JPH11253940A - Purified water treatment - Google Patents

Purified water treatment

Info

Publication number
JPH11253940A
JPH11253940A JP6135398A JP6135398A JPH11253940A JP H11253940 A JPH11253940 A JP H11253940A JP 6135398 A JP6135398 A JP 6135398A JP 6135398 A JP6135398 A JP 6135398A JP H11253940 A JPH11253940 A JP H11253940A
Authority
JP
Japan
Prior art keywords
ozone
oxidized
manganese
raw water
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6135398A
Other languages
Japanese (ja)
Inventor
Ichiro Sumita
一郎 住田
Hisamichi Ariga
久道 有賀
Shigeki Sawada
繁樹 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP6135398A priority Critical patent/JPH11253940A/en
Publication of JPH11253940A publication Critical patent/JPH11253940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To treat raw water containing iron, manganese, and organic substances stably and efficiently by a method in which the raw water, after being oxidized with air, is oxidized with ozone and subjected to membrane separation. SOLUTION: In the purification of water, raw water containing iron, manganese, and organic substances is exposed to air from an air diffusing pipe 2 in a raw water tank 1 to be oxidized with air. The most part of oxidation- vulnerable iron is oxidized by the aeration to be deposited. The air oxidized raw water is oxidized with ozone in an ozone column 3. The organic substances is oxidation-decomposed into low molecular weight compounds by the ozone oxidation, and the manganese is oxidized to be deposited as insoluble manganese dioxide. After that, water treated by ozone oxidation is passed through an active carbon column 4 for active carbon treatment, and the low molecular weight compounds are adsorbed/removed. The treated water of the active carbon column 4 is subjected to membrane separation by an UF membrane separator for the solid-liquid separation of the insoluble substances of iron and manganese and other suspended substances.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、鉄、マンガン及び
有機物を含有する原水を安定かつ効率的に処理する浄水
処理方法に関する。
TECHNICAL FIELD The present invention relates to a water purification method for stably and efficiently treating raw water containing iron, manganese and organic substances.

【0002】[0002]

【従来の技術】近年、上水道水源の水質悪化に伴い、異
臭味や、農薬、消毒副生成物などの有害物質の混入が指
摘されている。従来、これらに対処するために、オゾン
処理と活性炭処理を併用した浄水処理方法が採用されて
いる。また、クリプトスポリジウム(cryptsporidium)や
ジアルジア(Giardia) といった病原性生物の対応策とし
て、限外濾過(UF)膜や精密濾過(MF)膜などの膜
濾過処理が注目され、我が国でも簡易水道を中心にその
導入が進んでいる。
2. Description of the Related Art In recent years, it has been pointed out that odorous substances and harmful substances such as agricultural chemicals and disinfection by-products are mixed in with deterioration of water quality of tap water. Conventionally, in order to cope with these, a water purification treatment method using both ozone treatment and activated carbon treatment has been adopted. Also, as a measure against pathogenic organisms such as cryptosporidium and Giardia, membrane filtration treatments such as ultrafiltration (UF) membranes and microfiltration (MF) membranes have attracted attention. Its introduction is progressing.

【0003】ところで、鉄やマンガンが配管内に混入し
た場合、これらは配管内で酸化、蓄積され着色障害を起
こすことから、鉄やマンガンの処理には特に注意を要す
る。従来、鉄、マンガンの処理方法としては、地下水等
の還元状態の環境下にある原水中でイオン状態の鉄、マ
ンガンを酸化して不溶化、析出させ、固液分離する方法
が一般的である。この場合において、鉄は空気等で容易
に酸化されるが、マンガンは酸化されにくいため、塩素
を酸化剤とし、水和二酸化マンガンを自触媒とする接触
酸化法(通称マンガン砂法)が多く実用化されている。
[0003] When iron or manganese is mixed in a pipe, it is oxidized and accumulated in the pipe to cause coloring trouble. Conventionally, as a method of treating iron and manganese, a method of oxidizing and insolubilizing and depositing ionic iron and manganese in raw water in an environment in a reduced state such as underground water and performing solid-liquid separation is common. In this case, iron is easily oxidized by air or the like, but manganese is not easily oxidized. Therefore, a catalytic oxidation method (commonly called manganese sand method) using chlorine as an oxidizing agent and hydrated manganese dioxide as an autocatalyst is often used. Has been

【0004】しかし、鉄とマンガンと有機物が共存する
原水に対して、鉄及びマンガンを酸化する目的で上記マ
ンガン砂法を適用した場合、注入された塩素が有機物と
反応し、有害な消毒副生成物を生成するという問題があ
る。
However, when the above-mentioned manganese sand method is applied to raw water in which iron, manganese and organic substances coexist to oxidize iron and manganese, the injected chlorine reacts with the organic substances and causes harmful disinfection by-products. There is a problem of producing things.

【0005】この問題を解決するものとして、オゾン及
び活性炭処理と膜濾過処理とを組み合わせた処理方法が
提案されている。この方法では、鉄及びマンガンをオゾ
ンで酸化して析出させると共に、有機物を酸化分解して
活性炭で吸着させた後、膜濾過により固液分離する。こ
の方法によれば、トリハロメタンなどの消毒副生成物の
前駆物質が低減すると共に、鉄及びマンガンをオゾンに
より酸化し、塩素を用いないことから、塩素による消毒
副生成物の生成を抑制することができる。また、固液分
離手段として膜濾過を採用することによって、酸化によ
り析出した鉄及びマンガンやその他の懸濁物質、微生物
等を完全に分離することができる。
As a solution to this problem, a treatment method combining an ozone and activated carbon treatment with a membrane filtration treatment has been proposed. In this method, iron and manganese are oxidized and precipitated with ozone, and organic substances are oxidized and decomposed and adsorbed with activated carbon, and then solid-liquid separated by membrane filtration. According to this method, the precursors of disinfection by-products such as trihalomethane are reduced, and iron and manganese are oxidized by ozone and chlorine is not used. Therefore, it is possible to suppress the generation of disinfection by-products due to chlorine. it can. By employing membrane filtration as the solid-liquid separation means, iron and manganese precipitated by oxidation, other suspended substances, microorganisms, and the like can be completely separated.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、オゾン
及び活性炭処理と膜濾過処理とを組み合わせた方法で
は、上記のような利点を有する反面、次のような欠点を
有する。
However, the method combining the ozone and activated carbon treatment with the membrane filtration treatment has the above advantages, but has the following disadvantages.

【0007】即ち、この方法では、季節変動や降雨等に
よる一時的な水質変動に対応してオゾン注入率を最適値
に制御する必要があるが、鉄、マンガン及び有機物が共
存する原水をオゾン処理する場合には、制御因子が3種
類になる。このため、最適注入率の選定が複雑になるこ
とから、水質変動に対応して安定かつ効率的な処理を行
うことが難しい。
That is, in this method, it is necessary to control the ozone injection rate to an optimum value in response to temporary water quality fluctuations due to seasonal fluctuations, rainfall, etc., but the raw water in which iron, manganese and organic substances coexist is treated with ozone. In this case, there are three control factors. For this reason, selection of the optimal injection rate becomes complicated, and it is difficult to perform stable and efficient processing in response to water quality fluctuation.

【0008】本発明は上記従来の問題点を解決し、鉄、
マンガン及び有機物を含有する原水を、安定かつ効率的
に処理することができる浄水処理方法を提供することを
目的とする。
[0008] The present invention solves the above conventional problems, and
An object of the present invention is to provide a water purification treatment method capable of stably and efficiently treating raw water containing manganese and organic substances.

【0009】[0009]

【課題を解決するための手段】本発明の浄水処理方法
は、鉄、マンガン及び有機物を含有する原水を空気酸化
した後、オゾン酸化し、次いで膜分離することを特徴と
する。
The water purification method according to the present invention is characterized in that raw water containing iron, manganese and organic matter is oxidized by air, oxidized with ozone, and then subjected to membrane separation.

【0010】本発明では、まず、原水を空気酸化するこ
とにより、比較的酸化されやすい鉄の殆どを酸化して析
出させる。その後、オゾン酸化することにより、有機物
を酸化分解して低分子化すると共に、マンガンを酸化し
て不溶性の二酸化マンガンとして析出させる。
In the present invention, first, raw water is air-oxidized to oxidize and precipitate most of the relatively oxidizable iron. Thereafter, by oxidizing with ozone, organic substances are oxidized and decomposed to reduce the molecular weight, and manganese is oxidized and precipitated as insoluble manganese dioxide.

【0011】この空気酸化、オゾン酸化処理水を膜分離
処理することにより、これらの析出物を容易に除去する
ことができる。
These precipitates can be easily removed by subjecting the air-oxidized and ozone-oxidized water to membrane separation.

【0012】本発明では、比較的酸化が容易であるとい
う鉄の性質を利用して鉄を予め空気により酸化すること
によって、後段のオゾン処理を有機物とマンガンの酸化
を主目的とするものとすることができ、オゾン使用量を
低減することができる。
In the present invention, iron is oxidized in advance by air utilizing the property of iron, which is relatively easy to oxidize, so that the subsequent ozone treatment is mainly intended to oxidize organic substances and manganese. And the amount of ozone used can be reduced.

【0013】また、次の理由により、オゾンの注入制御
を容易に行って、安定かつ効率的な処理を行える。
Further, for the following reasons, the injection of ozone can be easily controlled, and a stable and efficient treatment can be performed.

【0014】即ち、鉄は比較的酸化されやすいことから
取水の条件、状態によって濃度の変動が大きい。例え
ば、水源が湧水などで地下での滞留時間が短い場合、地
表での降雨などの影響を受けやすい。従って、このよう
に濃度変動の大きい鉄を予め空気酸化することによっ
て、オゾン酸化におけるオゾンの注入制御を有機物とマ
ンガンの濃度変動、即ち、2種類の制御因子に基いて制
御することとなるため、制御が容易となり、制御効果が
高まり、最適注入率の選定も容易に行えるようになる。
That is, since iron is relatively easily oxidized, its concentration greatly varies depending on the conditions and conditions of water intake. For example, when the water source is a spring and the residence time underground is short, it is susceptible to rainfall on the ground surface. Therefore, by performing the air oxidation of iron having a large concentration variation in advance in this way, the injection control of ozone in the ozone oxidation is controlled based on the concentration variation of the organic matter and manganese, that is, two types of control factors. The control becomes easy, the control effect is enhanced, and the selection of the optimum injection rate can be easily performed.

【0015】[0015]

【発明の実施の形態】以下に図面を参照して本発明の浄
水処理方法の実施の形態を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the water purification treatment method of the present invention will be described below in detail with reference to the drawings.

【0016】図1は本発明の浄水処理方法の実施の形態
を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of the water purification treatment method of the present invention.

【0017】この方法では、まず、鉄とマンガンと有機
物を含有する原水を原水槽1にて散気管2より空気曝気
して空気酸化する。この空気酸化により、比較的酸化さ
れ易い鉄の大部分が酸化されて析出する。
In this method, first, raw water containing iron, manganese and organic matter is aerated in a raw water tank 1 through a diffuser 2 to oxidize the air. Due to this air oxidation, most of the relatively oxidizable iron is oxidized and deposited.

【0018】この空気酸化手段は、原水中の鉄の大部分
を酸化できるような手段であれば良く、その形態等に特
に制限はない。
The air oxidizing means may be any means capable of oxidizing most of the iron in the raw water, and its form is not particularly limited.

【0019】空気酸化を行う原水槽1の滞留時間は15
〜20分程度とするのが好ましい。
The residence time of the raw water tank 1 for performing air oxidation is 15
It is preferably set to about 20 minutes.

【0020】空気酸化した原水は、次いでオゾン塔3で
オゾン酸化する。このオゾン酸化により、有機物が酸化
分解されて低分子化されると共に、マンガンが酸化さ
れ、不溶性の二酸化マンガンとして析出する。
The raw water that has been oxidized with air is then oxidized with ozone in an ozone tower 3. Due to this ozone oxidation, organic substances are oxidized and decomposed to lower molecular weight, and manganese is oxidized and precipitated as insoluble manganese dioxide.

【0021】このオゾン酸化において、オゾン量が少な
いと、マンガン及び有機物の酸化が不十分となり、マン
ガンの一部がイオン性のまま、後段の膜分離装置で膜を
通過して処理水質を低下させ、また、有機物も処理水中
に残留して処理水質を悪化させる。更に、有機物の酸化
不足は膜フラックス低下の原因ともなる上に、処理水を
塩素滅菌した際に、トリハロメタン生成の原因ともな
る。逆に、オゾン量が多過ぎると、コストの増大をもた
らし、また、マンガンの過剰酸化により過マンガン酸イ
オンが生成し、後工程の活性炭の負荷量を増大させるこ
とになる。
In this ozone oxidation, if the amount of ozone is small, the oxidation of manganese and organic substances becomes insufficient, and part of the manganese remains ionic and passes through a membrane in a subsequent membrane separation device to lower the quality of treated water. In addition, organic substances also remain in the treated water and deteriorate the treated water quality. Furthermore, insufficient oxidation of organic substances causes a reduction in membrane flux, and also causes the generation of trihalomethane when treated water is sterilized with chlorine. Conversely, if the amount of ozone is too large, the cost is increased, and permanganate ions are generated due to the excessive oxidation of manganese, which increases the load of activated carbon in the subsequent step.

【0022】従って、オゾン注入率は、原水中のマンガ
ン及び有機物量に応じて適宜決定されるが、一般的に
は、0.5〜2mg/L程度で十分である。即ち、通常
の鉄、マンガン及び有機物含有水のオゾン酸化及び膜濾
過処理では、鉄の酸化にもオゾンが使用されるため、
0.5〜3mg/L程度のオゾンが必要とされるが、本
発明では、オゾン酸化に先立ち空気酸化を行うため、オ
ゾン酸化に必要なオゾン量を大幅に低減することができ
る。
Accordingly, the ozone injection rate is appropriately determined according to the amounts of manganese and organic substances in the raw water, but generally, about 0.5 to 2 mg / L is sufficient. That is, in the normal iron, manganese and organic substance-containing water ozone oxidation and membrane filtration treatment, since ozone is also used for iron oxidation,
Although about 0.5 to 3 mg / L of ozone is required, in the present invention, air oxidation is performed prior to ozone oxidation, so that the amount of ozone required for ozone oxidation can be significantly reduced.

【0023】このオゾン塔4の滞留時間は10〜20分
程度とするのが好ましい。
The residence time of the ozone tower 4 is preferably about 10 to 20 minutes.

【0024】本実施の形態では、オゾン酸化処理水を活
性炭塔4に通水して、活性炭処理することでオゾン酸化
により低分子化された有機物を吸着除去する。活性炭に
吸着された有機物の一部は活性炭内部に付着している微
生物によって生物分解されるものと推測され、活性炭は
長期間継続して使用することができる。また、活性炭塔
4ではオゾン酸化における余剰の残留オゾンが分解除去
されると共に、オゾン酸化による過酸化で生成した過マ
ンガン酸塩を分解除去する。
In the present embodiment, the ozone-oxidized water is passed through the activated carbon tower 4 to remove the organic substances degraded by ozone oxidation by the activated carbon treatment. It is presumed that some of the organic matter adsorbed on the activated carbon is biodegraded by microorganisms attached to the inside of the activated carbon, and the activated carbon can be used continuously for a long period of time. In addition, the activated carbon tower 4 decomposes and removes surplus residual ozone in ozone oxidation and decomposes and removes permanganate generated by peroxidation due to ozone oxidation.

【0025】なお、図1に示す如く、UF膜分離装置5
の前段に活性炭塔4を設ける場合、活性炭塔4が水中の
懸濁物質で目詰りすることがないように、粒状活性炭の
上向流流動層式のもののように、水中の懸濁物質を捕捉
しない形式のものを採用するのが好ましい。
As shown in FIG. 1, the UF membrane separation device 5
When the activated carbon tower 4 is provided at the previous stage, the activated carbon tower 4 is not clogged with the suspended substance in the water, and the suspended substance in the water is trapped as in the case of an upward flow fluidized bed type of granular activated carbon. It is preferable to adopt a type that does not.

【0026】活性炭塔4の処理水は次いでUF膜分離装
置5で膜分離処理し、鉄、マンガンの不溶物やその他の
懸濁物質を固液分離する。
The treated water in the activated carbon tower 4 is then subjected to membrane separation in a UF membrane separator 5 to separate solids and liquids of insolubles of iron and manganese and other suspended substances.

【0027】なお、図1ではUF膜分離装置5を用いて
いるが、その他、MF膜分離装置を用いることもでき
る。
Although the UF membrane separator 5 is used in FIG. 1, an MF membrane separator can also be used.

【0028】図1の方法では、UF膜分離装置5の前段
に活性炭塔4が設けられており、オゾン酸化による残留
オゾンが活性炭塔4で分解除去されているため、このU
F膜分離装置5の膜としては、ポリスルホン、ポリアク
リロニトリル、ポリエチレン、ポリプロピレン、酢酸セ
ルロース等の耐オゾン酸化性のない膜を用いることがで
きる。膜分離処理前に活性炭処理を行わない場合、UF
膜分離装置5の膜としては、ステンレス鋼、銅、アルミ
ニウム等を素材とした金属無機膜、アルミナ系セラミッ
ク膜、その他PEEK(ポリエーテルエーテルケトン)
やPVDF(ポリフッ化ビニリデン)等の耐オゾン酸化
性の高い膜を用いる必要がある。
In the method shown in FIG. 1, the activated carbon tower 4 is provided in front of the UF membrane separation apparatus 5, and residual ozone due to ozone oxidation is decomposed and removed in the activated carbon tower 4.
As the membrane of the F membrane separation device 5, a membrane having no ozone oxidation resistance such as polysulfone, polyacrylonitrile, polyethylene, polypropylene, and cellulose acetate can be used. If activated carbon treatment is not performed before membrane separation, UF
Examples of the membrane of the membrane separation device 5 include a metal-inorganic membrane made of stainless steel, copper, aluminum, or the like, an alumina-based ceramic membrane, and other PEEK (polyetheretherketone).
It is necessary to use a film having high ozone oxidation resistance, such as PVDF (polyvinylidene fluoride) or PVDF.

【0029】UF膜分離装置5の透過水は、二酸化マン
ガン、その他の濁質が固液分離された清澄度の高い水で
あり、処理水として排出され、処理水槽6に送給され
る。一方、濃縮水は循環処理される。
The permeated water of the UF membrane separation device 5 is high-clarity water in which manganese dioxide and other turbid substances are separated into solid and liquid, and is discharged as treated water and sent to the treated water tank 6. On the other hand, the concentrated water is circulated.

【0030】なお、図1は本発明の実施の形態の一例を
示すものであって、本発明はその要旨を超えない限り、
図1に示す方法に何ら限定されるものではない。
FIG. 1 shows an example of an embodiment of the present invention, and the present invention does not depart from the gist thereof.
The method is not limited to the method shown in FIG.

【0031】例えば、活性炭塔は膜分離装置の後段に設
けても良く、この場合には、懸濁物質による活性炭塔の
目詰りのおそれがないことから、固定床式の活性炭塔も
採用可能である。しかしながら、前述の如く、活性炭塔
を膜分離装置の後段に設ける場合には、膜分離装置の膜
材質として耐オゾン酸化性のものを採用する必要がある
ことから、好ましくは、活性炭塔は膜分離装置の前段に
配置する。また、活性炭処理は、活性炭塔を設ける他、
送水ラインに粉末活性炭を直接添加する方法であっても
良い。
For example, the activated carbon tower may be provided at the subsequent stage of the membrane separation device. In this case, since there is no possibility that the activated carbon tower is clogged by suspended substances, a fixed bed activated carbon tower can be used. is there. However, as described above, when the activated carbon tower is provided at the subsequent stage of the membrane separation device, it is necessary to adopt an ozone oxidation resistant material as the membrane material of the membrane separation device. It is placed before the equipment. In addition, activated carbon treatment, in addition to providing an activated carbon tower,
A method in which powdered activated carbon is directly added to the water supply line may be used.

【0032】また、図1では、空気酸化した原水をその
ままオゾン塔3に導入しているが、このオゾン酸化に先
立ち、或いは、空気酸化と同時に、PAC(ポリ塩化ア
ルミニウム)や硫酸バンド、塩化鉄等の無機凝集剤を用
いた凝集処理を行ってコロイド粒子をフロック化させた
後固液分離しても良い。
In FIG. 1, the raw water oxidized with air is directly introduced into the ozone tower 3, but prior to or simultaneously with the ozone oxidation, PAC (polyaluminum chloride), a sulfuric acid band, iron chloride, etc. Alternatively, after performing a flocculation treatment using an inorganic flocculant such as the above to flocculate the colloid particles, solid-liquid separation may be performed.

【0033】[0033]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0034】実施例1 図1に示す方法により表1に示す水質の原水の処理を行
い、各処理水の水質を調べ、結果を表1に示した。な
お、各部の処理条件は次の通りとした。
Example 1 Raw water having the quality shown in Table 1 was treated by the method shown in FIG. 1, and the quality of each treated water was examined. The results are shown in Table 1. The processing conditions of each part were as follows.

【0035】<原水槽> 原水流入量:1.2m3/hr 空気曝気量:50Nm3/hr 滞留時間:50分 <オゾン塔> オゾン注入量:1.8mg/L 滞留時間:20分 <活性炭塔(粒状活性炭を充填した上向流流動層方式)
> SV:10hr-1 <UF膜分離装置> 有効運転圧力:0.3kg/cm2 比較例1 原水槽において空気曝気を行わず、また、実施例1と同
程度の処理水質を得るために、オゾン塔におけるオゾン
注入率を2.6mg/Lとしたこと以外は同様にして処
理を行い、各処理水の水質を調べ、結果を表1に示し
た。
<Raw water tank> Raw water inflow: 1.2 m 3 / hr Air aeration: 50 Nm 3 / hr Residence time: 50 minutes <Ozone tower> Ozone injection amount: 1.8 mg / L Residence time: 20 minutes <Activated carbon Tower (upflow fluidized bed packed with granular activated carbon)
> SV: 10 hr -1 <UF membrane separation device> Effective operating pressure: 0.3 kg / cm 2 Comparative Example 1 In order to obtain the same treated water quality as in Example 1 without performing air aeration in the raw water tank, The treatment was carried out in the same manner except that the ozone injection rate in the ozone tower was changed to 2.6 mg / L. The quality of each treated water was examined, and the results are shown in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】表1より本発明に従って、オゾン酸化に先
立ち空気酸化を行うことにより、少ないオゾン注入率に
て清澄で良好な水質の処理水を得ることができることが
わかる。
From Table 1, it can be seen that by performing air oxidation prior to ozone oxidation according to the present invention, it is possible to obtain clear and good treated water with a low ozone injection rate.

【0038】[0038]

【発明の効果】以上詳述した通り、本発明の浄水処理方
法によれば、鉄、マンガン及び有機物を含有する原水を
安定かつ効率的に処理して、高水質の処理水を得ること
ができる。
As described in detail above, according to the water purification treatment method of the present invention, raw water containing iron, manganese and organic substances can be treated stably and efficiently to obtain high quality treated water. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の浄水処理方法の実施の形態を示す系統
図である。
FIG. 1 is a system diagram showing an embodiment of a water purification treatment method of the present invention.

【符号の説明】[Explanation of symbols]

1 原水槽 2 散気管 3 オゾン塔 4 活性炭塔 5 UF膜分離装置 6 処理水槽 Reference Signs List 1 raw water tank 2 diffuser 3 ozone tower 4 activated carbon tower 5 UF membrane separation device 6 treated water tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鉄、マンガン及び有機物を含有する原水
を空気酸化した後、オゾン酸化し、次いで膜分離するこ
とを特徴とする浄水処理方法。
1. A water purification method comprising the steps of: oxidizing raw water containing iron, manganese and organic matter by air, oxidizing with ozone, and then performing membrane separation.
JP6135398A 1998-03-12 1998-03-12 Purified water treatment Pending JPH11253940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6135398A JPH11253940A (en) 1998-03-12 1998-03-12 Purified water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6135398A JPH11253940A (en) 1998-03-12 1998-03-12 Purified water treatment

Publications (1)

Publication Number Publication Date
JPH11253940A true JPH11253940A (en) 1999-09-21

Family

ID=13168707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6135398A Pending JPH11253940A (en) 1998-03-12 1998-03-12 Purified water treatment

Country Status (1)

Country Link
JP (1) JPH11253940A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033237A (en) * 1998-07-21 2000-02-02 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for producing pure water
JP2003001272A (en) * 2001-06-26 2003-01-07 Maezawa Ind Inc Method for removing manganese
JP2005095812A (en) * 2003-09-26 2005-04-14 Daicen Membrane Systems Ltd Water purifying device and water purifying method
JP2008253954A (en) * 2007-04-09 2008-10-23 Mitsubishi Rayon Co Ltd Treatment method of water to be treated containing iron
JP2012045482A (en) * 2010-08-26 2012-03-08 Takuma Co Ltd Water treatment method and water treatment system using the same
CN106186452A (en) * 2016-09-27 2016-12-07 江苏亚欧环境工程有限公司 Acidic mine waste water processing system
CN108193051A (en) * 2017-12-28 2018-06-22 长春工程学院 A kind of neodymium iron boron powdered scrap room temperature wet method air, ozone secondary oxidation remove the device and method of iron
KR20210005251A (en) 2018-06-13 2021-01-13 미쓰비시덴키 가부시키가이샤 Ozone water generation device, water treatment device, ozone water generation method, and washing method
RU2740932C1 (en) * 2020-03-11 2021-01-21 Владислав Алексеевич Смирнов Device for deferrization of water by ozone
WO2022168948A1 (en) * 2021-02-08 2022-08-11 栗田工業株式会社 Water treatment device and method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000033237A (en) * 1998-07-21 2000-02-02 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for producing pure water
JP2003001272A (en) * 2001-06-26 2003-01-07 Maezawa Ind Inc Method for removing manganese
JP2005095812A (en) * 2003-09-26 2005-04-14 Daicen Membrane Systems Ltd Water purifying device and water purifying method
JP2008253954A (en) * 2007-04-09 2008-10-23 Mitsubishi Rayon Co Ltd Treatment method of water to be treated containing iron
JP2012045482A (en) * 2010-08-26 2012-03-08 Takuma Co Ltd Water treatment method and water treatment system using the same
CN106186452A (en) * 2016-09-27 2016-12-07 江苏亚欧环境工程有限公司 Acidic mine waste water processing system
CN108193051A (en) * 2017-12-28 2018-06-22 长春工程学院 A kind of neodymium iron boron powdered scrap room temperature wet method air, ozone secondary oxidation remove the device and method of iron
KR20210005251A (en) 2018-06-13 2021-01-13 미쓰비시덴키 가부시키가이샤 Ozone water generation device, water treatment device, ozone water generation method, and washing method
RU2740932C1 (en) * 2020-03-11 2021-01-21 Владислав Алексеевич Смирнов Device for deferrization of water by ozone
WO2022168948A1 (en) * 2021-02-08 2022-08-11 栗田工業株式会社 Water treatment device and method
JP2022121110A (en) * 2021-02-08 2022-08-19 栗田工業株式会社 Water treatment device and method

Similar Documents

Publication Publication Date Title
KR100384668B1 (en) Water Treating Method
US7678278B2 (en) Method of treating water with an inorganic powder reagent
JPH11253940A (en) Purified water treatment
JP3712110B2 (en) Purification method of sewage secondary treated water
JPH03249990A (en) High-degree treatment of service water
JPH10192851A (en) Water purifying treatment apparatus
JP5126926B2 (en) Ultra-high water treatment method and water treatment system used therefor
JP2003220394A (en) Method and apparatus for removing manganese
JP2005095818A (en) Water purification method and water purification system
JPH1199389A (en) Treatment of water containing organic component and manganese
JP3896687B2 (en) Manganese-containing water treatment equipment
JPH03270800A (en) Treatment of organic sewage
JP3575238B2 (en) Water treatment method containing organic components and manganese
JP3552580B2 (en) Method and apparatus for treating human wastewater
JP3444202B2 (en) Water treatment equipment
JP3461514B2 (en) Advanced water treatment system and method of starting advanced water treatment system
JP3438508B2 (en) Advanced water treatment method and apparatus
JPS61204081A (en) Treatment of night soil sewage
JP3356928B2 (en) Operating method of water treatment equipment using immersion type membrane filtration device
JPS62204893A (en) Water treatment method using granular activated carbon tower and reverse osmosis membrane apparatus
JP3525699B2 (en) Water treatment method containing organic components and manganese
JPH1157708A (en) Treatment of soil and organic matter-containing water
JP2000350997A (en) Method and apparatus for treating sewage
JPS61185400A (en) Apparatus for treating excretion sewage
JP2003340247A (en) Device and method for treating water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

A977 Report on retrieval

Effective date: 20060824

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060829

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20061025

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Effective date: 20070118

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20070306

Free format text: JAPANESE INTERMEDIATE CODE: A02