JP2010029768A - Method and apparatus for treating organic wastewater - Google Patents

Method and apparatus for treating organic wastewater Download PDF

Info

Publication number
JP2010029768A
JP2010029768A JP2008193625A JP2008193625A JP2010029768A JP 2010029768 A JP2010029768 A JP 2010029768A JP 2008193625 A JP2008193625 A JP 2008193625A JP 2008193625 A JP2008193625 A JP 2008193625A JP 2010029768 A JP2010029768 A JP 2010029768A
Authority
JP
Japan
Prior art keywords
biological treatment
water
tank
iron salt
organic wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008193625A
Other languages
Japanese (ja)
Inventor
Tamotsu Tanaka
有 田中
Tetsuro Fukase
哲朗 深瀬
Shigeki Sawada
繁樹 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008193625A priority Critical patent/JP2010029768A/en
Publication of JP2010029768A publication Critical patent/JP2010029768A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently obtain treated water having excellent water quality by effectively improving the settleability, concentratability, and filterability of sludge in an activated sludge mixed liquor in a biological treatment tank by adding an iron salt. <P>SOLUTION: In biological treatment of organic wastewater after adding an iron salt, the organic wastewater is subjected to decarbonation treatment, the iron salt is added to and mixed with the decarbonated water, and the mixed water is mixed with activated sludge to be subjected to the biological treatment. The decarbonation treatment of the organic wastewater beforehand prevents generation of iron carbonate, and mixing the organic wastewater with the iron salt at around the optimum pH of ferric hydroxide prevents turbidity of treated water due to generation of iron oxide and iron carbonate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、有機性排水を活性汚泥法により生物処理する有機性排水の処理方法及び処理装置に関し、特に、有機性排水を活性汚泥法で生物処理する際の汚泥の沈降性、濃縮性、濾過性を改善し、良好な水質の処理水を効率的に得る方法及び装置に関する。   The present invention relates to an organic wastewater treatment method and treatment apparatus for biologically treating organic wastewater by the activated sludge method, and in particular, sludge sedimentation, concentration, and filtration when biologically treating organic wastewater by the activated sludge method. The present invention relates to a method and apparatus for improving the performance and efficiently obtaining treated water of good water quality.

有機性排水の処理方法として、生物処理が知られている。生物処理法の中でも、活性汚泥と呼ばれる微生物群集を利用する活性汚泥法は、様々な性状の有機物含有水に適用でき、良好な水質の処理水が得られるため、広く用いられている。   Biological treatment is known as a method for treating organic wastewater. Among biological treatment methods, an activated sludge method using a microbial community called activated sludge is widely used because it can be applied to organic matter-containing water having various properties and can provide treated water with good water quality.

活性汚泥法による処理を行う生物処理槽内には、処理槽に導入された有機性排水と槽内に保持された活性汚泥(微生物)とが混合された液(活性汚泥混合液)が保持される。このため、生物処理槽で処理された清澄な処理水を得るには、この活性汚泥混合液を固液分離する必要がある。   In the biological treatment tank that performs treatment by the activated sludge method, a liquid (active sludge mixed liquid) in which the organic wastewater introduced into the treatment tank and the activated sludge (microorganism) retained in the tank are mixed is retained. The For this reason, in order to obtain the clear treated water treated in the biological treatment tank, it is necessary to solid-liquid separate this activated sludge mixed solution.

活性汚泥混合液の固液分離手段としては、沈殿池、膜分離装置、浮上分離装置等があるが、このうち、膜分離装置は他の固液分離装置に比べて固形分の分離能が高く、膜分離装置を用いれば清澄な処理水を得ることができる。   The solid-liquid separation means for the activated sludge mixed liquid includes sedimentation basins, membrane separation devices, and flotation separation devices. Among these, the membrane separation device has a higher solids separation ability than other solid-liquid separation devices. If a membrane separator is used, clear treated water can be obtained.

このように、生物処理水を固液分離する場合、得られる処理水の水質や処理効率を改善するべく、従来、次のような工夫がなされている。   Thus, when solid-liquid separation is performed on biologically treated water, the following techniques have been conventionally made in order to improve the quality of the obtained treated water and the treatment efficiency.

(1) 生物処理水を沈殿池で固液分離する場合、処理水の透視度を向上させるために、更に濾過器を設ける。或いは、生物処理槽のMLSS濃度を最適化する。或いは、沈殿池を大きくする。
(2) 汚泥の沈降性、濃縮性改善のために、二段活性汚泥法を採用する。或いは、高比重の凝集剤等(鉄塩、カルシウム等)を添加する。或いは高分子凝集剤を添加する。
(3) 生物処理槽からの活性汚泥混合液を膜分離する膜分離活性汚泥法において、膜の目詰まり防止、フラックス(透過流束)の向上のために、膜の薬品洗浄、処理水の間欠引き抜き、膜の逆洗浄、生物処理槽のMLSS濃度の最適化、生物処理槽の汚泥滞留時間(SRT)の最適化等を行う。
(1) When biologically treated water is solid-liquid separated in a sedimentation basin, a filter is further provided to improve the transparency of the treated water. Alternatively, the MLSS concentration in the biological treatment tank is optimized. Or enlarge the sedimentation basin.
(2) Adopt the two-stage activated sludge method to improve sludge sedimentation and concentration. Alternatively, a high specific gravity flocculant or the like (iron salt, calcium, etc.) is added. Alternatively, a polymer flocculant is added.
(3) In the membrane separation activated sludge method that separates the activated sludge mixture from the biological treatment tank, membrane chemical cleaning and intermittent treatment water to prevent clogging of the membrane and improve flux (permeation flux) Extraction, reverse cleaning of membrane, optimization of MLSS concentration in biological treatment tank, optimization of sludge residence time (SRT) in biological treatment tank, etc.

例えば、特許文献1では、膜浸漬型生物処理槽に凝集剤を添加してリンを凝集させて生物処理水へのリンの溶出を防止すると共に、後段の逆浸透膜分離装置でのスライムの付着を防止する方法が提案されている。   For example, in Patent Document 1, a flocculant is added to a membrane-immersed biological treatment tank to agglomerate phosphorus to prevent elution of phosphorus into biologically treated water, and adhesion of slime in a reverse osmosis membrane separation device at the latter stage A method for preventing this problem has been proposed.

また、本出願人は先に、有機性排水を生物処理槽で生物処理し、活性汚泥混合液を膜分離する膜分離活性汚泥法において、分離膜の目詰まりを防止するために、生物処理槽に鉄塩を添加すると共に生物処理槽のpHを5〜6.5に調整する方法を提案した(特許文献2)。   In addition, in order to prevent clogging of the separation membrane in the membrane separation activated sludge method, the applicant firstly biologically treated organic wastewater in a biological treatment tank and separated the activated sludge mixed solution into a membrane. A method for adjusting the pH of the biological treatment tank to 5 to 6.5 while adding an iron salt was proposed (Patent Document 2).

なお、特許文献3には、カルシウム含有排水を脱炭酸処理した後、凝集処理し、次いで膜分離処理することが記載されているが、ここで、脱炭酸処理は、炭酸カルシウムスラッジの生成量低減のために行われており、汚泥の沈降性、濃縮性、濾過性の改善のためのものではない。
特開2008−86849号公報 特願2007−41636 特開2002−292399号公報
In Patent Document 3, it is described that the calcium-containing wastewater is decarboxylated, then coagulated, and then subjected to membrane separation. Here, decarboxylation is a reduction in the amount of calcium carbonate sludge produced. It is not intended to improve the sedimentation, concentration, and filterability of sludge.
JP 2008-86849 A Japanese Patent Application No. 2007-41636 JP 2002-292399 A

特許文献2に記載されるように、生物処理槽に鉄塩を添加すると共に、生物処理槽のpHを5〜6.5に調整することにより、極めて強固で大きなフロックを形成することができ、汚泥の沈降性、濃縮性、濾過性が改善され、処理水の透視度も高いものとなる。特に、膜分離活性汚泥法に、この方法を適用すると、膜フラックスを高く維持することができるという優れた効果が奏される。   As described in Patent Document 2, while adding an iron salt to a biological treatment tank and adjusting the pH of the biological treatment tank to 5 to 6.5, an extremely strong and large floc can be formed, Sludge sedimentation, concentration, and filterability are improved, and the transparency of treated water is high. In particular, when this method is applied to the membrane separation activated sludge method, an excellent effect that the membrane flux can be kept high is exhibited.

しかし、生物処理槽に直接鉄塩を添加すると、場合によっては処理水が茶褐色に濁る現象が見られた。本発明者らによる検討の結果、この現象は、生物処理槽に添加された鉄塩が生物処理槽中で酸化鉄や炭酸鉄となり、フロックの形成に使用されずに、微粒子として処理水中にリークしたためであることが判明した。   However, when iron salt was added directly to the biological treatment tank, there was a phenomenon that the treated water became cloudy in some cases. As a result of the study by the present inventors, this phenomenon is caused by the fact that the iron salt added to the biological treatment tank becomes iron oxide or iron carbonate in the biological treatment tank and is not used for the formation of flocs, but leaks into the treated water as fine particles. It turned out to be because.

本発明は、この問題を解決し、鉄塩の添加により、生物処理槽内の活性汚泥混合液中の汚泥の沈降性、濃縮性、濾過性を結果的に改善し、良好な水質の処理水を効率的に得る有機性排水の処理方法及び処理装置を提供することを目的とする。   The present invention solves this problem and, as a result, improves the sedimentation, concentration, and filterability of sludge in the activated sludge mixed liquid in the biological treatment tank by adding iron salt, and has improved water quality. It aims at providing the processing method and processing apparatus of the organic waste water which obtains efficiently.

本発明者らは上記課題を解決すべく鋭意検討した結果、有機性排水を予め脱炭酸処理することで、炭酸鉄の生成を防止すると共に、水酸化第二鉄の最適pH付近で有機性排水と鉄塩とを予め混合することにより、酸化鉄、炭酸鉄の生成に起因する処理水の濁りが防止されることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention preliminarily decarboxylate the organic wastewater, thereby preventing the production of iron carbonate and the organic wastewater near the optimum pH of ferric hydroxide. It has been found that the turbidity of treated water due to the production of iron oxide and iron carbonate can be prevented by previously mixing iron salt with iron salt.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

[1] 有機性排水に鉄塩を添加して生物処理する方法において、有機性排水を脱炭酸処理する脱炭酸工程と、脱炭酸工程の処理水に鉄塩を添加して混合する混合工程と、混合工程からの混合水を活性汚泥と混合して生物処理する生物処理工程とを含むことを特徴とする有機性排水の処理方法。 [1] In a method of biological treatment by adding iron salt to organic wastewater, a decarboxylation step of decarboxylating organic wastewater, and a mixing step of adding iron salt to the treated water of the decarbonation step and mixing An organic wastewater treatment method comprising: a biological treatment step of biologically treating mixed water from the mixing step with activated sludge.

[2] [1]において、前記混合工程のpHが4.5〜6.5であり、前記生物処理工程のpHが5〜6.5であることを特徴とする有機性排水の処理方法。 [2] The organic wastewater treatment method according to [1], wherein the mixing step has a pH of 4.5 to 6.5, and the biological treatment step has a pH of 5 to 6.5.

[3] [1]又は[2]において、前記混合工程において、鉄塩を、前記生物処理工程における前記活性汚泥中の鉄含有量が、10〜45重量%となるように添加することを特徴とする有機性排水の処理方法。 [3] In [1] or [2], the iron salt is added in the mixing step so that the iron content in the activated sludge in the biological treatment step is 10 to 45% by weight. Organic wastewater treatment method.

[4] [1]ないし[3]のいずれかにおいて、前記生物処理工程の活性汚泥混合液を膜分離処理する膜分離工程を有することを特徴とする有機性排水の処理方法。 [4] The method for treating organic wastewater according to any one of [1] to [3], further comprising a membrane separation step of membrane separation treatment of the activated sludge mixed solution in the biological treatment step.

[5] 有機性排水に鉄塩を添加して生物処理する装置において、有機性排水を脱炭酸処理する脱炭酸手段と、脱炭酸手段の処理水に鉄塩を添加して混合する混合槽と、混合槽からの混合水を活性汚泥と混合して生物処理する生物処理槽とを含むことを特徴とする有機性排水の処理装置。 [5] In an apparatus for biological treatment by adding iron salt to organic wastewater, decarbonation means for decarboxylating organic wastewater, and a mixing tank for adding iron salt to treated water of the decarbonation means and mixing An organic wastewater treatment apparatus comprising: a biological treatment tank for biologically treating mixed water from a mixing tank with activated sludge.

[6] [5]において、前記混合槽のpHが4.5〜6.5であり、前記生物処理槽のpHが5〜6.5であることを特徴とする有機性排水の処理装置。 [6] The organic wastewater treatment apparatus according to [5], wherein the pH of the mixing tank is 4.5 to 6.5 and the pH of the biological treatment tank is 5 to 6.5.

[7] [5]又は[6]において、前記混合槽において、鉄塩を、前記生物処理槽における前記活性汚泥中の鉄含有量が、10〜45重量%となるように添加することを特徴とする有機性排水の処理装置。 [7] In [5] or [6], the iron salt is added in the mixing tank so that the iron content in the activated sludge in the biological treatment tank is 10 to 45% by weight. Organic wastewater treatment equipment.

[8] [5]ないし[7]のいずれかにおいて、前記生物処理槽の活性汚泥混合液を膜分離処理する膜分離手段を有することを特徴とする有機性排水の処理装置。 [8] The organic wastewater treatment apparatus according to any one of [5] to [7], further comprising membrane separation means for membrane separation treatment of the activated sludge mixed liquid in the biological treatment tank.

本発明によれば、有機性排水を予め脱炭酸処理して炭酸成分を除去することにより、炭酸鉄の生成を防止し、また、水酸化第二鉄の最適pH付近で有機性排水と鉄塩とを予め混合することにより、添加した鉄塩を水酸化第二鉄として有効に作用させることが可能となる。これにより、生物処理槽内で極めて強固で大きなフロックを形成することができ、汚泥の沈降性、濃縮性、濾過性が効果的に改善され、処理水への鉄分の流出を低減すると共に、
(1) 活性汚泥混合液を沈殿池で固液分離する沈殿型の生物処理では、処理水のSSを低下させ、透視度を向上させることができる。
(2) 活性汚泥混合液を膜分離する膜分離活性汚泥法では、膜の目詰まりを防止して、膜フラックスを高め、膜フラックスを長期に亘り安定に維持することができる。
といった優れた効果が奏される。
According to the present invention, the organic waste water is previously decarboxylated to remove the carbonic acid component, thereby preventing the production of iron carbonate, and the organic waste water and the iron salt near the optimum pH of ferric hydroxide. It is possible to effectively act the added iron salt as ferric hydroxide. This makes it possible to form extremely strong and large flocs in the biological treatment tank, effectively improving the sedimentation, concentration and filterability of sludge, reducing the outflow of iron to the treated water,
(1) In the sediment-type biological treatment in which the activated sludge mixed liquid is solid-liquid separated in a sedimentation basin, the SS of treated water can be lowered and the transparency can be improved.
(2) In the membrane separation activated sludge method for membrane separation of the activated sludge mixture, the membrane can be prevented from being clogged, the membrane flux can be increased, and the membrane flux can be stably maintained for a long time.
Such excellent effects are exhibited.

以下、図面を参照して本発明の有機性排水の処理方法及び処理装置の実施の形態を詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of an organic wastewater treatment method and treatment apparatus according to the present invention will be described in detail with reference to the drawings.

図1,2は本発明の有機性排水の処理装置の実施の形態を示す系統図である。図1,2において、同一機能を奏する部材には同一符号を付してある。   1 and 2 are system diagrams showing an embodiment of the organic wastewater treatment apparatus of the present invention. 1 and 2, members having the same function are denoted by the same reference numerals.

本発明では、有機性排水よりなる原水を生物処理槽3に導入し、活性汚泥によって生物処理するに際し、原水をまず脱炭酸槽1で脱炭酸処理し、次いで鉄塩混合槽2にて、脱炭酸処理水に鉄塩を添加して混合し、得られた混合水を生物処理槽3で生物処理する。   In the present invention, when raw water composed of organic wastewater is introduced into the biological treatment tank 3 and biologically treated with activated sludge, the raw water is first decarboxylated in the decarbonation tank 1 and then dehydrated in the iron salt mixing tank 2. Iron salt is added to and mixed with carbonated water, and the resulting mixed water is biologically treated in the biological treatment tank 3.

本発明で処理対象とする有機性排水としては、地下水、河川水、湖沼(ダム湖含む)水等の自然水、水道水、又は排水を処理して得られた回収水が挙げられ、本発明は、これらの水を原水として処理し、得られた処理水を純水製造に用いる場合に好適に用いることができる。   Examples of the organic wastewater to be treated in the present invention include ground water, river water, natural water such as lake water (including dam lake) water, tap water, or recovered water obtained by treating waste water. Can be suitably used when these waters are treated as raw water, and the resulting treated water is used in the production of pure water.

これらの水は、元来、BOD濃度が0.1〜100mg/L程度と低く、これらの水を純水製造の用水とする場合、シュードモナス属等の貧栄養細菌と呼ばれる微生物が主体となって生物処理された後、限外濾過(UF)膜や、孔径が0.2μM以下程度の膜で固液分離される。純水製造用水の処理に用いられる膜は、孔径が小さいため、目詰まりを生じ易い。特に、自然水には、膜を詰まらせやすいフミン質や尿素が含まれ、不溶性懸濁物(SS)濃度も高い場合がある。本発明によれば、高いファウリング防止効果が得られるため、原水に1mg/Lを超える高濃度のフミン質や尿素の一方または両方が含まれていてもよく、また、SSも0.1〜30mg/L程度の範囲で含まれていてもよい。   Originally, these waters have a low BOD concentration of about 0.1 to 100 mg / L. When these waters are used for producing pure water, microorganisms called oligotrophic bacteria such as Pseudomonas are mainly used. After the biological treatment, solid-liquid separation is performed with an ultrafiltration (UF) membrane or a membrane having a pore size of about 0.2 μM or less. The membrane used for the treatment of pure water production water is likely to be clogged because of its small pore size. In particular, natural water contains humic substances and urea that tend to clog the membrane, and the concentration of insoluble suspension (SS) may be high. According to the present invention, since a high fouling prevention effect is obtained, the raw water may contain one or both of high-concentration humic substances and urea exceeding 1 mg / L. It may be contained in the range of about 30 mg / L.

生物処理槽におけるMLSS濃度は、2,000〜50,000mg/L、特に5,000〜20,000mg/Lと高濃度とすることにより、生物処理効率を高くすることができる。   By setting the MLSS concentration in the biological treatment tank to a high concentration of 2,000 to 50,000 mg / L, particularly 5,000 to 20,000 mg / L, the biological treatment efficiency can be increased.

ここで、MLSS中の有機物量の割合、具体的には活性汚泥有機性浮遊物質MLVSS(Mixed Liquor Volatile Suspended Solids)/MLSS比は0.1〜0.8程度、特に0.2〜0.6の範囲となるようにするとよい。生物処理槽に導入される有機物含有水の有機物濃度が極端に低い場合(例えば生物分解可能な有機物であるAssimirable organic carbon、以下「AOC」濃度が100ng/L程度未満)、生物処理槽内における活性汚泥の増殖が少なくなり、MLVSS/MLSS比が上記範囲を外れる場合もある。このような場合は、生物処理槽に微量の有機物を添加するか、有機物濃度の高い他の有機物含有水を混合するようにすればよい。   Here, the ratio of the amount of organic substances in the MLSS, specifically, the activated sludge organic suspended solid MLVSS (Mixed Liquor Volatile Suspended Solids) / MLSS ratio is about 0.1 to 0.8, particularly 0.2 to 0.6. It is better to be in the range. When the organic matter concentration of water containing organic matter introduced into the biological treatment tank is extremely low (for example, an assimilable organic carbon, which is a biodegradable organic substance, hereinafter, “AOC” concentration is less than about 100 ng / L), the activity in the biological treatment tank In some cases, the sludge growth is reduced and the MLVSS / MLSS ratio is outside the above range. In such a case, a small amount of organic substance may be added to the biological treatment tank, or other organic substance-containing water having a high organic substance concentration may be mixed.

なお、生物処理槽内には、担体を浮遊させてもよい。このような浮遊性の担体としてはスポンジ、ゲルなどが例示される。生物処理槽のBOD負荷は通常の活性汚泥法と同等で良く、例えば、0.5〜5.0kg−BOD/日、特に0.5〜2.0kg−BOD/日程度が好ましいが、より低い負荷であっても、鉄塩の効果で汚泥が分散することなく、十分な強度の大きなフロックを生成して良好な処理を行える。   The carrier may be suspended in the biological treatment tank. Examples of such floating carriers include sponges and gels. The BOD load of the biological treatment tank may be the same as that of a normal activated sludge method, for example, 0.5 to 5.0 kg-BOD / day, particularly 0.5 to 2.0 kg-BOD / day is preferable, but lower. Even if it is a load, sludge is not dispersed by the effect of the iron salt, and a sufficiently large floc can be generated to perform good treatment.

本発明では、このような生物処理槽で原水を生物処理するに先立ち、まず、原水を脱炭酸処理する。図1,2においては、脱炭酸槽1を設け、この脱炭酸槽1に原水を導入し、槽内のpH計1Bに連動するpH調整剤添加手段1Cより、必要に応じてpH調整剤を添加してpH4.0〜5.0に調整し、このようなpH酸性条件下で、散気管1Aより空気を曝気する。これにより、原水中の炭酸イオンが炭酸ガスに変換されて除去される。   In the present invention, prior to biological treatment of raw water in such a biological treatment tank, first, raw water is decarboxylated. 1 and 2, a decarbonation tank 1 is provided, raw water is introduced into the decarbonation tank 1, and a pH adjuster is added as necessary from the pH adjuster addition means 1C linked to the pH meter 1B in the tank. The pH is adjusted to 4.0 to 5.0 by adding, and air is aerated from the diffuser 1A under such pH acidic conditions. Thereby, the carbonate ion in raw | natural water is converted into a carbon dioxide gas, and is removed.

脱炭酸手段としては、このような脱炭酸槽に限らず、膜脱気装置、中性pH下での窒素曝気等を用いることができる。   The decarboxylation means is not limited to such a decarboxylation tank, and a membrane deaeration device, nitrogen aeration under a neutral pH, or the like can be used.

本発明では、通常炭酸濃度20〜200程度の原水を脱炭酸処理することにより、炭酸濃度0〜20mg/L程度の脱炭酸処理水を得ることが好ましい。   In the present invention, it is preferable to obtain decarboxylated water having a carbonic acid concentration of about 0 to 20 mg / L by decarboxylating raw water having a normal carbonic acid concentration of about 20 to 200.

このようにして脱炭酸処理して得られた脱炭酸処理水は、次いで、鉄塩混合槽2に送給され、pH計2Bに連動するpH調整剤添加手段2Cより必要に応じてpH調整剤を添加してpH4.5〜6.5に調整し、このpH条件下で鉄塩を添加し、攪拌混合する。   The decarboxylated water obtained by decarboxylation in this way is then fed to the iron salt mixing tank 2 and, if necessary, a pH adjuster from the pH adjuster adding means 2C linked to the pH meter 2B. Is added to adjust the pH to 4.5 to 6.5, and the iron salt is added under this pH condition and mixed with stirring.

鉄塩としては、特に制限はなく、塩化第二鉄、塩化第一鉄、ポリ硫酸鉄、硫酸第二鉄などの鉄塩を用いることができる。これらは1種を単独で用いても良く、2種以上を併用しても良い。   The iron salt is not particularly limited, and iron salts such as ferric chloride, ferrous chloride, polyiron sulfate, and ferric sulfate can be used. These may be used alone or in combination of two or more.

鉄塩の添加量は、生物処理槽3内の活性汚泥MLSS中の鉄の含有量(Fe含有量)が10〜45重量%、特に10〜35重量%となるような量とすることが好ましい。鉄塩の添加量が少な過ぎると、十分な添加効果を得ることができず、多過ぎると活性汚泥量が増大すると共にフロック強度が低下する。   The amount of iron salt added is preferably such that the iron content (Fe content) in the activated sludge MLSS in the biological treatment tank 3 is 10 to 45% by weight, particularly 10 to 35% by weight. . If the addition amount of the iron salt is too small, a sufficient addition effect cannot be obtained, and if it is too much, the amount of activated sludge increases and the floc strength decreases.

なお、鉄塩添加量の制御は、活性汚泥MLSS中のFe含有量を分析して行うことが好ましいが、簡易には、原水のBODによって制御すればよく、例えば、原水BOD1mg/L当たりの鉄塩のFe換算添加量を、約0.03〜0.3mg/L程度とすることが好ましい。この添加量範囲で鉄塩を添加しながら、汚泥のMLSSのFe含有量を分析して鉄塩添加量の微調整を行うことが好ましい。   The iron salt addition amount is preferably controlled by analyzing the Fe content in the activated sludge MLSS, but simply, it may be controlled by the BOD of the raw water, for example, iron per 1 mg / L of the raw water BOD. It is preferable that the addition amount of salt in terms of Fe is about 0.03 to 0.3 mg / L. It is preferable to finely adjust the iron salt addition amount by analyzing the MLSS Fe content of the sludge while adding the iron salt in this addition amount range.

原水の脱炭酸処理水に鉄塩を添加する鉄塩混合槽2のpHが4.5未満では水酸化鉄の極めて微細な粒子が生成して汚泥の沈降性が悪化し、6.5を超えると再び空気中の炭酸が溶解して炭酸鉄が生成すると共にフミン酸等の凝集が悪くなる。従って、鉄塩混合槽2におけるpHは4.5〜6.5、特に4.5〜5.5とすることが好ましい。   If the pH of the iron salt mixing tank 2 in which iron salt is added to decarboxylated water of raw water is less than 4.5, extremely fine particles of iron hydroxide are generated and the sedimentation property of sludge deteriorates, exceeding 6.5 Again, carbonic acid in the air dissolves and iron carbonate is generated, and aggregation of humic acid and the like worsens. Therefore, the pH in the iron salt mixing tank 2 is preferably 4.5 to 6.5, particularly 4.5 to 5.5.

従来の活性汚泥法において、生物処理槽への鉄塩の添加は、バルキング防止、リン除去等を目的として、一般的に行われている。しかし、この場合、鉄塩の添加量は、リン除去のためごく微量添加したり、バルキング防止できる程度の添加にとどまっている。さらに、pH制御は行わないか、pH制御を行う場合も、リン除去や硝化のためにpH6.5以上とするのが通例である。   In the conventional activated sludge method, the addition of iron salt to the biological treatment tank is generally performed for the purpose of preventing bulking, removing phosphorus, and the like. However, in this case, the amount of iron salt added is only a very small amount for phosphorus removal or addition that can prevent bulking. Furthermore, when pH control is not performed or when pH control is performed, the pH is usually 6.5 or more for phosphorus removal or nitrification.

本発明では、後述の如く、生物処理槽のpHを好ましくは5〜6.5、より好ましくは5.5〜6.0とし、さらに、この条件を満足した上で、脱炭酸処理した原水に、別途設けた混合槽2で、鉄塩を添加し、この槽のpHを好ましくは4.5〜6.5とする。   In the present invention, as will be described later, the pH of the biological treatment tank is preferably 5 to 6.5, more preferably 5.5 to 6.0, and after satisfying this condition, In the mixing tank 2 provided separately, an iron salt is added, and the pH of this tank is preferably 4.5 to 6.5.

このような操作によって、生物処理水のSSは常に5mg/L以下、通常2mg/L以下となり、透視度は3m以上に達する。また、生物処理水を膜分離する膜分離活性汚泥法に適用した場合、膜フラックスは通常の0.5m/日から1m/日程度に向上させることが可能となる。   By such an operation, the SS of biologically treated water is always 5 mg / L or less, usually 2 mg / L or less, and the transparency reaches 3 m or more. Further, when applied to a membrane separation activated sludge method for membrane separation of biologically treated water, the membrane flux can be improved from the usual 0.5 m / day to about 1 m / day.

この鉄塩混合槽2では、原水の脱炭酸処理水を鉄塩と十分に混合するために、3〜20分程度の滞留時間で攪拌混合することが好ましい。   In this iron salt mixing tank 2, it is preferable to stir and mix with a residence time of about 3 to 20 minutes in order to sufficiently mix the decarboxylated treated water with the iron salt.

鉄塩混合槽2で鉄塩が添加混合された水は、次いで生物処理槽3に送給されて生物処理される。   The water added and mixed with the iron salt in the iron salt mixing tank 2 is then fed to the biological treatment tank 3 for biological treatment.

この生物処理槽3では、pH計3Bに連動するpH調整剤添加手段3Cにより、必要に応じてpH調整剤が添加され、好ましくはpH5〜6.5、より好ましくはpH5.5〜6.0で、散気管3Aによる曝気下、生物処理が行われる。   In this biological treatment tank 3, a pH adjuster is added as necessary by the pH adjuster adding means 3C interlocked with the pH meter 3B, preferably pH 5 to 6.5, more preferably pH 5.5 to 6.0. Thus, the biological treatment is performed under aeration by the diffusing tube 3A.

なお、脱炭酸槽1、鉄塩混合槽2及び生物処理槽3において、必要に応じて添加されるpH調整剤としては塩酸等の酸またはアルカリが用いられ、アルカリとしては、スケール生成を防止するために、消石灰よりも苛性ソーダ等のソーダ系アルカリを用いるのが好ましい。   In addition, in the decarboxylation tank 1, the iron salt mixing tank 2, and the biological treatment tank 3, an acid or alkali such as hydrochloric acid is used as a pH adjuster added as necessary, and as the alkali, scale formation is prevented. Therefore, it is preferable to use a soda-based alkali such as caustic soda rather than slaked lime.

生物処理水を分離膜により固液分離する場合、分離膜としては、MF(精密濾過)膜、UF(限外濾過)膜、NF(ナノ濾過)膜などのいずれでもよい。膜の形態は、平膜、管状膜、中空糸などのいずれであってもよい。膜の材質としては、PVDF(ポリフッ化ビニリデン)、PE(ポリエチレン)、PP(ポリプロピレン)等が例示されるが、これに限定されない。分離膜は、図1に示すように生物処理槽3内に浸漬配置されてもよく、図2に示すように生物処理槽3とは別個の加圧型膜分離装置として設置されてもよい。ただし、浸漬膜の方が、フロックが破壊されにくく、好適である。   When the biologically treated water is solid-liquid separated by a separation membrane, the separation membrane may be any of an MF (microfiltration) membrane, a UF (ultrafiltration) membrane, an NF (nanofiltration) membrane, and the like. The form of the membrane may be any of a flat membrane, a tubular membrane, a hollow fiber and the like. Examples of the material of the film include, but are not limited to, PVDF (polyvinylidene fluoride), PE (polyethylene), PP (polypropylene), and the like. The separation membrane may be immersed in the biological treatment tank 3 as shown in FIG. 1, or may be installed as a pressurized membrane separation device separate from the biological treatment tank 3 as shown in FIG. However, the immersion film is preferable because the floc is less likely to be destroyed.

図1の生物処理槽では、鉄塩混合槽2からの混合水が生物処理槽3に導入され、活性汚泥と混合されると共に、生物処理槽3内の底部に設けられた散気管3Aによる曝気下、生物処理が行われる。   In the biological treatment tank of FIG. 1, the mixed water from the iron salt mixing tank 2 is introduced into the biological treatment tank 3 and mixed with the activated sludge, and aerated by the air diffuser 3 </ b> A provided at the bottom of the biological treatment tank 3. Below, biological treatment is performed.

この生物処理槽3は、pH計3Bで検出されるpHが所定範囲となるように、酸又はアルカリなどのpH調整剤がその添加手段3Cから添加される。生物処理された水は、分離膜4を透過して処理水として取り出される。なお、図1ではポンプ5で透過水を取り出しているが、重力によって透過水を取り出してもよい。   In the biological treatment tank 3, a pH adjusting agent such as an acid or an alkali is added from the adding means 3C so that the pH detected by the pH meter 3B is within a predetermined range. The biologically treated water passes through the separation membrane 4 and is taken out as treated water. In FIG. 1, the permeated water is taken out by the pump 5, but the permeated water may be taken out by gravity.

生物処理槽3内の余剰汚泥は、取出管3Dによって取り出される。なお、取り出した汚泥の一部をオゾン等によって可溶化処理した後、生物処理槽3に戻してもよい。   Excess sludge in the biological treatment tank 3 is taken out by the take-out pipe 3D. A part of the extracted sludge may be solubilized with ozone or the like and then returned to the biological treatment tank 3.

図1では生物処理槽3内に分離膜4を浸漬配置しているが、図2のように、生物処理槽3内の生物処理水をポンプ6によって加圧型膜分離装置7に供給し、透過水を処理水として取り出し、濃縮水の一部(又は全部)を生物処理槽3に返送するようにしてもよい。   In FIG. 1, the separation membrane 4 is immersed in the biological treatment tank 3. However, as shown in FIG. 2, the biological treatment water in the biological treatment tank 3 is supplied to the pressurized membrane separation device 7 by the pump 6 and permeated. The water may be taken out as treated water, and a part (or all) of the concentrated water may be returned to the biological treatment tank 3.

膜分離装置7に用いる膜の種類としては、MF膜やUF膜等が例示され、膜モジュール形式は、中空糸膜、平膜以外にスパイラル膜等が例示されるが、これらに限定されない。   Examples of the type of membrane used in the membrane separator 7 include MF membranes and UF membranes, and examples of the membrane module format include spiral membranes other than hollow fiber membranes and flat membranes, but are not limited thereto.

図2の場合も、膜分離装置7の濃縮水の一部を汚泥可溶化槽に導き、オゾン等によって可溶化してから生物処理槽3へ返送するようにしてもよい。   Also in the case of FIG. 2, a part of the concentrated water of the membrane separation device 7 may be guided to a sludge solubilization tank and solubilized with ozone or the like, and then returned to the biological treatment tank 3.

なお、前述の如く、フロックが破壊されにくいところから、図2のような加圧型膜分離装置7よりも図1に示す浸漬型分離膜4を用いる方が好ましい。   As described above, it is preferable to use the immersion type separation membrane 4 shown in FIG. 1 rather than the pressure type membrane separation device 7 as shown in FIG.

本発明によれば、図1,2のように、生物処理水を直接膜分離により固液分離する有機性排水の生物処理方法において、特に生物処理槽内に浸漬させた浸漬膜モジュールにより生物処理水を膜分離する有機性排水の生物処理方法において、膜の目詰まりを防止して、膜フラックスの低下を有効に防止した上で良好な水質の処理水を得ることができる。   According to the present invention, as shown in FIGS. 1 and 2, in an organic wastewater biological treatment method in which biologically treated water is directly solid-liquid separated by membrane separation, the biological treatment is performed by an immersion membrane module immersed in a biological treatment tank. In the organic wastewater biological treatment method for separating water into membranes, it is possible to obtain treated water with good water quality while preventing clogging of the membrane and effectively preventing a decrease in membrane flux.

ただし、本発明において、生物処理水の固液分離は分離膜を用いる他、沈殿槽、サイクロン等を用いても良く、沈殿槽を用いる場合には、沈殿槽における汚泥の沈降性、濃縮水を改善すると共に、分離水(処理水)のSSを低減し、透視度を向上させることができる。   However, in the present invention, the solid-liquid separation of biologically treated water may use a separation tank, a precipitation tank, a cyclone, etc., and if a precipitation tank is used, the sludge settling in the precipitation tank, concentrated water While improving, SS of separation water (process water) can be reduced and transparency can be improved.

いずれの固液分離手段を用いた場合においても、液分と分離された固形分(分離汚泥)は、必要に応じて一部を返送汚泥として生物処理槽に返送し、生物処理槽における汚泥の滞留時間が2〜50日程度、特に10〜30日程度とするように汚泥を引き抜くことが好ましい。或いは、浸漬型分離膜を用いた場合には、このような汚泥滞留時間となるように汚泥を引き抜くことが好ましい。引き抜いた汚泥は余剰汚泥として排出してもよく、オゾン反応槽や消化槽等の減容化手段で減容化してもよい。   Regardless of which solid-liquid separation means is used, liquid and separated solids (separated sludge) are partly returned to the biological treatment tank as return sludge as necessary, and the sludge in the biological treatment tank is removed. It is preferable to extract the sludge so that the residence time is about 2 to 50 days, particularly about 10 to 30 days. Or when an immersion type separation membrane is used, it is preferable to draw out sludge so that it may become such sludge residence time. The extracted sludge may be discharged as surplus sludge or may be reduced in volume by a volume reduction means such as an ozone reaction tank or a digestion tank.

以下、実施例及び比較例について説明する。   Hereinafter, examples and comparative examples will be described.

以下の実施例及び比較例で用いた原水はBOD濃度50mg/Lの有機性排水(炭酸濃度82mg/L,pH7.6)である。   The raw water used in the following examples and comparative examples is organic wastewater (carbonic acid concentration 82 mg / L, pH 7.6) having a BOD concentration of 50 mg / L.

装置としては図1に示す浸漬型分離膜4を備えたものを用いた。ただし、比較例1,2では、脱炭酸槽1及び鉄塩混合槽2は用いず、比較例3では脱炭酸槽1は用いなかった。   As the apparatus, an apparatus provided with the immersion type separation membrane 4 shown in FIG. 1 was used. However, in Comparative Examples 1 and 2, the decarboxylation tank 1 and the iron salt mixing tank 2 were not used, and in the Comparative Example 3, the decarboxylation tank 1 was not used.

生物処理槽3の容積は0.5mである。この浸漬型分離膜4としては、3m/本の中空糸MF膜(三菱レイヨン(株)製、孔径0.4μm)3本を用いた。鉄塩混合槽2の容量は15Lである。また、脱炭酸槽3は、有機性排水をpH4.5に下げて曝気することにより脱炭酸処理する槽である。 The volume of the biological treatment tank 3 is 0.5 m 3 . As the immersion type separation membrane 4, three 3m 2 / piece hollow fiber MF membranes (manufactured by Mitsubishi Rayon Co., Ltd., pore diameter: 0.4 μm) were used. The capacity of the iron salt mixing tank 2 is 15L. The decarboxylation tank 3 is a tank for decarboxylation treatment by lowering the organic wastewater to pH 4.5 and aeration.

説明の便宜上、まず比較例を挙げる。   For convenience of explanation, a comparative example is given first.

[比較例1]
原水を原水流量10m/日で生物処理槽に直接導入し、BOD負荷1.0kg−BOD/m/日,SRT25日の条件で処理し、浸漬型分離膜に接続した処理水管の途中に設けた真空ポンプにより減圧することで、処理水管から処理水(透過水)を取出した。
[Comparative Example 1]
The raw water is directly introduced into the biological treatment tank at a raw water flow rate of 10 m 3 / day, treated under the conditions of BOD load 1.0 kg-BOD / m 3 / day, SRT 25 days, and in the middle of the treated water pipe connected to the submerged separation membrane. The treated water (permeated water) was taken out from the treated water pipe by reducing the pressure with the provided vacuum pump.

その結果、実験開始から1日で膜が目詰まりして処理水の引き抜きができなくなった。この時点での処理水のTOC濃度は3.5mg/Lであり、槽内の活性汚泥混合液の性状は以下の通りであった。   As a result, the membrane was clogged in one day from the start of the experiment, and the treated water could not be drawn. The TOC concentration of the treated water at this time was 3.5 mg / L, and the properties of the activated sludge mixed solution in the tank were as follows.

MLSS濃度 ;7000mg/L(Fe含有割合はMLSSの4.7重量%)
MLVSS濃度 ;4900mg/L
pH ;6.8
MLSS concentration: 7000 mg / L (Fe content is 4.7% by weight of MLSS)
MLVSS concentration: 4900 mg / L
pH: 6.8

[比較例2]
比較例1で処理水が引き抜けなくなった生物処理槽を空にして、生物処理槽に活性汚泥をMLSS濃度5000mg/Lとなるように添加し、この混合液に0.5重量%塩化第二鉄水溶液をFe換算で1000mg−Fe/Lの割合で添加した。また、生物処理槽内のpH計に連動して水酸化ナトリウムによりpH調整を行い、槽内pHを5.5に維持した。
[Comparative Example 2]
The biological treatment tank in which the treated water could not be pulled out in Comparative Example 1 was emptied, and activated sludge was added to the biological treatment tank so as to have an MLSS concentration of 5000 mg / L. An aqueous iron solution was added at a rate of 1000 mg-Fe / L in terms of Fe. In addition, the pH was adjusted with sodium hydroxide in conjunction with the pH meter in the biological treatment tank, and the pH in the tank was maintained at 5.5.

この状態で原水を、10m/日の流量で生物処理槽に直接供給し、0.5重量%塩化第二鉄水溶液を流入原水量に対して25mg−Fe/L(BOD負荷に対してFeとして0.5重量倍)の割合で生物処理槽に添加したところ、通水開始3日後から浸漬型分離膜の差圧上昇が小さくなった。この時点での処理水のTOC濃度は2.3mg/Lであり、生物処理槽内の活性汚泥混合液の性状は以下の通りであった。 In this state, raw water is directly supplied to the biological treatment tank at a flow rate of 10 m 3 / day, and 0.5 wt% ferric chloride aqueous solution is 25 mg-Fe / L with respect to the inflow raw water amount (Fe with respect to the BOD load). As a result, the increase in the differential pressure of the submerged separation membrane was reduced from 3 days after the start of water flow. The TOC concentration of the treated water at this time was 2.3 mg / L, and the properties of the activated sludge mixed solution in the biological treatment tank were as follows.

MLSS濃度 ;7500mg/L(Fe含有割合はMLSSの35重量%)
MLVSS濃度 ;3000mg/L
pH ;5.5
MLSS concentration: 7500 mg / L (Fe content is 35% by weight of MLSS)
MLVSS concentration: 3000 mg / L
pH; 5.5

しかし、運転を継続すると、浸漬型分離膜の差圧が上昇し、2週間で薬品洗浄が必要となった。生物処理槽内の活性汚泥混合液を取り出し、沈降性を確認したところ、30分静置後の上澄みは茶褐色に濁っており、SSを測定したところ、70mg/Lであった。
[比較例3]
比較例2において、原水を生物処理槽ではなく、生物処理槽の前段の鉄塩混合槽に導入すると共に、この鉄塩混合槽に塩化第二鉄水溶液を添加し、有機性排水と塩化第二鉄とを5分攪拌して混合した後、生物処理槽に供給したこと以外、同様の条件で処理を行った。この鉄塩混合槽のpHは5.5であった。
However, when the operation was continued, the differential pressure of the immersion type separation membrane increased, and chemical cleaning was required in 2 weeks. When the activated sludge mixed liquid in the biological treatment tank was taken out and the sedimentation property was confirmed, the supernatant after standing for 30 minutes was turbid in brown, and when SS was measured, it was 70 mg / L.
[Comparative Example 3]
In Comparative Example 2, the raw water was introduced not into the biological treatment tank but into the iron salt mixing tank in the preceding stage of the biological treatment tank, and an aqueous ferric chloride solution was added to the iron salt mixing tank, and the organic waste water and the second chloride chloride were added. After stirring and mixing with iron for 5 minutes, the treatment was performed under the same conditions except that it was supplied to the biological treatment tank. The pH of this iron salt mixing tank was 5.5.

その結果、浸漬型分離膜の差圧上昇はほぼなくなり、1ヶ月間安定運転ができたが、1ヶ月後、30kPaの差圧上昇があった。処理水のTOC濃度は2.1mg/Lであり、生物処理槽内の活性汚泥混合液の性状は以下の通りであった。   As a result, there was almost no increase in the differential pressure of the submerged separation membrane, and stable operation was possible for one month, but after one month, there was a differential pressure increase of 30 kPa. The TOC concentration of treated water was 2.1 mg / L, and the properties of the activated sludge mixed liquid in the biological treatment tank were as follows.

MLSS濃度 ;7200mg/L(Fe含有割合はMLSSの31重量%)
MLVSS濃度 ;2800mg/L
pH ;5.5
[実施例1]
比較例3において、鉄塩混合槽2の前段の脱炭酸槽1において、原水をまず脱炭酸処理し、炭酸濃度を5mg/Lとした後、鉄塩混合槽2に送給してpH5.5で鉄塩と混合したこと以外、同様の条件で処理を行った。
MLSS concentration: 7200 mg / L (Fe content is 31% by weight of MLSS)
MLVSS concentration: 2800 mg / L
pH; 5.5
[Example 1]
In Comparative Example 3, the raw water was first decarboxylated in the decarboxylation tank 1 in the preceding stage of the iron salt mixing tank 2 to adjust the carbonic acid concentration to 5 mg / L, and then fed to the iron salt mixing tank 2 to pH 5.5. The treatment was performed under the same conditions except that it was mixed with the iron salt.

その結果、浸漬型分離膜の差圧上昇はほぼなくなり、1ヶ月間安定運転を行うことができ、1ヶ月後の差圧上昇は15kPaであった。処理水のTOC濃度は1.9mg/Lであり、生物処理槽内の活性汚泥混合液の性状は以下の通りであった。   As a result, there was almost no increase in the differential pressure of the submerged separation membrane, and stable operation could be performed for 1 month, and the increase in differential pressure after 1 month was 15 kPa. The TOC concentration of treated water was 1.9 mg / L, and the properties of the activated sludge mixed liquid in the biological treatment tank were as follows.

MLSS濃度 ;7500mg/L(Fe含有割合はMLSSの35重量%)
MLVSS濃度 ;2500mg/L
pH ;5.5
MLSS concentration: 7500 mg / L (Fe content is 35% by weight of MLSS)
MLVSS concentration: 2500 mg / L
pH; 5.5

以上の結果から、有機性排水を脱炭酸処理した後、所定のpH条件で鉄塩と混合し、この混合液を生物処理することにより、活性汚泥の沈降性、濃縮性、濾過性が改善され、良好な水質の処理水を長期に亘り安定に得ることができることが分かる。   From the above results, after decarboxylation of organic wastewater, it is mixed with iron salt at a predetermined pH condition, and this mixed solution is biologically treated, thereby improving the sedimentation, concentration and filterability of activated sludge. It can be seen that treated water with good water quality can be obtained stably over a long period of time.

本発明の有機性排水の処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing apparatus of the organic waste_water | drain of this invention. 本発明の有機性排水の処理装置の他の実施の形態を示す系統図である。It is a systematic diagram which shows other embodiment of the processing apparatus of the organic waste_water | drain of this invention.

符号の説明Explanation of symbols

1 脱炭酸槽
2 鉄塩混合槽
3 生物処理槽
4 浸漬型分離膜
7 膜分離装置
DESCRIPTION OF SYMBOLS 1 Decarbonation tank 2 Iron salt mixing tank 3 Biological treatment tank 4 Immersion type separation membrane 7 Membrane separation device

Claims (8)

有機性排水に鉄塩を添加して生物処理する方法において、
有機性排水を脱炭酸処理する脱炭酸工程と、脱炭酸工程の処理水に鉄塩を添加して混合する混合工程と、
混合工程からの混合水を活性汚泥と混合して生物処理する生物処理工程とを含むことを特徴とする有機性排水の処理方法。
In the method of biological treatment by adding iron salt to organic wastewater,
A decarboxylation step of decarboxylating organic wastewater, a mixing step of adding and mixing iron salt to the treated water of the decarboxylation step,
An organic wastewater treatment method comprising: a biological treatment step in which the mixed water from the mixing step is mixed with activated sludge to biologically treat.
請求項1において、前記混合工程のpHが4.5〜6.5であり、前記生物処理工程のpHが5〜6.5であることを特徴とする有機性排水の処理方法。   In Claim 1, pH of the said mixing process is 4.5-6.5, pH of the said biological treatment process is 5-6.5, The processing method of the organic waste water characterized by the above-mentioned. 請求項1又は2において、前記混合工程において、鉄塩を、前記生物処理工程における前記活性汚泥中の鉄含有量が、10〜45重量%となるように添加することを特徴とする有機性排水の処理方法。   3. The organic waste water according to claim 1, wherein in the mixing step, an iron salt is added so that an iron content in the activated sludge in the biological treatment step is 10 to 45% by weight. Processing method. 請求項1ないし3のいずれか1項において、前記生物処理工程の活性汚泥混合液を膜分離処理する膜分離工程を有することを特徴とする有機性排水の処理方法。   The organic wastewater treatment method according to any one of claims 1 to 3, further comprising a membrane separation step of membrane separation treatment of the activated sludge mixed liquid in the biological treatment step. 有機性排水に鉄塩を添加して生物処理する装置において、
有機性排水を脱炭酸処理する脱炭酸手段と、脱炭酸手段の処理水に鉄塩を添加して混合する混合槽と、混合槽からの混合水を活性汚泥と混合して生物処理する生物処理槽とを含むことを特徴とする有機性排水の処理装置。
In a device for biological treatment by adding iron salt to organic wastewater,
Decarbonation means for decarboxylation of organic waste water, mixing tank for adding iron salt to the treated water of the decarbonation means and mixing, and biological treatment for mixing the mixed water from the mixing tank with activated sludge for biological treatment An organic wastewater treatment apparatus comprising a tank.
請求項5において、前記混合槽のpHが4.5〜6.5であり、前記生物処理槽のpHが5〜6.5であることを特徴とする有機性排水の処理装置。   6. The organic wastewater treatment apparatus according to claim 5, wherein the pH of the mixing tank is 4.5 to 6.5, and the pH of the biological treatment tank is 5 to 6.5. 請求項5又は6において、前記混合槽において、鉄塩を、前記生物処理槽における前記活性汚泥中の鉄含有量が、10〜45重量%となるように添加することを特徴とする有機性排水の処理装置。   In Claim 5 or 6, in the said mixing tank, an iron salt is added so that the iron content in the said activated sludge in the said biological treatment tank may be 10 to 45 weight%, Organic drainage characterized by the above-mentioned. Processing equipment. 請求項5ないし7のいずれか1項において、前記生物処理槽の活性汚泥混合液を膜分離処理する膜分離手段を有することを特徴とする有機性排水の処理装置。   The organic wastewater treatment apparatus according to any one of claims 5 to 7, further comprising membrane separation means for membrane separation treatment of the activated sludge mixed liquid in the biological treatment tank.
JP2008193625A 2008-07-28 2008-07-28 Method and apparatus for treating organic wastewater Pending JP2010029768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008193625A JP2010029768A (en) 2008-07-28 2008-07-28 Method and apparatus for treating organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008193625A JP2010029768A (en) 2008-07-28 2008-07-28 Method and apparatus for treating organic wastewater

Publications (1)

Publication Number Publication Date
JP2010029768A true JP2010029768A (en) 2010-02-12

Family

ID=41734914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008193625A Pending JP2010029768A (en) 2008-07-28 2008-07-28 Method and apparatus for treating organic wastewater

Country Status (1)

Country Link
JP (1) JP2010029768A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189227A (en) * 2010-03-12 2011-09-29 Fujifilm Corp Water recycling system and organic compound recovery system and method
CN102718346A (en) * 2012-07-14 2012-10-10 哈尔滨工业大学 Method for utilizing active sludge and Fe2(SO4)3 to perform combined treatment on domestic sewage
JP2015009167A (en) * 2013-06-26 2015-01-19 住友重機械エンバイロメント株式会社 Coagulation sedimentation apparatus and coagulation sedimentation method
JP2018202277A (en) * 2017-05-30 2018-12-27 オルガノ株式会社 Membrane filtration method and membrane filtration device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189227A (en) * 2010-03-12 2011-09-29 Fujifilm Corp Water recycling system and organic compound recovery system and method
CN102718346A (en) * 2012-07-14 2012-10-10 哈尔滨工业大学 Method for utilizing active sludge and Fe2(SO4)3 to perform combined treatment on domestic sewage
JP2015009167A (en) * 2013-06-26 2015-01-19 住友重機械エンバイロメント株式会社 Coagulation sedimentation apparatus and coagulation sedimentation method
JP2018202277A (en) * 2017-05-30 2018-12-27 オルガノ株式会社 Membrane filtration method and membrane filtration device

Similar Documents

Publication Publication Date Title
TWI494281B (en) Apparatus for treating organic waste water
KR101467476B1 (en) Method for biological processing of water containing organic material
JP4862361B2 (en) Waste water treatment apparatus and waste water treatment method
JP6281274B2 (en) High hardness wastewater treatment device and treatment method
WO2007077776A1 (en) Apparatus and method for treating organic-containing wastewater
CN110272158A (en) A kind of high salt, high organic matter and high rigidity wastewater treatment method
JP5120008B2 (en) Biological treatment method of water containing organic matter
JP5309760B2 (en) Organic wastewater treatment method and treatment apparatus
WO2011039831A1 (en) Biotreatment method for water containing organic substance
WO2011039832A1 (en) Organic wastewater treatment method and treatment device
JP2010029768A (en) Method and apparatus for treating organic wastewater
JP5062052B2 (en) Biological treatment method of water containing organic matter
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP2002191942A (en) Method for waste water treatment
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
JP2013046891A (en) Outside-tank installation type membrane separation activated sludge method and activated sludge treatment apparatus
US11661366B2 (en) Process for selenium removal with biological, chemical and membrane treatment
JP2009220020A (en) Wastewater treatment system and its operation method
JPH0651199B2 (en) Organic wastewater treatment method
CN209537168U (en) A kind of high-salt wastewater two-stage concentration and evaporation pretreatment system
TWI457293B (en) Method and processing device for organic drainage
JP3438508B2 (en) Advanced water treatment method and apparatus
JP2016159241A (en) Membrane filtration system
JP2002316191A (en) Method and apparatus for treating organic foul water
JP4156820B2 (en) Organic wastewater treatment method and treatment apparatus