powdered activated carbon, and flocs is completely separated by membrane, and membrane permeated water 11 with zero SS is obtained.
It is separated into membrane separated sludge 12. A portion 13 of the membrane-separated sludge 12 is supplied to the biological nitrification and denitrification tank 2,
The other part 14 is recycled before the injection point of the flocculant 5.

一方、膜透過水11(CODが20〜40mg/1程度
になるように粉末活性炭量6を注入するのが良い)を、
粒状活性炭に接触させるため粒状活性炭吸着塔l5に供
給し、膜透過水中に含まれるCODrIi.分を吸着除
去し、高度処理水16として、公共用水域に放流する。
On the other hand, membrane permeated water 11 (it is preferable to inject an amount of powdered activated carbon of 6 so that the COD is about 20 to 40 mg/1),
The CODrIi. The water is adsorbed and removed and discharged into public water bodies as highly treated water 16.

なおライン17は、余剰汚泥の排出管であり、汚泥脱水
工程(図示せず)に供給されて、脱水され、ケーキとな
り、そのあと焼却などの処分を受ける。余剰汚泥はライ
ン17゛ から排出してもよい。
Note that the line 17 is a discharge pipe for excess sludge, which is supplied to a sludge dewatering process (not shown), where it is dehydrated and turned into a cake, which is then disposed of by incineration or the like. Excess sludge may be discharged through line 17.

〔作 用〕[For production]

本発明においては、生物学的硝化脱窒素槽2に凝集処理
後の残留COD戒分などを吸着した膜分離スラッジ(粉
末活性炭共存スラッジH2を供給すると、驚くべきこと
に、同処理工程での発泡が著しく抑止あるいは全くなく
なり、消泡剤の添加が不必要になり、消泡機も不要にな
ることが見出された。このような作用が生じる機構につ
いては、膜分離スラッジ(粉末活性炭共存スラッジ)l
2のどのような作用によるものかはっきりしないが、い
ずれにしてもその添加により上記の作用が顕著に生じる
。すなわち、し尿の無希釈生物学的処理プロセスの最大
の懸案が解決することが見出された。
In the present invention, when membrane-separated sludge (powdered activated carbon coexistence sludge H2) that has adsorbed residual COD components after flocculation treatment is supplied to the biological nitrification and denitrification tank 2, surprisingly, foaming occurs in the same treatment process. It was found that this effect was significantly suppressed or completely eliminated, making it unnecessary to add an antifoaming agent and eliminating the need for an antifoaming machine. )l
Although it is not clear what kind of effect is caused by 2, in any case, the above effect is significantly produced by its addition. In other words, it has been found that the greatest concern regarding the undiluted biological treatment process for human waste has been solved.

さらに、膜分離スラッジ(粉末活性炭共存スラッジ) 
12を凝集工程の前段に循環すると、塩化第2鉄などの
無機凝集剤の所要薬注率20%ほど節減できることが認
められた。このことは重要な意,、味をもっており、汚
泥発生量が減少し、汚泥処理が合理化できるという大き
な効果が出る。
In addition, membrane separated sludge (powdered activated carbon coexistence sludge)
It has been found that when 12 is circulated before the flocculation process, the required chemical injection rate of inorganic flocculants such as ferric chloride can be reduced by about 20%. This has an important meaning, and has the great effect of reducing the amount of sludge generated and streamlining sludge treatment.

もう一つの重要な作用としては、粉末活性炭が共存する
凝集スラリーを含有する流出水8を膜分離する場合、粉
末活性炭無共存時に比べ、膜透過流束(フラックス) 
 (rrr/n{・膜・日)が向上することも発見され
た。
Another important effect is that when effluent water 8 containing agglomerated slurry in which powdered activated carbon coexists is subjected to membrane separation, the membrane permeation flux (flux) is higher than when powdered activated carbon is not coexisted.
It was also discovered that (rrr/n{・membrane・day) was improved.

更に、本発明では、CODI度の低い膜透過水を粒状活
性炭と接触させるため、粒状活性炭を長寿命化すると共
に破過活性炭の生物再生処理を容易にする作用がある。
Furthermore, in the present invention, membrane permeated water with a low CODI degree is brought into contact with the granular activated carbon, which has the effect of extending the life of the granular activated carbon and facilitating the biological regeneration treatment of the breakthrough activated carbon.

(発明の効果) 以上のような、本発明のフローチャートによると、次の
ような極めて注目すべき効果が現れることが、実験的に
見出された。
(Effects of the Invention) According to the flowchart of the present invention as described above, it has been experimentally found that the following extremely noteworthy effects appear.

すなわち、 ■ 凝集処理液中に残留するCOD、色度威分を吸着し
た粉末活性炭をライン13から生物学的硝化脱窒素槽2
に供給すると、驚くべきことに、激しく発泡が全くなく
なり、それまでは、消泡剤(シリコーン系、アルコール
系)を添加しないと運転不能であったが、消泡剤の添加
は全く不要になった。
That is, ■ Powdered activated carbon that has adsorbed COD and chromaticity remaining in the flocculation treatment liquid is sent from line 13 to biological nitrification and denitrification tank 2.
Surprisingly, there was no violent foaming at all. Up until then, it had been impossible to operate without adding an antifoaming agent (silicone type, alcohol type), but the addition of an antifoaming agent is no longer necessary. Ta.

また、消泡機(回転羽根で泡を衝撃破壊するもの)の運
転も不要になった。
Additionally, it is no longer necessary to operate a defoaming machine (which destroys foam by impact using rotating blades).

■ 粉末活性炭のみで、凝集処理水に残留するCOD、
色度戒分を吸着除去する方法では、原水COD、色度の
濃度の変動に応じて、粉末活性炭の注入率を変化させな
いと、常に良好な処理水質が得られないため、粉末活性
炭の注入率を自動制御する必要が生ずる。しかし、自動
制御用の機器が複雑となり、しかも設備費が高く、メン
テナンスの上でも問題がある。
■ Powdered activated carbon alone eliminates COD remaining in coagulated treated water.
In the method of adsorbing and removing chromaticity components, good treated water quality cannot always be obtained unless the injection rate of powdered activated carbon is changed according to fluctuations in raw water COD and chromaticity concentration. The need arises for automatic control. However, the automatic control equipment is complicated, the equipment cost is high, and there are problems in terms of maintenance.

しかし、本発明の粉末活性炭峠膜分離峠粒状活性炭吸着
という方法によると、最終段に粒状活性炭吸着塔が存在
しているため、原水COD、色度の変動に無関係に、一
定量の粉末活性炭を注入するだけで、常に、安定して良
好な処理水質を得ることが出来る。
However, according to the powdered activated carbon pass membrane separation pass granular activated carbon adsorption method of the present invention, a granular activated carbon adsorption tower is present in the final stage, so a fixed amount of powdered activated carbon can be absorbed regardless of fluctuations in raw water COD and chromaticity. Just by injecting it, you can always obtain stable and good treated water quality.

しかもその結果として、籾未活性炭の注入率を制御する
必要がなくなるので、集注設備が大きく簡素化できる。
Moreover, as a result, there is no need to control the injection rate of unactivated rice carbon, so the collection equipment can be greatly simplified.

■ さらに、粒状活性炭吸着塔へ流入するCOD、色度
が従来の方法(生物処理水に無機凝集剤を加えて、凝集
分離後、粒状活性炭吸着により、残留COD、色度を除
去するもの。本発明における粉末活性炭を使用しない方
式である。)よりも、大幅に減少するので、粒状活性炭
吸着塔の活性炭再生頻度が減少し、メンテナンスが簡単
になる。
■ In addition, the COD and chromaticity flowing into the granular activated carbon adsorption tower are determined by the conventional method (in which an inorganic flocculant is added to the biologically treated water, and after coagulation and separation, the residual COD and chromaticity are removed by granular activated carbon adsorption. (This is the system in the present invention that does not use powdered activated carbon.) Since the amount of activated carbon is significantly reduced, the frequency of activated carbon regeneration of the granular activated carbon adsorption tower is reduced, and maintenance becomes easier.

また、粒状活性炭吸着塔に流入するCODが少ないので
、活性炭の破過時間が長くなるほか、活性炭の微生物再
生が起きやすい環境条件を設定できる。(従来、活性炭
の生物再生は、活性炭吸着塔に流入する液のCOD濃度
が低いほど、起きやすいと言われている) 以下、本発明の具体的実施例を説明するが、本発明はこ
れに限定されるものではない。
Furthermore, since less COD flows into the granular activated carbon adsorption tower, the breakthrough time of the activated carbon becomes longer, and environmental conditions can be set in which microbial regeneration of the activated carbon is more likely to occur. (Conventionally, it has been said that biological regeneration of activated carbon occurs more easily when the COD concentration of the liquid flowing into the activated carbon adsorption tower is lower.) Specific examples of the present invention will be described below. It is not limited.

(実施例) 第1図の本発明フローに従って、本発明を実験した。(Example) The present invention was tested according to the flow of the present invention shown in FIG.

表−lの水質の除渣し,尿(し尿から異物などを除去し
たもの)を、UF膜分離工程から排出される粉末活性炭
共存スラッジを供給しつつ、し尿を無希釈で、生物学的
硝化脱窒素処理を行った。
The water quality shown in Table 1 is removed, and the urine (from which foreign substances have been removed from human waste) is subjected to biological nitrification without dilution while supplying powdered activated carbon coexisting sludge discharged from the UF membrane separation process. Denitrification treatment was performed.

運転条件を表−2に示す。The operating conditions are shown in Table-2.

表−1 除渣し尿水質 表−2 生物学的硝化脱窒素工程の運転条件 次に、生物学的硝化脱窒素槽2から流出する活性汚泥ス
ラリ−3に、FeC l.をし尿1lあたり、2.5〜
2.7g添加し、N,OHでpH 4.5〜5.0にコ
ントロールし、5 1lIin攪拌したのち、粉末活性
炭300 mg/g一定で注入し、接触槽6でlhr曝
気撹拌を行った. 次に、チューブラ型限外濾過膜(公称分画分子量10万
、膜材質ボリスルホン製)で、粉末活性炭とFe (O
H) zと活性汚泥の3者が共存するSSを膜分離した
Table 1: Waste water quality after removal Table 2: Operating conditions for biological nitrification and denitrification process Next, FeCl. 2.5~ per liter of human waste
After adding 2.7 g and controlling the pH to 4.5 to 5.0 with N and OH and stirring for 5 1/2 hours, powdered activated carbon was injected at a constant rate of 300 mg/g, and aeration and stirring were performed in contact tank 6 for 1 hour. Next, a tubular type ultrafiltration membrane (nominal molecular weight cut-off of 100,000, membrane material made of borisulfone) was used to remove powdered activated carbon and Fe (O
H) SS in which z and activated sludge coexist was separated by membrane.

υF膜透過水(水質を表−3に示す)を、さらに粒状活
性炭吸着塔にS V = 2 (1/hr)で通水し、
表−3の右欄の水質をもつ活性炭吸着塔処理水(これが
中和されて放流水となる)を得た。
The υF membrane permeated water (water quality is shown in Table 3) was further passed through a granular activated carbon adsorption tower at S V = 2 (1/hr),
Activated carbon adsorption tower treated water (which is neutralized and becomes effluent water) having the water quality shown in the right column of Table 3 was obtained.

表−3 粒状活性炭処理水がC O D15 mg71以上に達
するまでの通水日数は150日と非常に長時間が可能で
あった, また、UF膜の透過流束(flux)は2.5m’/m
”膜・日と高い値を得た。UF分離用のポンプ動力費は
35〜45円/ m 3 と安価であった。
Table 3 It took a very long time, 150 days, for the granular activated carbon-treated water to reach C O D15 mg71 or more. Also, the permeation flux of the UF membrane was 2.5 m' /m
``We obtained a high value of membrane per day.The pump power cost for UF separation was low at 35 to 45 yen/m3.

(比較例) ■ UF膜分離工程から排出されるスラッジを生物学的
硝化脱窒素槽に供給することなく、汚泥脱水機へ供給し
て脱水するプロセスを採用したところ、生物学的硝化脱
窒素槽に激しい発泡が起き、シリコーン系の消泡剤を1
50〜200mg/ l添加しないと運転不能となった
(Comparative example) ■ When we adopted a process in which the sludge discharged from the UF membrane separation process was dehydrated by being supplied to a sludge dehydrator instead of being supplied to a biological nitrification and denitrification tank, the biological nitrification and denitrification tank Severe foaming occurred, and one silicone antifoaming agent was added.
Operation became impossible unless 50 to 200 mg/l was added.

■ 生物処理液にFeClxのみを添加し、粉末活性炭
を添加せずに、UF膜(実施例と同一条件)で膜分離し
、膜透過水を、粒状活性炭吸着塔に供給した。
(2) Only FeClx was added to the biological treatment liquid without adding powdered activated carbon, and membrane separation was performed using a UF membrane (under the same conditions as in the example), and the membrane-permeated water was supplied to a granular activated carbon adsorption tower.

処理結果を表−4に示す。The processing results are shown in Table 4.

表 4 粒状活性炭の破過時間(処理水C O D15 mg/
1以上になるまでの通水日数)は、25日間であった。
Table 4 Breakthrough time of granular activated carbon (treated water C O D15 mg/
The number of days of water flow until it reached 1 or more was 25 days.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のフローチャートを示す図。 第2図は、従来のフローチャートを示す図である。 符号の説明 l:し尿系汚水、 2:生物学的硝化脱窒素槽、3:活
性汚泥スラリ−  4:アルカリ剤、5:無機凝集剤、
   6:粉末活性炭、7:活性炭接触槽、  8:流
出液、 9:ポンプ、      lO:膜分離部、1l:膜透
過水、    l2:膜分離スラツジ、13:膜分離ス
ラッジの一部、 14:膜分離スラッジの他部、 15:粒状活性炭吸着塔、  16:高度処理水17:
ライン。 (ほか3名)
FIG. 1 is a diagram showing a flowchart of the present invention. FIG. 2 is a diagram showing a conventional flowchart. Explanation of symbols 1: Human waste sewage, 2: Biological nitrification and denitrification tank, 3: Activated sludge slurry, 4: Alkali agent, 5: Inorganic flocculant,
6: Powdered activated carbon, 7: Activated carbon contact tank, 8: Effluent, 9: Pump, 1O: Membrane separation section, 1L: Membrane permeated water, 12: Membrane separation sludge, 13: Part of membrane separation sludge, 14: Membrane Other part of separated sludge, 15: Granular activated carbon adsorption tower, 16: Highly treated water 17:
line. (3 others)

Claims (1)

【特許請求の範囲】[Claims] し尿系汚水を生物学的硝化脱窒素する脱窒工程、脱窒工
程からの活性汚泥スラリー又は生物処理水に無機凝集剤
および粉末活性炭を添加する凝集及び吸着工程、吸着工
程からの処理液を膜によりスラッジと透過水に分離する
膜分離工程、前記脱窒工程に該スラッジを返送、添加す
る返送工程、及び前記透過水を粒状活性炭と接触せしめ
る接触工程からなることを特徴とする処理方法。
A denitrification process in which human waste water is biologically nitrified and denitrified, a flocculation and adsorption process in which an inorganic flocculant and powdered activated carbon are added to the activated sludge slurry or biologically treated water from the denitrification process, and a membrane treatment for the treated liquid from the adsorption process. A treatment method comprising: a membrane separation step in which sludge and permeated water are separated by a membrane separation step; a return step in which the sludge is returned and added to the denitrification step; and a contact step in which the permeated water is brought into contact with granular activated carbon.
JP18355089A 1989-07-18 1989-07-18 Treatment of sewage of night soil system Granted JPH0352699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18355089A JPH0352699A (en) 1989-07-18 1989-07-18 Treatment of sewage of night soil system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18355089A JPH0352699A (en) 1989-07-18 1989-07-18 Treatment of sewage of night soil system

Publications (2)

Publication Number Publication Date
JPH0352699A true JPH0352699A (en) 1991-03-06
JPH0536119B2 JPH0536119B2 (en) 1993-05-28

Family

ID=16137770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18355089A Granted JPH0352699A (en) 1989-07-18 1989-07-18 Treatment of sewage of night soil system

Country Status (1)

Country Link
JP (1) JPH0352699A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2835444A1 (en) * 2002-02-07 2003-08-08 Ondeo Services Purification and filtration of liquid effluents comprises use of gravity and membrane separators, with different powdered reactants added upstream of the gravity and membrane separators
KR100470350B1 (en) * 2001-10-26 2005-02-05 (주)피엠지 Method for disposing of livestock waste water
JP2012192325A (en) * 2011-03-15 2012-10-11 Toshiba Corp Membrane filtering device
CN103613223A (en) * 2013-12-03 2014-03-05 东华大学 Treatment method of vinylon water-soluble waste water
CN104475057A (en) * 2014-11-27 2015-04-01 李博兰 Sewage treatment agent
EP3113865A4 (en) * 2014-03-07 2017-11-01 Agency For Science, Technology And Research Apparatus and methods for fractionation of biological products

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470350B1 (en) * 2001-10-26 2005-02-05 (주)피엠지 Method for disposing of livestock waste water
FR2835444A1 (en) * 2002-02-07 2003-08-08 Ondeo Services Purification and filtration of liquid effluents comprises use of gravity and membrane separators, with different powdered reactants added upstream of the gravity and membrane separators
JP2012192325A (en) * 2011-03-15 2012-10-11 Toshiba Corp Membrane filtering device
CN103613223A (en) * 2013-12-03 2014-03-05 东华大学 Treatment method of vinylon water-soluble waste water
EP3113865A4 (en) * 2014-03-07 2017-11-01 Agency For Science, Technology And Research Apparatus and methods for fractionation of biological products
CN104475057A (en) * 2014-11-27 2015-04-01 李博兰 Sewage treatment agent

Also Published As

Publication number Publication date
JPH0536119B2 (en) 1993-05-28

Similar Documents

Publication Publication Date Title
KR101373881B1 (en) Apparatus and method for treatment of organic substance-containing wastewater
CN110342740B (en) Method and system for purifying organic wastewater containing salt
KR20070016079A (en) Method of treating organic waste water
JPH0352699A (en) Treatment of sewage of night soil system
JP2796909B2 (en) Wastewater treatment method
KR0168827B1 (en) Method for purifying organic waste water
JPS6328500A (en) Treatment device for night soil sanitary sewage
JPH0366036B2 (en)
CN210419644U (en) Contain clean system of salt organic waste water
JPH03270800A (en) Treatment of organic sewage
JP3449864B2 (en) Method and apparatus for reducing organic sludge
JPH0649197B2 (en) Organic wastewater treatment method
JPH0647118B2 (en) Organic wastewater treatment method
JPS61185400A (en) Apparatus for treating excretion sewage
JPH09174091A (en) Method for treating organic waste water and apparatus therefor
JPH02293098A (en) Treatment of night soil
JP2002316191A (en) Method and apparatus for treating organic foul water
JPH04334593A (en) Advanced water treatment system and method for starting up the same
JPH0310399B2 (en)
JPH0568993A (en) Treatment of sludge of purifying tank
JPH1028995A (en) Treatment of waste water
JPH0567359B2 (en)
JPH0535038B2 (en)
JP2000288587A (en) Method and apparatus for treating excretion sewage
JP2000350988A (en) Method and apparatus for treating excretion sewage