JP3438508B2 - Advanced water treatment method and apparatus - Google Patents

Advanced water treatment method and apparatus

Info

Publication number
JP3438508B2
JP3438508B2 JP01528697A JP1528697A JP3438508B2 JP 3438508 B2 JP3438508 B2 JP 3438508B2 JP 01528697 A JP01528697 A JP 01528697A JP 1528697 A JP1528697 A JP 1528697A JP 3438508 B2 JP3438508 B2 JP 3438508B2
Authority
JP
Japan
Prior art keywords
reaction tank
water
membrane
tank
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01528697A
Other languages
Japanese (ja)
Other versions
JPH10211490A (en
Inventor
寅太郎 峯岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP01528697A priority Critical patent/JP3438508B2/en
Publication of JPH10211490A publication Critical patent/JPH10211490A/en
Application granted granted Critical
Publication of JP3438508B2 publication Critical patent/JP3438508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、凝集剤および粉末
活性炭を添加した原水を膜分離装置でろ過する高度水処
理方法およびその装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an advanced water treatment method for filtering raw water to which a flocculant and powdered activated carbon have been added by a membrane separator, and an apparatus therefor.

【0002】[0002]

【従来の技術】従来、高度水処理装置では、原水中の懸
濁性物質、コロイド性物質および溶存性有機物等を除去
する際に、原水中に凝集剤および粉末活性炭を添加して
凝集沈殿処理を行った後に膜分離処理する方法が採られ
ている。図4は、従来の高度水処理装置の一例を示して
おり、先ず、原水を配管111より反応槽101に供給
し、凝集剤を配管112から、粉末活性炭を配管113
から反応槽101に供給し、撹拌機102によって原水
中の懸濁性物質、コロイド性物質および溶存性有機物等
とともに撹拌して凝集反応させる。凝集処理された被処
理水は、配管114より分離槽103に供給され、固液
分離処理される。分離槽103において得られた上澄水
は、配管115を経て、ポンブPの動力により配管11
6を経て、膜分離装置104に供給されて膜分離処理さ
れる。膜分離装置104の透過水は配管117を経て処
理水として系外に排出される。一方、クロスフローろ過
方式の場合では、濃縮水は配管118を経て反応槽10
1へ循環される。
2. Description of the Related Art Conventionally, in advanced water treatment equipment, when removing suspending substances, colloidal substances, dissolved organic substances, etc. in raw water, a flocculant and powdered activated carbon are added to raw water to perform flocculation and precipitation treatment. A method of performing a membrane separation treatment after performing the above is adopted. FIG. 4 shows an example of a conventional advanced water treatment device. First, raw water is supplied to a reaction tank 101 through a pipe 111, a coagulant is supplied through a pipe 112, and a powdered activated carbon is supplied through a pipe 113.
Is supplied to the reaction tank 101 from the reactor and stirred by the stirrer 102 together with the suspending substance, colloidal substance, dissolved organic substance and the like in the raw water to cause an agglutination reaction. The coagulated water to be treated is supplied from the pipe 114 to the separation tank 103 and subjected to solid-liquid separation treatment. The supernatant water obtained in the separation tank 103 passes through the pipe 115 and the pipe 11 by the power of the pump P.
After passing through 6, the film is supplied to the membrane separation device 104 and subjected to membrane separation treatment. The permeated water of the membrane separation device 104 is discharged out of the system as treated water through the pipe 117. On the other hand, in the case of the cross-flow filtration method, the concentrated water is passed through the pipe 118 and the reaction tank 10
It is cycled to 1.

【0003】[0003]

【発明が解決しようとする課題】従来の高度水処理装置
では、膜分離装置の前処理である凝集沈殿処理におい
て、凝集剤として用いられるアルミニウム化合物である
水酸化アルミニウムを含むフロックが生成される。ま
た、固液分離後の上澄水にも水酸化アルミニウムを含む
フロックが少量存在するため、これが膜分離装置104
の分離膜105の膜表面に付着し、比較的短期に目詰ま
りを起こすという欠点を有していた。したがって、当該
目詰まりを解消するために頻繁に酸またはアルカリによ
る薬品洗浄を行う必要があり、薬品洗浄操作のための費
用や労力がかかりコスト高につながるという問題があっ
た。
In the conventional advanced water treatment equipment, flocs containing aluminum hydroxide, which is an aluminum compound used as a flocculant, are produced in the flocculation-precipitation treatment which is the pretreatment of the membrane separation device. Further, since a small amount of flocs containing aluminum hydroxide also exists in the supernatant water after the solid-liquid separation, this is the membrane separation device 104.
The separation membrane 105 has a drawback that it adheres to the membrane surface and causes clogging in a relatively short period of time. Therefore, in order to eliminate the clogging, it is necessary to frequently carry out chemical cleaning with an acid or an alkali, which causes a problem that the cost and labor for the chemical cleaning operation and the cost increase.

【0004】また、粉末活性炭に吸着された有機物によ
って酸素が消費されて反応槽内が嫌気的になり、原水中
(例えば、河川水、ダム水、地下水等)のマンガンの溶
出や有機物の腐敗による悪臭の発生が起こるという問題
があった。
Oxygen is consumed by the organic substances adsorbed on the powdered activated carbon to anaerobically oxidize the inside of the reaction tank, resulting in elution of manganese from raw water (for example, river water, dam water, groundwater, etc.) and decay of organic substances. There was a problem that an offensive odor was generated.

【0005】本発明は、上記課題に鑑みなされたもので
あり、膜分離装置の目詰まりを防止し、薬品洗浄の回数
を減少させることができ、かつ反応構内を好気的にして
悪臭の発生を防止することができる高度水処理方法およ
びその装置を提供することを目的としている。
The present invention has been made in view of the above problems, and can prevent clogging of the membrane separation device, reduce the number of times of chemical cleaning, and make the reaction site aerobic to generate a foul odor. It is an object of the present invention to provide an advanced water treatment method and apparatus capable of preventing the above.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を達
成したものであり、請求項1の発明は、膜分離装置を用
いた高度水処理方法において、前記膜分離装置の前段
に、原水が供給され、凝集剤および粉末活性炭が添加さ
れる反応槽と、前記反応槽の懸濁水が導入され、そのS
S分を沈殿させる分離槽とが設けられ、前記分離槽の上
澄水を前記膜分離装置に流入させ、前記分離槽から得ら
れる汚泥(沈殿SS分)を前記反応槽へ返送することを
特徴とする高度水処理方法である。この発明では、原水
に凝集剤および粉末活性炭を添加する反応槽内に、その
後段の分離槽から得られる汚泥(沈殿SS分)を返送す
ることにより、汚泥中に懸濁性物質および粉末活性炭等
のSS分が高濃度に含まれており、水酸化アルミニウム
を含むフロックの生成が促進されると共に、粉末活性炭
による処理時間を延長することができるために粉末活性
炭による吸着処理効果を大とすることができる。
The present invention has achieved the above object, and the invention of claim 1 uses a membrane separation device.
In the advanced water treatment method, the raw water is supplied to the front stage of the membrane separation device, the reaction tank to which the flocculant and the powdered activated carbon are added, and the suspension water of the reaction tank are introduced, and the S
A separation tank for precipitating S content is provided on the separation tank.
The advanced water treatment method is characterized in that clear water is caused to flow into the membrane separation device, and sludge (precipitated SS content) obtained from the separation tank is returned to the reaction tank. In the present invention, the sludge (precipitated SS content) obtained from the separation tank at the subsequent stage is returned to the reaction tank for adding the flocculant and the powdered activated carbon to the raw water, so that the suspending substance and the powdered activated carbon etc. in the sludge are returned. Since the SS content of is high in concentration, the generation of flocs containing aluminum hydroxide is promoted, and the treatment time with powdered activated carbon can be extended, so that the adsorption treatment effect with powdered activated carbon is increased. You can

【0007】また、請求項2の発明は、請求項1に記載
の高度水処理方法において、前記反応槽内の液をエアレ
ータもしくは散気装置を用いて曝気することを特徴とす
る高度水処理方法である。この発明では、反応槽をエア
レータもしくは散気装置を用いて曝気することにより、
反応槽内が嫌気的になるのを防ぐことができる。
Further, the invention of claim 2 is the advanced water treatment method according to claim 1, characterized in that the liquid in the reaction tank is aerated using an aerator or an air diffuser. Is. In this invention, by aerating the reaction tank using an aerator or an air diffuser,
It is possible to prevent the inside of the reaction tank from becoming anaerobic.

【0008】また、請求項3の発明は、請求項1に記載
の高度水処理方法において、前記凝集剤が、硫酸アルミ
ニウムあるいはポリ塩化アルミニウム等のアルミニウム
化合物であることを特徴とする。この発明では、分離槽
へ導入される被処理水のSS分の濃度を高くすることが
できるため、共沈作用が大となり、膜分離装置へ供給さ
れる上澄水中には水酸化アルミニウムを含む懸濁性固形
物の濃度が小となり、膜分離装置の目詰まりが防止さ
れ、薬品洗浄の間隔を長くすることができる。
Further, the invention of claim 3 is characterized in that, in the advanced water treatment method of claim 1, the aggregating agent is an aluminum compound such as aluminum sulfate or polyaluminum chloride. In this invention, since the concentration of SS of the water to be treated introduced into the separation tank can be increased, the coprecipitation action becomes large, and the supernatant water supplied to the membrane separation device contains aluminum hydroxide. The concentration of the suspended solids is reduced, clogging of the membrane separation device is prevented, and the chemical cleaning interval can be lengthened.

【0009】また、請求項4の発明は、膜分離装置を用
いた高度水処理装置において、前記膜分離装置の前段
に、凝集剤および粉末活性炭を添加した原水が供給され
る反応槽と、前記反応槽の懸濁水が導入され、そのSS
分を沈殿させる分離槽とが設けられ、前記分離槽の上澄
水が流入する前記膜分離装置の流入側の濃縮水を前記反
応槽に返送するとともに、前記分離槽から得られる汚泥
(沈殿SS分)を前記反応槽へ返送することを特徴とす
る。この発明では、原水に凝集剤および粉末活性炭を添
加する反応槽内に、後段の分離槽から得られる汚泥(沈
殿SS分)を返送することにより、汚泥中に懸濁性物質
および粉末活性炭等のSS分が高濃度に含まれており、
水酸化アルミニウムを含むフロックの生成が促進される
とともに、粉末活性炭による処理時間を延長することが
できるために粉末活性炭による吸着処理効果を大とする
ことができる高度水処理装置である。
The invention of claim 4 uses a membrane separation device.
In the advanced water treatment device, a reaction tank to which raw water to which a coagulant and powdered activated carbon are added and a suspension water of the reaction tank are introduced before the membrane separation device,
A separation tank for precipitating the components is provided, and the concentrated water on the inflow side of the membrane separation device into which the supernatant water of the separation tank flows is returned to the reaction tank, and sludge obtained from the separation tank
The (precipitated SS content) is returned to the reaction tank. In this invention, sludge (sludge) obtained from the separation tank at the latter stage is added to the reaction tank for adding the flocculant and the powdered activated carbon to the raw water.
By returning the SS content) , the sludge contains a high concentration of SS content such as suspending substances and powdered activated carbon,
This is a high-performance water treatment device that can promote the generation of flocs containing aluminum hydroxide and can extend the treatment time with powdered activated carbon, so that the adsorption treatment effect with powdered activated carbon can be enhanced.

【0010】また、請求項5の発明は、請求項4に記載
の高度水処理装置において、前記反応槽の液を曝気する
エアレータもしくは散気装置を備えることを特徴とする
高度水処理装置である。この発明では、反応槽をエアレ
ータもしくは散気装置を用いて曝気することにより、反
応槽内が嫌気的になるのを防ぐことができる高度水処理
装置である。
The invention of claim 5 is the advanced water treatment apparatus according to claim 4, further comprising an aerator or an air diffuser for aerating the liquid in the reaction tank. . The present invention is an advanced water treatment device that can prevent the inside of the reaction tank from becoming anaerobic by aerating the reaction tank using an aerator or an air diffuser.

【0011】また、請求項6の発明は、請求項4に記載
の高度水処理装置において、前記凝集剤が、硫酸アルミ
ニウムあるいはポリ塩化アルミニウム等のアルミニウム
化合物であることを特徴とする請求項1に記載の高度水
処理装置である。この発明では、分離槽へ導入される被
処理水のSS分の濃度を高くすることができるために、
共沈作用が大となり、膜分離装置へ供給される上澄水中
には水酸化アルミニウムを含む懸濁性の固形物の濃度が
小となり、膜分離装置の目詰まりが防止され、薬品洗浄
の間隔を長くすることができる高度水処理装置である。
Further, the invention of claim 6 is the advanced water treatment apparatus according to claim 4, wherein the coagulant is an aluminum compound such as aluminum sulfate or polyaluminum chloride. The advanced water treatment device described. In this invention, since the concentration of SS of the water to be treated introduced into the separation tank can be increased,
The coprecipitation effect becomes large, and the concentration of suspending solids containing aluminum hydroxide in the supernatant water supplied to the membrane separation device becomes small, clogging of the membrane separation device is prevented, and the interval of chemical cleaning is increased. It is an advanced water treatment device that can be extended.

【0012】[0012]

【発明の実施の形態】以下、本発明の高度水処理方法お
よび装置の実施の形態について、図面を参照して詳細に
説明する。図1は、本発明における高度水処理装置の一
実施形態を示す系統図である。同図において、高度水処
理装置は、反応槽1と、分離槽4と、膜分離装置5とか
ら構成されている。反応槽1には配管11から原水(例
えば、河川水、ダム水、地下水等)が供給され、凝集剤
供給装置7からは凝集剤が供給され、粉末活性炭供給装
置8からは粉末活性炭が供給される。反応槽1内には、
エアレータあるいは散気装置3が設けられ、反応槽1内
の液は散気装置3によって曝気されながら撹拌機2によ
って撹拌され、反応槽1内の凝集処理した被処理水は配
管14を経て分離槽4に送られる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the advanced water treatment method and apparatus of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a system diagram showing an embodiment of the advanced water treatment device according to the present invention. In the figure, the advanced water treatment device comprises a reaction tank 1, a separation tank 4, and a membrane separation device 5. Raw water (for example, river water, dam water, ground water, etc.) is supplied to the reaction tank 1 from a pipe 11, a coagulant is supplied from a coagulant supply device 7, and a powder activated carbon is supplied from a powder activated carbon supply device 8. It In the reaction tank 1,
An aerator or an air diffuser 3 is provided, and the liquid in the reaction tank 1 is agitated by the agitator 2 while being aerated by the air diffuser 3, and the coagulated treated water in the reaction tank 1 is separated through the pipe 14 into a separation tank. Sent to 4.

【0013】分離槽4では、凝集処理された被処理水の
SS分が分離沈殿する。分離槽4内の汚泥はポンプP1
が備えられた配管15から配管17を介して反応槽1に
返送される。余剰の汚泥はバルブVを経て配管16から
系外に排出される。分離槽4の上澄水は、配管18を経
てポンプP2から配管19を経て膜分離装置5に供給さ
れる。
In the separation tank 4, the SS component of the treated water that has been subjected to the coagulation treatment is separated and precipitated. The sludge in the separation tank 4 is pump P1
It is returned to the reaction tank 1 from the pipe 15 provided with. Excess sludge is discharged from the system through the pipe 16 through the valve V. The supernatant water of the separation tank 4 is supplied from the pump P2 via the pipe 18 to the membrane separation device 5 via the pipe 19.

【0014】膜分離装置5は、精密ろ過膜による分離膜
6が備えられ、分離槽4の上澄水が流入する側を流入側
5aとし、分離膜6を透過した処理水が流出する側を透
過側5bとする。膜分離装置5の透過側5bには配管2
0が設けられ、流入側5aには濃縮水を返送するための
配管21が設けられている。
The membrane separation device 5 is provided with a separation membrane 6 made of a microfiltration membrane, the side where the supernatant water of the separation tank 4 flows in is defined as an inflow side 5a, and the side where the treated water permeating the separation membrane 6 flows out is permeated. The side 5b. The pipe 2 is provided on the permeate side 5b of the membrane separation device 5.
0 is provided, and a pipe 21 for returning the concentrated water is provided on the inflow side 5a.

【0015】次に、高度水処理装置の処理方法につい
て、図1を参照して説明する。先ず、原水を配管11よ
り反応槽1に供給し、配管12および13よりそれぞれ
凝集剤および粉末活性炭が供給され、撹拌機2にて反応
槽1内の液を撹拌して凝集反応させるとともに、散気装
置3によって曝気する。凝集処理された被処理水は、配
管14より分離槽4に供給され、固液分離処理される。
分離槽4において沈降した汚泥は、ポンプP1を備える
配管15から引き抜かれて、配管17を経て反応槽1に
返送される。この際、バルブVを開閉することにより、
余剰の汚泥は配管16から系外に排出される。また、分
離槽4において得られた上澄水は、配管18からポンプ
P2の動力により、配管19を経て、膜分離装置5に供
給され膜分離処理される。膜分離装置5の透過水は配管
20を経て処理水として系外に排出される。一方、クロ
スフローろ過方式の場合、流入側5aの濃縮水は配管2
1より反応槽1へ循環される。
Next, a treatment method of the advanced water treatment device will be described with reference to FIG. First, raw water is supplied to the reaction tank 1 through a pipe 11, and a flocculant and powdered activated carbon are supplied through pipes 12 and 13, respectively, and the liquid in the reaction tank 1 is stirred by a stirrer 2 to cause a coagulation reaction and to be dispersed. Aeration is performed by the air device 3. The coagulated water to be treated is supplied from the pipe 14 to the separation tank 4 and subjected to solid-liquid separation treatment.
The sludge settled in the separation tank 4 is withdrawn from the pipe 15 provided with the pump P1 and returned to the reaction tank 1 via the pipe 17. At this time, by opening and closing the valve V,
Excess sludge is discharged from the pipe 16 to the outside of the system. Further, the supernatant water obtained in the separation tank 4 is supplied from the pipe 18 to the membrane separation device 5 through the pipe 19 by the power of the pump P2 and subjected to the membrane separation treatment. The permeated water of the membrane separation device 5 is discharged out of the system as treated water through the pipe 20. On the other hand, in the case of the cross flow filtration method, the concentrated water on the inflow side 5a is pipe 2
1 to the reaction tank 1.

【0016】また、凝集剤とし、アルミニウム化合物で
ある、例えば硫酸アルミニウム、ポリ塩化アルミニウム
(PAC)等が用いられ、その添加量は原水に対して5
〜100mg/l程度とするのが好ましい。また、粉末
活性炭としては、石炭系あるいはヤシガラ炭系のいずれ
かが用いられ、その添加量は原水に対して10〜40m
g/l程度とするのが好ましい。粉末活性炭の注入位置
は、粉末活性炭は循環させて用いられるので、反応槽1
が好ましいが分離槽4の後段であり、膜分離装置5の前
段の位置であってもよい。
As the coagulant, an aluminum compound such as aluminum sulfate or polyaluminum chloride (PAC) is used, and the addition amount thereof is 5 with respect to the raw water.
It is preferably about 100 mg / l. As the powdered activated carbon, either coal-based or coconut husk charcoal-based is used, and the addition amount is 10 to 40 m with respect to the raw water.
It is preferably about g / l. Since the activated carbon powder is circulated and used at the injection position of the activated carbon powder, the reaction tank 1
However, it may be at a position after the separation tank 4 and at a position before the membrane separation device 5.

【0017】また、膜分離装置5で用いる分離膜として
は、精密ろ過膜以外に、限外ろ過膜等の膜を用いてもよ
い。さらに、粉末活性炭の有効利用、共沈効果および水
回収率の向上という面から膜分離装置5の物理洗浄排水
を反応槽1へ返送してもよいし、膜分離装置5に積極的
に物理洗浄を組み合わせることにより、一層効果的な高
度水処理方法を提供することができる。
As the separation membrane used in the membrane separation device 5, a membrane such as an ultrafiltration membrane may be used in addition to the microfiltration membrane. Further, from the viewpoints of effective use of powdered activated carbon, coprecipitation effect and improvement of water recovery rate, the physical cleaning wastewater of the membrane separation device 5 may be returned to the reaction tank 1, or the physical separation device 5 may be actively subjected to physical cleaning. By combining the above, it is possible to provide a more effective advanced water treatment method.

【0018】以下、本発明をより具体的に説明するため
に、実施例を挙げて説明する。なお、本発明を以下の実
施例に限定するものではない。
In order to describe the present invention more specifically, examples will be described below. The present invention is not limited to the following examples.

【0019】(実施例1)図1に示す高度水処理方法に
従って、反応槽1に原水を導入するとともに、凝集剤と
して、ポリ塩化アルミニウム(PAC)を用い、粉末活
性炭を下記の割合で添加する。また、分離槽4の汚泥の
50%を反応槽1へ返送して、撹拌して反応させた。反
応により得られた混合液を分離槽4に導入して、固液分
離させた。さらに、分離槽4の上澄水は、下記の仕様の
膜分離装置5へ供給して膜分離処理した。
Example 1 In accordance with the advanced water treatment method shown in FIG. 1, raw water is introduced into the reaction tank 1, polyaluminum chloride (PAC) is used as a coagulant, and powdered activated carbon is added at the following ratio. . Further, 50% of the sludge in the separation tank 4 was returned to the reaction tank 1 and reacted by stirring. The mixed liquid obtained by the reaction was introduced into the separation tank 4 for solid-liquid separation. Further, the supernatant water of the separation tank 4 was supplied to the membrane separation device 5 having the following specifications for membrane separation treatment.

【0020】反応槽 PAC添加量 :10mg/l 粉末活性炭添加量 :20mg/l 曝気量 :50l/分 Reaction tank PAC addition amount: 10 mg / l Powdered activated carbon addition amount: 20 mg / l Aeration amount: 50 l / min

【0021】分解槽 液滞留時間 :2時間 Decomposition tank Liquid retention time: 2 hours

【0022】膜分離装置 膜種類 :精密ろ過膜 膜材質 :ポリプロピレン 膜形状 :中空糸 公称孔径 :0.2μm ろ過方式 :外圧型全量ろ過 膜透過流束 :1.5m/日 逆洗間隔 :30分ろ過/3分逆洗 Membrane Separation Device Membrane type: Microfiltration membrane Membrane material: Polypropylene membrane shape: Hollow fiber nominal pore size: 0.2 μm Filtration method: External pressure type total filtration membrane permeation flux: 1.5 m / day Backwash interval: 30 minutes Filtration / 3 minutes backwash

【0023】上記の条件にて通水実験を行った結果が、
図2に示されており、横軸が通水時間を示し、縦軸が膜
間差圧を示している。膜間差圧は、膜分離装置5の精密
ろ過膜における膜入口圧力から膜出口圧力を差し引いた
圧力を表している。膜間圧力は通水時間の経過に応じて
変化する。図2に示すように、実施例1では図中に●で
示すような結果が得られた。一方、比較例1は、図1の
高度水処理装置を用い、分離槽4の汚泥を反応槽1へ返
送しなかったこと、および反応槽1内で曝気しなかった
こと以外は実施例1と同様の処理を行った。その結果、
比較例1は、図2に○で示すような結果が得られた。
The result of the water flow experiment under the above conditions is
As shown in FIG. 2, the horizontal axis represents the water passage time and the vertical axis represents the transmembrane pressure difference. The transmembrane pressure difference represents the pressure obtained by subtracting the membrane outlet pressure from the membrane inlet pressure in the microfiltration membrane of the membrane separation device 5. The transmembrane pressure changes with the passage of water flow time. As shown in FIG. 2, in Example 1, the results shown by ● in the figure were obtained. On the other hand, Comparative Example 1 was the same as Example 1 except that the sludge in the separation tank 4 was not returned to the reaction tank 1 and that the reaction tank 1 was not aerated using the advanced water treatment apparatus of FIG. The same process was performed. as a result,
In Comparative Example 1, the results shown by ◯ in FIG. 2 were obtained.

【0024】図2から明らかなように、実施例1は、比
較例1より膜間差圧の変化が少なく安定していることを
示している。本発明の高度水処理方法では、精密ろ過膜
装置の膜間差圧の上昇は見られず安定した通水が可能で
あることが実証された。また、約1ケ月に亘る本実験
中、反応槽1には、マンガンの溶出によると考えられる
着色や有機物の腐敗に由来する悪臭等は検知されなかっ
た。
As is clear from FIG. 2, Example 1 shows that the change in transmembrane pressure difference is smaller and more stable than Comparative Example 1. In the advanced water treatment method of the present invention, it was proved that stable water flow was possible without an increase in transmembrane pressure difference of the microfiltration membrane device being observed. In addition, during the experiment for about one month, the reaction tank 1 did not detect any coloring that is considered to be caused by the elution of manganese or a bad odor resulting from the decomposition of organic matter.

【0025】(実施例2)次に、実施例2による条件
で、他の実験結果について説明する。図1の高度水処理
装置により、反応槽1に原水を導入すると共に、硫酸ア
ルミニウムおよび粉末活性炭を下記の割合で添加し、ま
た、分離槽4の汚泥の40%および膜分離装置5の濃縮
水を配管21を介して反応槽1へ返送し、撹拌機2によ
って撹拌して反応させた。反応により得られた混合液を
分離槽4に導入し、さらに下記の仕様の膜分離装置5へ
供給して膜分離処理した。
(Embodiment 2) Next, other experimental results will be described under the conditions according to Embodiment 2. With the advanced water treatment device of FIG. 1, raw water is introduced into the reaction tank 1, aluminum sulfate and powdered activated carbon are added at the following ratios, and 40% of sludge in the separation tank 4 and concentrated water of the membrane separation device 5 are added. Was returned to the reaction tank 1 through the pipe 21 and stirred by the stirrer 2 to cause a reaction. The mixed solution obtained by the reaction was introduced into the separation tank 4 and further supplied to the membrane separation device 5 having the following specifications for membrane separation treatment.

【0026】反応槽 硫酸アルミニウム添加量 :10mg/l 粉末活性炭添加量 :20mg/l 濃縮水循環量 :原水の0.2倍量 曝気量 :50l/分 Reaction tank Aluminum sulfate addition amount: 10 mg / l Powdered activated carbon addition amount: 20 mg / l Concentrated water circulation amount: 0.2 times amount of raw water Aeration amount: 50 l / min

【0027】分離槽 液滞留時間 :3時間 Separation tank Liquid retention time: 3 hours

【0028】膜分離装置 膜種類 :限外ろ過膜 膜材質 :ポリアクリロニトリル 膜形状 :中空糸 分画分子量 :13,000 ろ過方式 :外圧型クロスフローろ過 膜透過流束 :0.7m/日 逆洗間隔 :20分ろ過/20秒逆洗 Membrane separation device Membrane type: Ultrafiltration membrane Membrane material: Polyacrylonitrile membrane shape: Hollow fiber fractionated molecular weight: 13,000 Filtration method: External pressure type cross flow filtration membrane permeation flux: 0.7 m / day Backwash Interval: 20 minutes filtration / 20 seconds backwash

【0029】上記の実験条件にて、実施例2と比較例2
に対して、図3に示した結果が得られた。図3は通水時
間に対する平均ろ過圧が示されている。実施例2の結果
は図3に●で示した。ここで、平均ろ過圧とは、膜分離
装置5に眼外ろ過膜が用いられた場合、その膜入口圧力
と循環水圧力の平均から膜出口圧力を差し引いた圧力を
表している。
Example 2 and Comparative Example 2 under the above experimental conditions
In contrast, the results shown in FIG. 3 were obtained. FIG. 3 shows the average filtration pressure with respect to the water passage time. The results of Example 2 are shown by ● in FIG. Here, the average filtration pressure represents a pressure obtained by subtracting the membrane outlet pressure from the average of the membrane inlet pressure and the circulating water pressure when an extraocular filtration membrane is used in the membrane separation device 5.

【0030】実施例2に対する比較例2は、高度水処理
において、分離槽4の汚泥を反応槽1へ返送しなかった
こと、および反応槽1内で曝気しなかったこと以外は実
施例2と同様の処理を行った。比較例2は、図3中に○
で示す結果が得られた。
Comparative Example 2 to Example 2 is the same as Example 2 except that the sludge in the separation tank 4 was not returned to the reaction tank 1 in the advanced water treatment and that the reaction tank 1 was not aerated. The same process was performed. Comparative example 2 has a circle in FIG.
The results shown in are obtained.

【0031】図3の結果から明らかなように、実施例2
の高度水処理方法を用いることにより、膜分離装置5の
分離膜6の限外ろ過膜装置の平均ろ過圧の上昇は見られ
ず安定して通水することができた。なお、約1ケ月に亘
る本実験中、反応槽においてマンガンの溶出によると考
えられる着色や有機物の腐敗に由来する悪臭等は検知さ
れなかった。実施例2では、分離膜6が目詰まりするこ
となく、長期に亘って安定した運転が可能であることが
実証された。
As is clear from the results shown in FIG.
By using the above advanced water treatment method, the average filtration pressure of the ultrafiltration membrane device of the separation membrane 6 of the membrane separation device 5 was not increased, and stable water flow was possible. During the experiment for about 1 month, no odor or the like caused by the elution of manganese, which is considered to be due to the elution of manganese, or the odor derived from the decomposition of organic matter was not detected. In Example 2, it was demonstrated that the separation membrane 6 was not clogged and stable operation was possible for a long period of time.

【0032】[0032]

【発明の効果】以上述べたように、本発明によれば、原
水に凝集剤および粉末活性炭を添加する反応槽内に、後
段の分離槽から得られる汚泥を返送することにより、膜
分離装置においては、有効膜間差圧あるいは平均ろ過圧
力の急激な上昇はなく、安定して連続通水することがで
きる利点がある。
As described above, according to the present invention, by returning the sludge obtained from the subsequent separation tank to the reaction tank for adding the flocculant and the powdered activated carbon to the raw water, the membrane separation apparatus can be used. Has an advantage that it is possible to stably and continuously pass water without a sudden increase in the effective transmembrane pressure or the average filtration pressure.

【0033】また、膜分離装置における薬品洗浄の間隔
が長くなることから、薬品洗浄操作のための費用や労力
が削減できる利点があり、また、反応槽内を好気的にし
てマンガンの溶出による着色や有機物の腐敗による悪臭
の発生を防止することができる等の効果を有する。
Further, since the interval of chemical cleaning in the membrane separation device becomes long, there is an advantage that the cost and labor for the chemical cleaning operation can be reduced. Further, the reaction vessel is aerobically leached by manganese elution. It has the effect of preventing the generation of a bad odor due to coloring and the decay of organic substances.

【0034】また、原水に凝集剤および粉末活性炭を添
加する反応槽内に、後段の分離槽から得られる汚泥を返
送することによって、汚泥中には懸濁性物質および粉末
活性炭等のSS分が高濃度に含まれているために、水酸
化アルミニウムを含むフロックの生成が促進され、さら
に粉末活性炭による処理時間を延長することができるた
めに、粉末活性炭による吸着処理効果を最大限に発揮す
ることができる利点があり、水処理費用の低減が計られ
る利点がある。
Further, by returning the sludge obtained from the separation tank at the latter stage into the reaction tank for adding the flocculant and the powdered activated carbon to the raw water, the sludge contains SS components such as suspending substances and powdered activated carbon. Since it is contained in a high concentration, the formation of flocs containing aluminum hydroxide is promoted, and since the treatment time with powdered activated carbon can be extended, the adsorption treatment effect with powdered activated carbon is maximized. There is an advantage that the water treatment cost can be reduced.

【0035】また、分離槽へ導入される被処理水のSS
分の濃度が高いために、共沈作用が大となり、膜分離装
置へ供給される上澄水中には水酸化アルミニウムを含む
懸濁性固形物の濃度が小となるために、膜分離装置の目
詰まりが防止され、薬品洗浄の間隔を長くするのに効果
的である。
The SS of the water to be treated introduced into the separation tank
Since the concentration of the component is high, the coprecipitation effect is large, and the concentration of the suspended solids containing aluminum hydroxide is small in the supernatant water supplied to the membrane separation device. It prevents clogging and is effective in extending the interval between chemical cleanings.

【0036】さらに、反応槽をエアレータもしくは散気
装置を用いて曝気することにより、反応槽内が嫌気的に
なるのを防ぐことができるので、悪臭の防止ができる効
果を有する。
Further, by aerating the reaction tank by using an aerator or an air diffuser, it is possible to prevent the inside of the reaction tank from becoming anaerobic, so that it is possible to prevent an offensive odor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における高度水処理装置の一実施形態の
概略を示す系統図である。
FIG. 1 is a system diagram schematically showing an embodiment of an advanced water treatment device according to the present invention.

【図2】実施例1と比較例1との運転結果を比較して示
した図である。
FIG. 2 is a diagram showing a comparison of operation results between Example 1 and Comparative Example 1.

【図3】実施例2と比較例2との運転結果を比較して示
した図である。
FIG. 3 is a diagram showing a comparison of operation results between Example 2 and Comparative Example 2.

【図4】従来技術における高度水処理装置の系統図であ
る。
FIG. 4 is a system diagram of an advanced water treatment device in the prior art.

【符号の説明】[Explanation of symbols]

1 反応槽 2 撹拌機 3 散気装置 4 分離槽 5 膜分離装置 6 分離膜 7 凝集剤供給装置 8 粉末活性炭供給装置 11〜21 配管 P1,P2 ポンプ V バルブ 1 reaction tank 2 stirrer 3 Air diffuser 4 separation tanks 5 Membrane separation device 6 Separation membrane 7 Flocculant supply device 8 Powdered activated carbon feeder 11-21 piping P1, P2 pump V valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C02F 9/00 504 C02F 9/00 504B (58)調査した分野(Int.Cl.7,DB名) B01D 61/00 - 65/10 C02F 1/44 C02F 1/28 C02F 9/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 identification code FI C02F 9/00 504 C02F 9/00 504B (58) Fields investigated (Int.Cl. 7 , DB name) B01D 61/00-65 / 10 C02F 1/44 C02F 1/28 C02F 9/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 膜分離装置を用いた高度水処理方法にお
いて、 前記膜分離装置の前段に、原水が供給され、凝集剤およ
び粉末活性炭が添加される反応槽と、前記反応槽の懸濁
水が導入され、そのSS分を沈殿させる分離槽とが設け
られ、前記分離槽の上澄水を前記膜分離装置に流入さ
せ、前記分離槽から得られる汚泥(沈殿SS分)を前記
反応槽へ返送することを特徴とする高度水処理方法。
1. An advanced water treatment method using a membrane separator.
Then, in the preceding stage of the membrane separation device, a reaction tank to which raw water is supplied, a flocculant and powdered activated carbon are added, and a suspension water of the reaction tank is introduced, and a separation tank for precipitating the SS content thereof is provided. , The supernatant water of the separation tank is introduced into the membrane separation device.
And the sludge (precipitated SS content) obtained from the separation tank is returned to the reaction tank.
【請求項2】 請求項1に記載の高度水処理方法におい
て、 前記反応槽内の液をエアレータもしくは散気装置を用い
て曝気することを特徴とする高度水処理方法。
2. The advanced water treatment method according to claim 1, wherein the liquid in the reaction tank is aerated using an aerator or an air diffuser.
【請求項3】 請求項1に記載の高度水処理方法におい
て、 前記凝集剤が、硫酸アルミニウムあるいはポリ塩化アル
ミニウム等のアルミニウム化合物であることを特徴とす
る請求項1に記載の高度水処理方法。
3. The advanced water treatment method according to claim 1, wherein the aggregating agent is an aluminum compound such as aluminum sulfate or polyaluminum chloride.
【請求項4】 膜分離装置を用いた高度水処理装置にお
いて、 前記膜分離装置の前段に、原水が供給され、凝集剤およ
び粉末活性炭が添加される反応槽と、前記反応槽の懸濁
水が導入され、そのSS分を沈殿させる分離槽とが設け
られ、前記分離槽の上澄水が流入する前記膜分離装置の
流入側の濃縮水を前記反応槽に返送し、前記分離槽から
得られる汚泥(沈殿SS分)を前記反応槽へ返送するこ
とを特徴とする高度水処理装置。
4. An advanced water treatment apparatus using a membrane separator, wherein a raw water is supplied to a preceding stage of the membrane separator, a reaction tank to which a flocculant and powdered activated carbon are added, and a suspension water in the reaction tank. A sludge that is introduced and is provided with a separation tank for precipitating the SS content is returned to the reaction tank, and the concentrated water on the inflow side of the membrane separation device into which the supernatant water of the separation tank flows is returned to the reaction tank. An advanced water treatment device, wherein (precipitated SS content) is returned to the reaction tank.
【請求項5】 請求項4に記載の高度水処理装置におい
て、 前記反応槽の液を曝気するエアレータもしくは散気装置
を備えることを特徴とする高度水処理装置。
5. The advanced water treatment device according to claim 4, further comprising an aerator or an air diffuser for aerating the liquid in the reaction tank.
【請求項6】 請求項4に記載の高度水処理装置におい
て、 前記凝集剤が、硫酸アルミニウムあるいはポリ塩化アル
ミニウム等のアルミニウム化合物であることを特徴とす
る高度水処理装置。
6. The advanced water treatment device according to claim 4, wherein the aggregating agent is an aluminum compound such as aluminum sulfate or polyaluminum chloride.
JP01528697A 1997-01-29 1997-01-29 Advanced water treatment method and apparatus Expired - Lifetime JP3438508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01528697A JP3438508B2 (en) 1997-01-29 1997-01-29 Advanced water treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01528697A JP3438508B2 (en) 1997-01-29 1997-01-29 Advanced water treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPH10211490A JPH10211490A (en) 1998-08-11
JP3438508B2 true JP3438508B2 (en) 2003-08-18

Family

ID=11884615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01528697A Expired - Lifetime JP3438508B2 (en) 1997-01-29 1997-01-29 Advanced water treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3438508B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534622A (en) * 2019-01-14 2019-03-29 南通常安能源有限公司 A kind of source water treatment system and its processing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043616A (en) * 2004-08-06 2006-02-16 Kobelco Eco-Solutions Co Ltd Water treatment method and water treatment apparatus
JP2012192325A (en) * 2011-03-15 2012-10-11 Toshiba Corp Membrane filtering device
KR20140033154A (en) * 2011-06-29 2014-03-17 도레이 카부시키가이샤 Washing method for separation membrane module
CN106915874A (en) * 2017-05-09 2017-07-04 山东省城市供排水水质监测中心 Bio-contact oxidation ultrafiltration integrated purifying processing unit and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534622A (en) * 2019-01-14 2019-03-29 南通常安能源有限公司 A kind of source water treatment system and its processing method

Also Published As

Publication number Publication date
JPH10211490A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
AU2004289490B2 (en) Installation and method for the purification of an aqueous effluent by means of oxidation and membrane filtration
JP4862361B2 (en) Waste water treatment apparatus and waste water treatment method
WO2011122658A1 (en) Water-treatment device
WO2001072643A1 (en) Method and apparatus for treating waste water
TWI447076B (en) Water treatment apparatus, water treatment method, membrane separation active sludge treatment apparatus, membrane separation active sludge treatment method, active sludge treatment apparatus, active sludge treatment method, wastewater treatment apparatu
JPH07232192A (en) Treatment of sewage
JP4071364B2 (en) Pretreatment device for reverse osmosis membrane separator
JP5309760B2 (en) Organic wastewater treatment method and treatment apparatus
JP3438508B2 (en) Advanced water treatment method and apparatus
WO2011039832A1 (en) Organic wastewater treatment method and treatment device
JP3409322B2 (en) Pure water production method
JP5818148B2 (en) Outside tank type membrane separation activated sludge method and activated sludge treatment equipment
JP2014168729A (en) Water treatment method and water treatment apparatus
JPH11253940A (en) Purified water treatment
JP2010029768A (en) Method and apparatus for treating organic wastewater
JP2002210486A (en) Method and apparatus for treating waste water after washing
JP3855535B2 (en) Advanced treatment method for biologically treated water
JPH0651199B2 (en) Organic wastewater treatment method
JP2002346347A (en) Method and apparatus for filtration
JP2001286872A (en) Operation method of flocculating treatment device and flocculating treatment device
KR20200087397A (en) Treatment system of waste water using oxidation preprocess
JP6833645B2 (en) Water treatment method and water treatment equipment
JPH0694040B2 (en) Water purification method and device
JP3870481B2 (en) Wastewater treatment equipment
JPH091187A (en) Waste water treating device and its operating method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080613

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090613

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100613

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 11

EXPY Cancellation because of completion of term