JP4439040B2 - Wastewater treatment equipment - Google Patents

Wastewater treatment equipment Download PDF

Info

Publication number
JP4439040B2
JP4439040B2 JP22015399A JP22015399A JP4439040B2 JP 4439040 B2 JP4439040 B2 JP 4439040B2 JP 22015399 A JP22015399 A JP 22015399A JP 22015399 A JP22015399 A JP 22015399A JP 4439040 B2 JP4439040 B2 JP 4439040B2
Authority
JP
Japan
Prior art keywords
tank
phosphorus
dephosphorization
sludge
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22015399A
Other languages
Japanese (ja)
Other versions
JP2001038370A (en
Inventor
辰彦 鈴木
正章 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP22015399A priority Critical patent/JP4439040B2/en
Publication of JP2001038370A publication Critical patent/JP2001038370A/en
Application granted granted Critical
Publication of JP4439040B2 publication Critical patent/JP4439040B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排水処理装置に関し、詳しくは、生物脱リン法によるリンを高濃度に含有した汚泥や、嫌気性消化汚泥中に含まれるオルトリン酸イオン態リンを除去して汚泥返流水中のリンの濃度を低下させ、生物脱リン法による排水処理を安定した状態で行うための排水処理装置に関する。
【0002】
【従来の技術】
下水の処理によって発生する汚泥は、有機物を多く含有しており、放置すれば腐敗して悪臭を発するなどの問題を起こすため、分解、無機化して、その質の安定を図る必要がある。
【0003】
汚泥の嫌気性消化は、嫌気性微生物の働きにより、汚泥中の有機物を分解し、メタンガスを発生させるものであって、メタンを回収することでエネルギー回収の面からも意義あるものである。しかしながら、処理後の汚泥、即ち消化汚泥中には、アンモニア性窒素、オルトリンが高濃度に含まれており、これらは、返送先で十分に除去できないため、二次処理水中への放出が懸念されている。
【0004】
一方、消化汚泥は、汚泥中のマグネシウムイオンと反応し、消化汚泥管壁面でリン酸マグネシウムアンモニウム六水和物のスケールを生成し、消化汚泥管の閉塞の原因となっている。これは脱水装置内でも進行し、例えばベルトプレスのろ布の目詰まりの進行を早めたり、遠心脱水機のボール内壁面でスケールを生成させたりするため、維持管理上大きな問題となっている。
【0005】
また、好気性消化は、散気式又は機械撹拌式エアレーションによって汚泥を好気性状態に保ち、有機物を酸化分解して汚泥を安定化するものである。この方法は、酸素供給が必要なため、運転費が高いなどの短所があり、これまで我が国においては実施例が少ないものの、運転操作が容易であり、悪臭が少ないなどの長所から、今後は、小規模下水処理向けに普及する可能性が残されている。ところが、この方法においても、消化汚泥脱水ろ液中に高濃度のオルトリンが含まれており、これが水処理系に再び戻されることにより、負荷が増大し、二次処理水質の悪化の一因となる。
【0006】
また、生物学的リン除去法で原水中から除去されたリンは、汚泥中に高濃度で蓄積し、嫌気条件下で水側に再放出されるため、水処理に悪影響を及ぼすことが懸念される。したがって再放出されたリンを効率的に除去する方法が求められている。
【0007】
【発明が解決しようとする課題】
従来のリンの除去は、第二鉄塩や硫酸アルミニウム(ばん土)のような金属塩及び石灰からなる凝集剤を用いて下水中のリンを凝集させ、これを沈殿除去する凝集沈殿法が最も一般に行われている。しかしながら、この方法では汚泥発生量が多くなり、しかもそれらは難脱水性であるなどの問題がある。
【0008】
そこで本発明は、下水の処理によって発生する汚泥中のリンを効率よく除去することができ、排水処理設備の負荷の軽減や二次処理水中へのリンの流出防止を図ることができる排水処理装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明の排水処理装置は、リン含有汚泥中の固形物を沈殿分離する固液分離槽と、該固液分離槽で固形物を分離した分離液に脱リン剤及びカルシウムイオンを添加して分離液中のリンと添加したカルシウムとを反応させて析出させることにより分離液中からリンを除去する脱リン槽と、前記固液分離槽で分離した固形物と前記脱リン槽でリンを除去した脱リン液とを混合して汚泥濃縮設備に送る経路とを特徴としている。
【0010】
【発明の実施の形態】
図1は排水処理装置の参考例を示す説明図である。この排水処理装置は、リン含有汚泥中の固形物を沈殿分離する固液分離槽10と、リンとカルシウムとを反応させて除去する脱リン槽20と、カルシウム化合物貯留槽30及びpH調整剤貯留槽31を有するものであって、固液分離槽10には、排水処理設備の消化槽等から引抜いたリン含有汚泥の流入管11と、固液分離した上層の分離液を脱リン槽20に供給する分離液供給管12と、槽底部に沈降した固形物を引抜く固形物引抜管13とが設けられている。
【0011】
前記脱リン槽20は、上部が大径で底面を漏斗状に形成した有底円筒状のものであって、その内部には、大径小径2個の円筒体21,22が設けられている。大径円筒体21の内周部上方には、前記分離液供給管12の流出部が位置しており、さらに、カルシウム化合物供給管23、pH調整剤供給管24及び脱リン剤供給管25がそれぞれ設けられている。また、小径円筒体22の内部には、該円筒体22内に下向流を発生させる撹拌機26が設けられている。
【0012】
さらに、脱リン槽20の底部には、リンとカルシウムとが反応して脱リン剤表面に析出したリン・カルシウム化合物(リン酸カルシウム、リン酸水素カルシウム、ヒドロキシアパタイト等)の結晶を排出するための生成物排出部27が設けられ、上部には脱リン液排出部28が設けられている。また、脱リン槽20の適宜な位置には、pH計29が設けられており、このpH計29の測定値に応じてpH調整剤供給管24からpH調整剤が投入される。
【0013】
上記大径円筒体21は、脱リン槽上部の大径部内に設けられており、上端は水面より上方に位置するように設置されている。この大径円筒体21の内部に設置される小径円筒体22は、大径円筒体21の内周部及び脱リン槽20の下部内周部との間をドラフトチューブ型撹拌部とするものであって、撹拌機26により小径円筒体22の内周に下向流が、外周に上昇流がそれぞれ形成されて循環流となる。
【0014】
また、大径円筒体21の外周部と、脱リン槽20上部の大径部の内周部との間は、分離液流入管12から流入する分離液量に略相当する液が上昇し、反応により生成した結晶を、その上昇過程で沈降分離させる結晶分離部として作用する。この部分は、小結晶も確実に沈降させるために十分な水面積で形成されている。
【0015】
脱リン槽20では、分離液流入管12から流入する分離液と、カルシウム化合物供給管23から供給されるカルシウム化合物とが小径円筒体22の周囲を循環する過程で混合され、分離液中のリンと添加されたカルシウムとが反応してリン・カルシウム化合物が生成し、最初は、種結晶としてあらかじめ投入されたリン酸カルシウムの結晶やりん鉱石等の脱リン剤の表面に析出する。さらに、この表面で反応が進んで結晶が次第に成長し、ある程度の大きさの結晶になると比重差により循環流から分かれて槽底部に沈降する。
【0016】
このとき、前段の固液分離槽10で流入汚泥中の固形物をあらかじめ十分に沈殿分離しておくことにより、脱リン槽20底部の生成物排出部27から、純度が高く、肥料として有効に利用できるリン・カルシウム化合物を取出すことができる。
【0017】
また、リン除去した脱リン液は、槽上部の脱リン液排出部28から抜出され、排水処理設備の適宜な位置に戻されて再処理される。さらに、固液分離槽10の固形物引抜管13から引抜かれた固形物は、汚泥濃縮設備等に送られて所定の処理が行われる。
【0018】
このようにしてリンを除去することにより、汚泥中にリンが大量に蓄積されることを防止でき、二次処理水中にリンが流出することを防止できるとともに、配管中へのスケールの付着を防止でき、汚泥量が増加することもなく、排水処理設備の負荷も軽減できる。
【0019】
図2は本発明の形態例を示す説明図である。本形態例の装置構成は、前記参考例と略同様であるから、前記参考例の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。
【0020】
この形態例では、固液分離槽10における固液分離を、砂等の比重の大きなものの分離だけにとどめ、大部分の汚泥は、そのまま脱リン槽20に供給して脱リン処理を行うようにし、固液分離槽10の固形物引抜管13から引抜いた固形物と、脱リン槽20の脱リン液排出部28から抜出された汚泥含有脱リン液は、合流経路41に合流させて汚泥濃縮設備42に送るようにしている。
【0021】
このとき、脱リン槽20では、固液分離槽10から供給された汚泥が結晶と共に槽底部に沈殿することを防止しながら、脱リン水と共に脱リン液排出部28から流出させ、かつ、結晶を流出させずに沈降させるため、結晶の沈降速度V1と、大径円筒体21外周部の結晶分離部における上昇流の断面流速V2と、固液分離槽10における上昇流の断面流速V3との関係を、V1>V2>V3となるように設定しておくことが好ましい。
【0022】
このように、汚泥濃縮設備42が設けられている排水処理設備の場合は、固液分離槽10において、脱リン槽20で生成した結晶と共に沈殿してしまうような比重の大きなものだけを分離するように設定することにより、固液分離槽10の容量を前記参考例に比べて大幅に小さくすることができるので、装置の小型化が図れ、既存の排水処理設備における消化槽と汚泥濃縮設備42との間の限られた空間内にも容易に設置することができる。
【0023】
【発明の効果】
以上説明したように、本発明の排水処理装置によれば、消化汚泥等に含まれるリンを効率よく除去することができるので、二次処理水中にリンが流出することを確実に防止できるとともに、水処理設備の負荷も軽減させることができ、安定した水処理運転を行うことができる。
【図面の簡単な説明】
【図1】 排水処理装置の参考例を示す説明図である。
【図2】 本発明の排水処理装置の形態例を示す説明図である。
【符号の説明】
10…固液分離槽、11…流入管、12…分離液供給管、13…固形物引抜管、20…脱リン槽、21…大径円筒体、22…小径円筒体、23…カルシウム化合物供給管、24…pH調整剤供給管、25…脱リン剤供給管、26…撹拌機、27…生成物排出部、28…脱リン液排出部、29…pH計、30…カルシウム化合物貯留槽、31…pH調整剤貯留槽、41…合流経路、42…汚泥濃縮設備
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wastewater treatment apparatus, and more specifically, removes sludge containing a high concentration of phosphorus by a biological dephosphorization method or orthophosphoric acid ion phosphorus contained in anaerobic digested sludge to remove phosphorus in sludge return water. The present invention relates to a wastewater treatment apparatus for reducing the concentration of water and performing wastewater treatment by a biological dephosphorization method in a stable state.
[0002]
[Prior art]
The sludge generated by the sewage treatment contains a lot of organic matter, and if left untreated, it will rot and give off a bad odor, so it must be decomposed and mineralized to stabilize its quality.
[0003]
The anaerobic digestion of sludge decomposes the organic matter in the sludge by the action of anaerobic microorganisms and generates methane gas. The recovery of methane is also significant in terms of energy recovery. However, sludge after treatment, that is, digested sludge contains ammonia nitrogen and ortholine at high concentrations, and these cannot be sufficiently removed at the return destination, so there is a concern of release into the secondary treated water. ing.
[0004]
On the other hand, digested sludge reacts with magnesium ions in the sludge to generate magnesium ammonium phosphate hexahydrate scale on the wall of the digested sludge tube, causing the digested sludge tube to become clogged. This also progresses in the dehydrating apparatus, and for example, the progress of clogging of the filter cloth of the belt press is accelerated, or scale is generated on the inner wall surface of the ball of the centrifugal dehydrator.
[0005]
In the aerobic digestion, the sludge is kept in an aerobic state by aeration or mechanical stirring aeration, and the sludge is stabilized by oxidizing and decomposing organic matter. This method has disadvantages such as high operating costs because it requires oxygen supply, and although there are few examples in Japan so far, it is easy to operate and has few bad odors. There is still the possibility of spreading for small-scale sewage treatment. However, even in this method, the digested sludge dehydrated filtrate contains a high concentration of ortholine, which is returned to the water treatment system, which increases the load and contributes to the deterioration of the quality of the secondary treated water. Become.
[0006]
In addition, phosphorus removed from raw water by the biological phosphorus removal method accumulates at a high concentration in sludge and is re-released to the water side under anaerobic conditions. The Therefore, there is a need for a method that efficiently removes re-released phosphorus.
[0007]
[Problems to be solved by the invention]
The conventional method for removing phosphorus is the coagulation-precipitation method in which phosphorus in the sewage is agglomerated using a coagulant composed of a metal salt such as ferric salt or aluminum sulfate (porous earth) and lime, and this is precipitated and removed. Generally done. However, this method has a problem that the amount of sludge generated is increased and they are hardly dehydrated.
[0008]
Accordingly, the present invention provides a wastewater treatment apparatus that can efficiently remove phosphorus in sludge generated by sewage treatment, and can reduce the load on wastewater treatment equipment and prevent the outflow of phosphorus into secondary treated water. The purpose is to provide.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a wastewater treatment apparatus of the present invention includes a solid-liquid separation tank that precipitates and separates solids in phosphorus-containing sludge, and a dephosphorizing agent and a separation liquid separated from the solids in the solid-liquid separation tank. A dephosphorization tank that removes phosphorus from the separation liquid by adding calcium ions to react and precipitate the phosphorus in the separation liquid and the added calcium, and the solids separated in the solid-liquid separation tank and the desorption It is characterized by a route that mixes with a dephosphorization solution from which phosphorus has been removed in a phosphorus tank and sends it to a sludge concentration facility .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Figure 1 is an explanatory diagram showing a reference example of wastewater treatment apparatus. This waste water treatment apparatus includes a solid-liquid separation tank 10 that precipitates and separates solid matter in phosphorus-containing sludge, a dephosphorization tank 20 that reacts and removes phosphorus and calcium, a calcium compound storage tank 30, and a pH adjuster storage. In the solid-liquid separation tank 10, the phosphorus-containing sludge inflow pipe 11 drawn from the digestion tank of the wastewater treatment facility and the upper-layer separated liquid separated into the solid-liquid separation are supplied to the dephosphorization tank 20. A separation liquid supply pipe 12 to be supplied and a solid substance extraction pipe 13 for extracting the solid substance settled on the bottom of the tank are provided.
[0011]
The dephosphorization tank 20 has a bottomed cylindrical shape with a large diameter at the top and a funnel shape at the bottom, and two large diameter and small diameter cylinders 21 and 22 are provided therein. . Above the inner peripheral part of the large-diameter cylindrical body 21, the outflow part of the separation liquid supply pipe 12 is located. Further, a calcium compound supply pipe 23, a pH adjuster supply pipe 24, and a dephosphorization agent supply pipe 25 are provided. Each is provided. In addition, a stirrer 26 that generates a downward flow in the cylindrical body 22 is provided inside the small diameter cylindrical body 22.
[0012]
Further, at the bottom of the dephosphorization tank 20, the phosphorus and calcium react with each other to form crystals for phosphorus / calcium compounds (calcium phosphate, calcium hydrogen phosphate, hydroxyapatite, etc.) deposited on the surface of the dephosphorization agent. An object discharge part 27 is provided, and a dephosphorization liquid discharge part 28 is provided at the top. Further, a pH meter 29 is provided at an appropriate position of the dephosphorization tank 20, and a pH adjuster is introduced from the pH adjuster supply pipe 24 in accordance with the measured value of the pH meter 29.
[0013]
The large-diameter cylindrical body 21 is provided in the large-diameter portion at the upper part of the dephosphorization tank, and is installed so that the upper end is located above the water surface. The small-diameter cylindrical body 22 installed inside the large-diameter cylindrical body 21 is a draft tube type stirring section between the inner peripheral portion of the large-diameter cylindrical body 21 and the lower inner peripheral portion of the dephosphorization tank 20. Then, a downward flow is formed on the inner periphery of the small-diameter cylindrical body 22 and an upward flow is formed on the outer periphery by the stirrer 26 to form a circulating flow.
[0014]
Further, between the outer peripheral portion of the large-diameter cylindrical body 21 and the inner peripheral portion of the large-diameter portion at the top of the dephosphorization tank 20, a liquid substantially corresponding to the amount of the separation liquid flowing from the separation liquid inflow pipe 12 rises. It acts as a crystal separation part that precipitates and separates the crystals generated by the reaction in the ascending process. This portion is formed with a sufficient water area so that the small crystals can be surely settled.
[0015]
In the dephosphorization tank 20, the separation liquid flowing in from the separation liquid inflow pipe 12 and the calcium compound supplied from the calcium compound supply pipe 23 are mixed in the process of circulating around the small-diameter cylindrical body 22, and phosphorus in the separation liquid is mixed. Reacts with the added calcium to form a phosphorus-calcium compound, which initially deposits on the surface of a dephosphorizing agent such as calcium phosphate crystals or phosphate rocks previously added as seed crystals. Furthermore, the reaction proceeds on this surface and the crystals gradually grow. When the crystals become a certain size, they separate from the circulation flow due to the difference in specific gravity and settle to the bottom of the tank.
[0016]
At this time, the solid matter in the inflow sludge is sufficiently precipitated and separated in advance in the solid-liquid separation tank 10 so that the product discharge part 27 at the bottom of the dephosphorization tank 20 has high purity and is effective as a fertilizer. Available phosphorus and calcium compounds can be extracted.
[0017]
Moreover, the dephosphorization liquid from which phosphorus has been removed is extracted from the dephosphorization liquid discharge section 28 at the top of the tank, returned to an appropriate position in the wastewater treatment facility, and reprocessed. Further, the solid matter extracted from the solid matter extraction tube 13 of the solid-liquid separation tank 10 is sent to a sludge concentration facility or the like and subjected to a predetermined process.
[0018]
By removing phosphorus in this way, it is possible to prevent a large amount of phosphorus from accumulating in the sludge, to prevent phosphorus from flowing out into the secondary treated water, and to prevent the scale from adhering to the piping. It is possible to reduce the load of the wastewater treatment facility without increasing the amount of sludge.
[0019]
Figure 2 is an explanatory view showing an embodiment of the present invention. Device configuration of the present embodiment, the reference example and because it is substantially the same, wherein the detailed description with the same reference numerals same components as those of the reference example will be omitted.
[0020]
In this embodiment, the solid-liquid separation in the solid-liquid separation tank 10 is limited to the separation of sand and other large specific gravity, and most of the sludge is supplied to the dephosphorization tank 20 as it is to perform the dephosphorization treatment. The solid matter extracted from the solid matter extraction tube 13 of the solid-liquid separation tank 10 and the sludge-containing dephosphorization liquid extracted from the dephosphorization liquid discharge unit 28 of the dephosphorization tank 20 are joined to the merging path 41 to form sludge. It is sent to the concentration facility 42.
[0021]
At this time, in the dephosphorization tank 20, the sludge supplied from the solid-liquid separation tank 10 is allowed to flow out from the dephosphorization liquid discharge section 28 together with dephosphorization water while preventing the sludge from being precipitated together with the crystals at the bottom of the tank. The sedimentation speed V1 of the crystal, the cross-sectional flow velocity V2 of the upward flow in the crystal separation part of the outer periphery of the large-diameter cylindrical body 21, and the cross-sectional flow velocity V3 of the upward flow in the solid-liquid separation tank 10 The relationship is preferably set so that V1>V2> V3.
[0022]
As described above, in the case of the wastewater treatment facility provided with the sludge concentration facility 42, the solid-liquid separation tank 10 separates only the large specific gravity that precipitates with the crystals generated in the dephosphorization tank 20. By setting as described above, the capacity of the solid-liquid separation tank 10 can be significantly reduced as compared with the above-described reference example. Therefore, the apparatus can be downsized, and the digester tank and the sludge concentrating equipment 42 in the existing wastewater treatment equipment. Can be easily installed in a limited space between the two.
[0023]
【The invention's effect】
As described above, according to the wastewater treatment apparatus of the present invention, phosphorus contained in digested sludge and the like can be efficiently removed, so that phosphorus can be reliably prevented from flowing out into the secondary treated water, The load on the water treatment facility can be reduced, and a stable water treatment operation can be performed.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a reference example of a wastewater treatment apparatus.
FIG. 2 is an explanatory view showing an embodiment of the waste water treatment apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Solid-liquid separation tank, 11 ... Inflow pipe, 12 ... Separation liquid supply pipe, 13 ... Solid substance extraction pipe, 20 ... Dephosphorization tank, 21 ... Large diameter cylindrical body, 22 ... Small diameter cylindrical body, 23 ... Calcium compound supply Tube, 24 ... pH adjusting agent supply tube, 25 ... dephosphorization agent supply tube, 26 ... stirrer, 27 ... product discharge part, 28 ... dephosphorization liquid discharge part, 29 ... pH meter, 30 ... calcium compound reservoir, 31 ... pH adjuster storage tank, 41 ... Confluence route, 42 ... Sludge concentration equipment

Claims (1)

リン含有汚泥中の固形物を沈殿分離する固液分離槽と、該固液分離槽で固形物を分離した分離液に脱リン剤及びカルシウムイオンを添加して分離液中のリンと添加したカルシウムとを反応させて析出させることにより分離液中からリンを除去する脱リン槽と、前記固液分離槽で分離した固形物と前記脱リン槽でリンを除去した脱リン液とを混合して汚泥濃縮設備に送る経路とを備えていることを特徴とする排水処理装置。A solid-liquid separation tank that precipitates and separates solids in phosphorus-containing sludge, and calcium added to the separated liquid by adding a dephosphorizing agent and calcium ions to the separated liquid separated in the solid-liquid separation tank A dephosphorization tank that removes phosphorus from the separated liquid by reacting and precipitating, a solid separated in the solid-liquid separation tank and a dephosphorization liquid from which phosphorus is removed in the dephosphorization tank A wastewater treatment apparatus comprising a route for sending to a sludge concentration facility .
JP22015399A 1999-08-03 1999-08-03 Wastewater treatment equipment Expired - Fee Related JP4439040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22015399A JP4439040B2 (en) 1999-08-03 1999-08-03 Wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22015399A JP4439040B2 (en) 1999-08-03 1999-08-03 Wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2001038370A JP2001038370A (en) 2001-02-13
JP4439040B2 true JP4439040B2 (en) 2010-03-24

Family

ID=16746729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22015399A Expired - Fee Related JP4439040B2 (en) 1999-08-03 1999-08-03 Wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP4439040B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4503523B2 (en) * 2005-10-27 2010-07-14 荏原エンジニアリングサービス株式会社 A method and apparatus for treating wastewater containing a crystallization target component.
JP5461802B2 (en) * 2008-08-13 2014-04-02 幸雄 柳沢 Dephosphorization material and dephosphorization apparatus
JP5917917B2 (en) * 2012-01-06 2016-05-18 オルガノ株式会社 Crystallization reactor
KR101793809B1 (en) * 2013-06-26 2017-11-03 오르가노 코포레이션 Crystallization reactor
JP6367085B2 (en) * 2014-11-04 2018-08-01 水ing株式会社 Method and apparatus for phosphorus recovery and scale generation prevention in organic wastewater treatment

Also Published As

Publication number Publication date
JP2001038370A (en) 2001-02-13

Similar Documents

Publication Publication Date Title
JP4310196B2 (en) Organic drainage and sludge treatment method and treatment equipment
WO2017194997A1 (en) Methods and apparatus for nutrient and water recovery from waste streams
KR101462033B1 (en) Sewage and wastewater treatment system with crystallization apparatus for phosphorus recovery
JP3441042B2 (en) Phosphorus removal and recovery equipment using seawater
Heinzmann et al. Induced magnesium ammonia phosphate precipitation to prevent incrustations and measures for phosphorus recovery
JPS6242677B2 (en)
JP4439040B2 (en) Wastewater treatment equipment
JPS6384696A (en) Dephosphorization device
JP3876489B2 (en) Waste water treatment equipment
JPS63200888A (en) Removal of phosphorus contained in water
JP2013119081A (en) Treatment method and treatment apparatus for phosphorus-containing wastewater
JPH07115979B2 (en) Manufacturing method of sludge fertilizer
JPH1157773A (en) Biological dephosphorizing device
JP2576679B2 (en) Dephosphorization device
JP2000140891A (en) Method for recovering phosphorus in sludge and device therefor
JP4368159B2 (en) Method for treating wastewater containing phosphate
JP4568391B2 (en) Fluidized bed crystallization reactor
JP3883222B2 (en) Granulation dephosphorization equipment
JP2007196081A (en) Wastewater treatment system and toilet arrangement
JPH10323677A (en) Waste water treatment device
EP3733611B1 (en) Apparatus and method for wastewater treatment
JP5124907B2 (en) Phosphorus removal method
JP4223334B2 (en) Phosphorus recovery equipment
JP3355121B2 (en) Organic wastewater treatment method
KR101218395B1 (en) Inorganic sludge selective discharge facility applying contact grawing method in swirl flow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees