JPS6242677B2 - - Google Patents

Info

Publication number
JPS6242677B2
JPS6242677B2 JP9789078A JP9789078A JPS6242677B2 JP S6242677 B2 JPS6242677 B2 JP S6242677B2 JP 9789078 A JP9789078 A JP 9789078A JP 9789078 A JP9789078 A JP 9789078A JP S6242677 B2 JPS6242677 B2 JP S6242677B2
Authority
JP
Japan
Prior art keywords
phosphate
tank
separation section
water
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9789078A
Other languages
Japanese (ja)
Other versions
JPS5524570A (en
Inventor
Katsuyuki Kataoka
Kazuo Shimada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP9789078A priority Critical patent/JPS5524570A/en
Publication of JPS5524570A publication Critical patent/JPS5524570A/en
Publication of JPS6242677B2 publication Critical patent/JPS6242677B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、上水、下水、し尿系汚水、工業用
水、工場排水、ボイラー用水、その他あらゆる水
溶液中に存在するリン酸塩類を除去する方法に関
するものである。 一般に、自然水系に排出される上記の各種廃水
中には、無機性のリン酸塩としてオルトリン酸塩
や各種の縮合リン酸塩さらに有機性リン酸塩など
が様々な状態で存在しておりこれらのリン酸塩類
の存在が湖沼、内海、内湾などの閉鎖水或乃至は
停滞水域の「あおこ」、「赤潮」発生の誘起因子と
なり、さらに各種の用水として使用する場合に装
置、配管内に生物学的なスライムが発生し、また
化学的なスケールが形成されて、事故発生の重大
な原因となつている。 従つて、これら液中に存在するリン酸塩を除去
する必要から、各種のリン除去方法が検討されて
おり、その代表的なものとして、生物学的処理
法、イオン交換樹脂法、化学的凝集沈殿法などが
あげられるが、このうち、化学的凝集沈殿法は現
時点で一応完成された処理技術として評価され、
すでにかなりのところで実際処理規模の処理装置
が稼動している。 この化学的凝集処理法によるリン酸塩類の除去
は、液中に存在するリン酸塩類を特定の凝集剤を
添加することによつて不溶性リン酸塩として除去
する方法であり、凝集剤としては、通常、消石灰
〔Ca(OH)2〕、硫酸アルミニウム〔Al2
(SO43〕、塩化第2鉄〔FeCl3〕などが用いられ
る。ところが、化学的凝集沈殿法の最大の欠点
は、使用する凝集剤の種類にあまり関係なく、 一般に大量の凝集剤を必要とし、処理コスト
が高いこと。 大なる薬注量に比例的に大量の汚泥が発生
し、この汚泥の沈降性、濃縮性が極めて悪いこ
と(石灰汚泥は例外) さらにこの汚泥は脱水性が劣ること(石灰汚
泥は例外) であり、大なる汚泥処理施設と処理費用を必要と
するために、現用技術であるにもかからわず、実
用上多くの問題をかかえている。 このため、先に本発明者等によつて従来にない
新規な処理方法として一定の粒径をもつリン酸カ
ルシウムを含有するリン酸塩鉱物を筒状あるいは
錐状の脱リン塔に充填し、被処理液のPHを6〜11
の範囲に調整し、さらに被処理液中に含まれてい
る溶解性リン酸塩類の濃度に対応して塩化カルシ
ウムなどのカルシウム剤を加え、これを一定の流
速条件で通過接触せしめることにより、充填され
ているリン酸塩鉱物の表面にカルシウムハイドロ
キシアパタイトの結晶を晶出、固着せしめて溶解
性リン酸塩類を除去する方法即ち、接触脱リン法
が提案されるに至つた。この場合、リン酸塩鉱物
表面での代表的な化学反応は次の通りである。 5Ca2++70H-+3H2PO4=Ca(OH)(PO4)+6H2O ……(1) このような新規な脱リン方法を適用すれば、カ
ルシウムハイドロキシアパタイトが固着したリン
酸塩鉱物の分離、脱水が極めて容易であり、従来
の化学的凝集沈殿法によるいわゆる凝沈汚泥と比
較すると、濃縮装置、脱水機、乾燥機、乾燥装置
などの既成概念による汚泥処理施設をまつたく必
要としないだけではく、資源としてのリンを効率
よく回収することができる優れた脱リン技術であ
ることが明らかになつた。 しかしながら、その反面、次のような運転操作
上の問題点があつた。 即ち、リン酸塩鉱物をカラムに充填し、固定層
状態もしくは流動層状態で原水を通水し運転を継
続すると前式(1)の反応によつて、新たに沈殿生成
したCa5(OH)(PO43が次々にリン酸塩鉱物表
面に折出付着する結果、リン酸塩鉱物が次第に肥
大し、初めに充填したときの粒径よりも大きな粒
径に成長してしまう。このような状態になると、
損失水頭が上昇したり、流動化が困難になつたり
するため、運転を停止し、カラム内の肥大化した
リン酸塩鉱物を、全部外に取り出し、再度、新た
に別に用意してあるリン酸塩鉱物をカラム内に充
填するという処置をとらねばならず、運転管理上
非常に面倒であつた。 この肥大化リン酸塩鉱物の取り出し操作は、原
水中のリン酸の濃度が大なるほど当然のように頻
繁に行わねばならず、例えば、原水中のリン酸イ
オン濃度が10mg/程度の場合、10ケ月に一度の
取り出し操作が必要であることがパイロツトプラ
ントの運転実績から明らかになつている。 また、リン酸イオンの除去速度はリン酸塩鉱物
の表面積が大なるほど大きくなるがカラム内にリ
ン酸塩鉱物を充填して、固定層状態や流動層状態
で運転するという方法では、粒状の小さなリン酸
塩鉱物を使用すると、固定層操作の場合は、損失
水頭が大きくなり好ましくなく、また流動層操作
の場合は、流動層の膨張率が過大なりやすいの
で、やはり好ましくなく、採用できるリン酸塩鉱
物の粒径は、 0.5mm程度が限界であつた。このため装置のコ
ンパクト化の目的からの理想的状態に至つていな
かつた。 本発明は、これらの諸問題点を解決することを
可能にする有効な方法を提供することを目的とし
ている。つまり、リン酸塩鉱物の取り出し及び補
給操作が必要となり、また粒径0.5mm以下の細粒
径のリン酸塩鉱物を使用しても従来法のような問
題を生ずることなく安定的に操作でき、かつ装置
のよりコンパクト化を可能にする方法を提供する
ものである。 さらに、本発明の他の目的は、処理に際して用
いられるリン酸塩鉱物の所要量を削除し著しく経
済的なコストで質的にも良好な処理水を大量に得
られる方法とすることにある。本発明はリン酸イ
オンを含む被処理液にカルシウム剤を添加して混
合撹拌しうる槽1内において、リン酸カルシウム
を含有するリン酸塩鉱物粒状体と、リン酸カルシ
ウム不含有の不活性粒状体を強制的な混合撹拌機
構によつて懸濁状態に維持しつつ、リン酸イオン
を含む原水を前記槽1内に供給するとともに、カ
ルシウム剤を原水または前記槽1内に添加して、
原水中のリン酸イオンを不溶性のリン酸カルシウ
ム沈殿に転換せしめたのち、前記リン酸塩鉱物粒
状体ならびに不活性粒状体を粒状体分離部2にお
いてそれぞれ分離回収し、前記槽1内に返送せし
めたのち、該粒状体分離部2からの流出水中のリ
ン酸カルシウム沈殿物を含むSSを該分離部2に
後続する砂過などの固液分離部3において除去
することを特徴とする廃水中のリン酸塩類の除去
方法である。 以下本発明の一実施態様を図面を参照しながら
説明すると、第1図において混合撹拌部となる槽
1にリン酸イオンを含む被処理液の原水Aとカル
シウム剤Bとを供給し、強制的な撹拌機構、例え
ば機械的な回転撹拌翼4でリン酸カルシウムを含
有するリン酸塩鉱物粒状体とリン酸カルシウム不
含有の不活性粒状体(以下不活性粒状体)と混合
撹拌状態下で接触させて、リン酸イオンを不溶性
のリン酸カルシウム沈殿に転換せしめるように
し、該槽1を配管5で粒状体分離部2に連絡し、
この粒状体分離部2で前記リン酸塩鉱物粒状体な
らびに不活性粒状体を分離回収して配管6で前記
槽1にリサイクルするようにすると共に、粒状体
分離部2からの流出水は配管8を介して固液分離
部3に導き、流出水中のリン酸カルシウム沈殿を
含むSSを固液分離部3で除去し清澄な処理水
A′として系外に導出し、SSは必要に応じて循環
路9で前記槽1にリサイクルするようにしてあ
る。 図中7はポンプで必要に応じ設けられる。20
は起動装置である。 なお、槽1と粒状体分離部2及び固液分離部3
とは直列に配備してあるが、並列的に複数系統に
分けて連絡することもでき、いずれにしてもこの
ように混合撹拌部の槽1、粒状体分離部2、固液
分離部3を別個に形成してあるが、第2図に示す
ように混合撹拌部の槽1と粒状体分離部2とを同
一槽内に形成することもできる。この場合撹拌翼
4はドラフトチユーブ10内に設け、粒状体分離
部2は仕切壁12で槽1内と連通状態下に区画形
成されている。 なお、前記槽1は混合撹拌槽としてのみではな
く接触反応槽としても機能するもので槽1内には
粒径0.05〜0.45mmの範囲、好ましくは粒径0.1〜
0.2mmのリン酸塩鉱物粒状体としてリン鉱石と不
活性粒状体として硅砂粒径0.1〜0.2mmが槽1の容
積に対し、20%(容積%)投入懸濁されており、
撹拌翼4によつて、槽1又はドラフトチユーブ1
0内を経て槽1内を循環流動している。 そして原水Aは、例えば前記槽1の底部から流
入し、Ca(OH)2カルシウム剤Bは原水流入管ま
たはドラフトチユーブ10内の少なくともいずれ
か若しくはいずれにも添加される。 次に原水Aは、槽1内で所定時間(実験結果で
は5〜20分程度で十分であつた)滞留し、原水中
の溶解状リン酸およびカルシウムイオンが、リン
鉱石の共存下で接触反応を起こし、不溶性のCa5
(OH)(PO43を主とする沈殿に変換される。 従来方法のような単なる流動層条件下では、こ
のCa5(OH)(PO43はリン鉱石表面に折出付着
してリン鉱石が肥大化するが、この槽1内では、
撹拌翼4のような強制的な混合撹拌機構を採用し
ているので、撹拌翼近傍における協力な剪断場を
通過する際、リン鉱石および不活性粒状体同志が
激しく衝突し、リン鉱石表面より、肥大化物が剥
離されるためリン鉱石の肥大化は進行しないで処
理できる。 第2図において11は集水溝、13は過層、
14は洗浄排水管、15は開閉弁である。 第3図の実施態様では、混合撹拌部と、粒状体
分離部2と固液分離部3を同一槽1内に一体化さ
せて形成したコンパクトな例で、原水供給管がコ
ーン状の槽底中央に連結されドラフトチユーブ1
0内の撹拌翼4の回転軸24にドラフトチユーブ
10と槽壁間に介在する筒状の隔壁23が設けら
れ、槽1上方に過層13が配設されて固液分離
部3としてありその上方に集水溝11を介して処
理水A′が導出されるようになつている。 図中21は逆洗水弁、22は逆洗水配管であ
る。 第4図例では混合撹拌部の槽1内の撹拌手段と
してドラフトチユーブ10に空気供給管19を連
結してガスリフト撹拌を採用した例であり、第5
図例ではポンプ循環撹拌を採用したものでポンプ
18の吐出管17と吸込管16を槽1の上部及び
下部に連結して循環流路を配備してある。また第
6図の具体例は、原水流入エネルギーによるエジ
エクター方式を採用した例で原水供給管25の先
端部にノズル26を設けてドラフトチユーブ10
内に配置してエジエクタ作用を誘起するように
し、リン酸塩鉱物粒状体ならびに不活性粒状体と
ともに槽1内を循環流動させるようになつてい
る。しかして、これら実施態様においていずれも
槽1内で混合撹拌され接触反応を起して不溶性の
Ca5(OH)(PO43が生成され、さらにリン鉱石
表面から剥離されたCa5(OH)(PO43を主とす
る微細SSおよび原水中のSSはリン酸塩鉱物粒状
体ならびに不活性粒状体とともに粒状体分離部2
に流入してゆくが、粒状体分離部2の水面積負荷
が、これら粒状体の、沈降速度以下、かつ新たに
生成したCa5(OH)(PO43などのSSおよび原水
中に始めから存在したSSの沈降速度以上に設定
されているので、粒状体以外の微細SSは粒状体
分離部2において分離されずに流出してゆく。例
えば粒状体分離部2の水面積負荷は、粒径0.1〜
0.2mmのリン鉱石(比重2.6)を使用する場合は、
150〜200m3/m2・dが適当である。 かくして、粒状体分離部2から流出液は後続す
る固液分離部3例えば、過槽、沈殿槽又は浮上
分離槽に流入し、新たに生成したCa5(OH)
(PO43などのリン酸カルシウム沈殿を含むSSが
除去される。この固液分離部3の工程は、第2図
または第3図のように過法を採用するのが最も
適確にSSの除去がなされ、且つ泥殿法に比較し
てコンパクトな装置でよいこととなるので好まし
い例である。 なお、固液分離部3に流入してくる新たに生成
したリン酸カルシウム沈殿は、活性に富んでいる
ので、そのまま廃棄せずに、例えば過層13の
洗浄排水を前記の接触反応する槽1にリサイクル
させ、不活性粒状体とともに接触反応の固相とし
て利用すると、リン酸除去率が向上するので極め
て好ましい実施態様である。 この場合、過層13のある固液分離部3には
連続過機を採用すると洗浄排水を連続的に接触
反応する槽1にリサイクルできるので便利であ
る。 また、過槽13の洗浄排水のような、固液分
離部3の濃縮SSの他の利用法としては、第7図
に示したように、活性汚泥法のような生物処理水
に適用する場合、過層13のある固液分離部3
の洗浄排水を配管30で曝気槽27にリサイクル
させると、洗浄排水中のリン酸カルシウムSSな
どが活性汚泥フロツクにとりこまれ、最終沈殿池
28における活性汚泥フロツクの沈降性を向上さ
せることができる。 第7図において、29は弁、31は散気管、3
2は排泥管、33は排泥弁、34は洗浄水配管、
35は弁である。 不活性粒状体を共存懸沈させる理由はリン酸塩
鉱物所要量の節減をはかるもので、始めに投入す
るリン酸塩鉱物の所要量を少なくして、経費節減
を図れないかと検討を進めた結果、リン酸塩鉱物
の他の砂などのリン酸カルシウムを含まない不活
性粒状体を共存させると、運転開始後1ケ月程度
は砂の表面には、あまり変化はみられないが、1
ケ月以降は砂の表面がしだいに白つぽくなり、3
ケ月で外見はリン酸塩鉱物と区別できないものに
変化してくることを発見した。 この砂の表面に付着した沈殿をX線回折で調べ
たところCa5(OH)(PO43を主とするリン酸カ
ルシウンム化合物であり、この状態に変化した砂
はリン酸塩鉱物と同等の接触脱リン能力をもつて
いることがカラム試験によつて認められた。 一方、全くリン酸塩鉱物を共存させないで、砂
の不活性粒状体だけを懸濁せしめて同一条件で運
転を続けたものは、6ケ月運転を継続しても、リ
ン酸イオンの除去率は10〜20%程度にすぎなかつ
た。従つて前記槽1内での混合撹拌工程において
はリン酸塩鉱物粒状体と共に、砂、コークス、活
性炭、アンスラサイト、ゼオライト、合成樹脂な
どの不活性粒状体を共存懸濁させて処理すること
によりリン酸塩鉱物粒状体量が少なくても効果的
にリン酸を除去できるのである。 以下に本発明の実施例を示す。 実施例 1 直径0.5m直効深さ25mの円形槽に、直径0.2m
長さ2mのドラフトチユーブを円形槽の中心に設
け、ドラフトチユーブの中ほどに径0.15mの軸流
インペラを設け150rpmで撹拌しつつ、フロリダ
産リン鉱石(粒径0.1〜0.2mm)を槽容量(490
)に対し10%Volumeと硅砂(粒径0.1〜0.2
mm)を槽容量の10%Volumeを投入し、懸濁流動
させつつ、下水生物処理水(PH7.4、Mアルカリ
度90〜110ppm、オルトリン酸8.0〜12.4ppm as
PO4 SS15〜25ppm)を流量120/minで流入さ
せた。また、ドラフトチユーブ内に消石灰を槽内
PH8〜9になるような注入率で注入した。 粒状体分離部の水面積負荷は150m3/m2・dに
設定した。このような条件で約6ケ月運転を続
け、接触反応槽1内のリン鉱石の少量を取り出し
て顕微鏡で粒径を測定したところ、運転開始時に
投入したリン鉱石の粒径の肥大化は認められなか
つた。 なお粒状体分離部からの流出水(SS35〜
50ppm)は、アンスラサイト・砂の2層過装
置(アンスラ粒径1.5mm層厚40cm砂粒径0.6mm層厚
60cm)で速200m/dで通水し、過水の水質
を測定したところ
The present invention relates to a method for removing phosphates present in tap water, sewage, human waste water, industrial water, factory wastewater, boiler water, and all other aqueous solutions. In general, inorganic phosphates such as orthophosphates, various condensed phosphates, and organic phosphates exist in various states in the above-mentioned wastewater discharged into natural water systems. The presence of phosphates is a factor that induces the occurrence of "blue water" and "red tide" in closed or stagnant waters such as lakes, inland seas, and inner bays. Furthermore, when using water for various purposes, it may cause Biological slime is generated and chemical scale is formed, which is a major cause of accidents. Therefore, in order to remove the phosphates present in these liquids, various phosphorus removal methods are being considered, and representative ones include biological treatment, ion exchange resin method, and chemical coagulation. Among these methods, the chemical coagulation-sedimentation method is evaluated as a treatment technology that has been completed to date.
Processing equipment of actual processing scale is already in operation in many places. The removal of phosphates by this chemical flocculation treatment is a method of removing phosphates present in the liquid as insoluble phosphates by adding a specific flocculant. Usually, slaked lime [Ca(OH) 2 ], aluminum sulfate [Al 2
(SO 4 ) 3 ], ferric chloride [FeCl 3 ], etc. are used. However, the biggest drawback of chemical coagulation and precipitation is that it generally requires a large amount of flocculant, which is expensive, regardless of the type of flocculant used. A large amount of sludge is generated in proportion to the large amount of chemical injection, and the settling and thickening properties of this sludge are extremely poor (lime sludge is an exception).Furthermore, this sludge has poor dewatering properties (lime sludge is an exception). However, because it requires a large sludge treatment facility and treatment costs, it has many problems in practical use, even though it is a current technology. For this reason, the present inventors have previously developed a novel treatment method in which phosphate minerals containing calcium phosphate with a certain particle size are packed into a cylindrical or cone-shaped dephosphorization tower. PH of liquid 6-11
By adjusting the concentration within the range of A catalytic dephosphorization method has been proposed in which soluble phosphates are removed by crystallizing and fixing calcium hydroxyapatite crystals on the surface of phosphate minerals. In this case, typical chemical reactions on the phosphate mineral surface are as follows. 5Ca 2+ +70H - +3H 2 PO 4 = Ca(OH) (PO 4 ) + 6H 2 O ...(1) If this new dephosphorization method is applied, phosphate minerals with fixed calcium hydroxyapatite can be removed. Separation and dewatering are extremely easy, and compared to so-called flocculated sludge made using conventional chemical flocculation and sedimentation methods, it does not require preconceived sludge treatment facilities such as thickeners, dehydrators, dryers, and drying equipment. It has also been revealed that this is an excellent dephosphorization technology that can efficiently recover phosphorus as a resource. However, on the other hand, there were the following operational problems. That is, when a column is filled with phosphate minerals and raw water is passed through it in a fixed bed or fluidized bed state and the operation is continued, Ca 5 (OH) is newly precipitated by the reaction of the previous formula (1). As a result of (PO 4 ) 3 depositing on the surface of the phosphate mineral one after another, the phosphate mineral gradually enlarges and grows to a particle size larger than the particle size when initially filled. In such a situation,
Because the head loss increases and fluidization becomes difficult, the operation is stopped, all of the swollen phosphate minerals in the column are taken out, and freshly prepared phosphate minerals are added to the column. It was necessary to take steps to fill the column with salt minerals, which was extremely troublesome in terms of operational management. Naturally, this operation for extracting enlarged phosphate minerals must be carried out more frequently as the concentration of phosphoric acid in the raw water increases. For example, if the concentration of phosphate ions in the raw water is about 10 mg/ It has become clear from the operational experience of pilot plants that removal operations are required once a month. In addition, the removal rate of phosphate ions increases as the surface area of phosphate minerals increases, but in the method of filling a column with phosphate minerals and operating in a fixed bed state or fluidized bed state, it is difficult to remove phosphate ions from small particles. The use of phosphate minerals is undesirable in the case of fixed bed operation because the head loss increases, and in the case of fluidized bed operation, the expansion rate of the fluidized bed tends to be excessive, which is also undesirable. The particle size of salt minerals was limited to about 0.5 mm. For this reason, the ideal state for the purpose of making the device more compact has not been achieved. The present invention aims to provide an effective method that makes it possible to solve these problems. In other words, it is necessary to take out and replenish phosphate minerals, and even if phosphate minerals with a fine particle size of 0.5 mm or less are used, operations cannot be performed stably without causing problems like in conventional methods. , and provides a method that allows the device to be made more compact. Furthermore, another object of the present invention is to provide a method that eliminates the amount of phosphate minerals required for treatment and that allows a large amount of treated water of good quality to be obtained at a significantly economical cost. In the present invention, phosphate mineral granules containing calcium phosphate and inert granules not containing calcium phosphate are forcibly separated in a tank 1 in which a calcium agent is added to a liquid to be treated containing phosphate ions and the mixture is stirred. Supplying raw water containing phosphate ions into the tank 1 while maintaining it in a suspended state by a mixing and stirring mechanism, and adding a calcium agent to the raw water or the tank 1,
After converting the phosphate ions in the raw water into insoluble calcium phosphate precipitates, the phosphate mineral granules and inert granules are separated and recovered in the granule separation section 2, and returned to the tank 1. , SS containing calcium phosphate precipitates in the effluent from the granular material separation section 2 is removed in a solid-liquid separation section 3 such as a sand filter following the separation section 2. This is a removal method. Hereinafter, one embodiment of the present invention will be described with reference to the drawings. In FIG. 1, raw water A of the liquid to be treated containing phosphate ions and calcium agent B are supplied to a tank 1 serving as a mixing and stirring section, and Phosphate mineral granules containing calcium phosphate and inert granules not containing calcium phosphate (hereinafter referred to as inert granules) are brought into contact with a stirring mechanism such as a mechanical rotary stirring blade 4 under mixing and agitating conditions. the acid ions are converted into insoluble calcium phosphate precipitates, and the tank 1 is connected to the granular material separation section 2 through a pipe 5;
The phosphate mineral granules and inert granules are separated and recovered in the granule separation section 2 and recycled to the tank 1 through a pipe 6, and the water flowing out from the granule separation section 2 is transferred to the pipe 8. SS containing calcium phosphate precipitates in the effluent is removed by the solid-liquid separator 3, resulting in clear treated water.
SS is led out of the system as A', and SS is recycled to the tank 1 through a circulation path 9 as necessary. In the figure, 7 is a pump, which is provided as required. 20
is the activation device. In addition, the tank 1, the granular material separation section 2, and the solid-liquid separation section 3
Although they are installed in series, they can also be divided into multiple systems and connected in parallel. Although they are formed separately, the tank 1 of the mixing and stirring section and the granular material separation section 2 can also be formed in the same tank as shown in FIG. In this case, the stirring blades 4 are provided in the draft tube 10, and the granular material separation section 2 is defined and communicated with the inside of the tank 1 by a partition wall 12. Note that the tank 1 functions not only as a mixing and stirring tank but also as a contact reaction tank, and the tank 1 contains particles with a particle size in the range of 0.05 to 0.45 mm, preferably 0.1 to 0.45 mm.
Phosphate rock as 0.2 mm phosphate mineral granules and silica sand grain size 0.1 to 0.2 mm as inert granules are added and suspended at 20% (volume %) of the volume of tank 1.
By stirring blade 4, tank 1 or draft tube 1
It circulates through the tank 1 through the tank 1. The raw water A flows, for example, from the bottom of the tank 1, and the Ca(OH) 2 calcium agent B is added to at least one of the raw water inlet pipe and/or the draft tube 10. Next, raw water A remains in tank 1 for a predetermined time (about 5 to 20 minutes was sufficient according to experimental results), and dissolved phosphoric acid and calcium ions in the raw water undergo a contact reaction in the coexistence of phosphate rock. causes insoluble Ca 5
It is converted into a precipitate consisting mainly of (OH)(PO 4 ) 3 . Under simple fluidized bed conditions as in the conventional method, this Ca 5 (OH) (PO 4 ) 3 deposits and adheres to the surface of the phosphate rock, causing the phosphate rock to enlarge, but in this tank 1,
Since a forced mixing and stirring mechanism such as the stirring blade 4 is adopted, when passing through the cooperative shear field near the stirring blade, the phosphate rock and the inert granules collide violently with each other, causing the phosphate rock to disintegrate from the surface of the phosphate rock. Since the enlarged material is peeled off, the phosphate rock can be processed without progressing to enlargement. In Figure 2, 11 is a water collection groove, 13 is an overlayer,
14 is a cleaning drain pipe, and 15 is an on-off valve. The embodiment shown in FIG. 3 is a compact example in which the mixing and agitation section, the granular material separation section 2, and the solid-liquid separation section 3 are integrated into the same tank 1, and the raw water supply pipe has a cone-shaped tank bottom. Draft tube 1 connected to the center
A cylindrical partition wall 23 interposed between the draft tube 10 and the tank wall is provided on the rotating shaft 24 of the stirring blade 4 in the tank 1, and an overlayer 13 is provided above the tank 1 as the solid-liquid separation section 3. Treated water A' is led out through a water collection groove 11 upwards. In the figure, 21 is a backwash water valve, and 22 is a backwash water pipe. The example in FIG. 4 is an example in which gas lift stirring is adopted by connecting the air supply pipe 19 to the draft tube 10 as the stirring means in the tank 1 of the mixing and stirring section.
The illustrated example employs pump circulation stirring, and the discharge pipe 17 and suction pipe 16 of the pump 18 are connected to the upper and lower parts of the tank 1 to provide a circulation flow path. Further, the specific example shown in FIG. 6 is an example in which an ejector system using raw water inflow energy is adopted, and a nozzle 26 is provided at the tip of the raw water supply pipe 25 and the draft tube 10 is
It is arranged within the tank 1 to induce an ejector action, and is made to circulate and flow within the tank 1 together with the phosphate mineral granules and the inert granules. However, in both of these embodiments, the mixture is stirred in the tank 1 to cause a contact reaction, resulting in insoluble
Ca 5 (OH) (PO 4 ) 3 is generated, and fine SS mainly consisting of Ca 5 (OH) (PO 4 ) 3 exfoliated from the phosphate rock surface and SS in raw water are phosphate mineral granules. and the granular material separation section 2 together with the inert granular material.
However, the water area load of the granular material separation section 2 is lower than the sedimentation velocity of these granular materials, and newly generated Ca 5 (OH) (PO 4 ) 3 etc. are initially introduced into the SS and raw water. Since the sedimentation rate is set to be higher than the sedimentation rate of the SS existing in the granule, fine SS other than the granule is not separated in the granule separation section 2 and flows out. For example, the water area load of the granular material separation section 2 has a particle size of 0.1 to
When using 0.2mm phosphate rock (specific gravity 2.6),
150 to 200 m 3 /m 2 ·d is appropriate. In this way, the effluent from the granular material separation section 2 flows into the subsequent solid-liquid separation section 3, such as a filter tank, a sedimentation tank, or a flotation tank, and the newly generated Ca 5 (OH)
SS containing calcium phosphate precipitates such as (PO 4 ) 3 is removed. In the process of this solid-liquid separation section 3, SS can be most accurately removed by adopting the filtration method as shown in Fig. 2 or 3, and requires a more compact device compared to the sludge method. This is a preferable example. Note that the newly generated calcium phosphate precipitate flowing into the solid-liquid separation section 3 is highly active, so instead of being disposed of as it is, for example, the cleaning waste water of the overlayer 13 is recycled to the tank 1 for the contact reaction. This is an extremely preferred embodiment since the phosphoric acid removal rate is improved when the phosphoric acid is used as a solid phase in the catalytic reaction together with inert granules. In this case, it is convenient to employ a continuous filter in the solid-liquid separation section 3 where the filter layer 13 is located, since the washing waste water can be continuously recycled to the tank 1 for contact reaction. In addition, as shown in Fig. 7, another way to use the concentrated SS of the solid-liquid separation section 3, such as the washing waste water of the filter tank 13, is to apply it to biologically treated water such as the activated sludge method. , solid-liquid separation section 3 with overlayer 13
When the washing wastewater is recycled to the aeration tank 27 through the pipe 30, calcium phosphate SS etc. in the washing wastewater are incorporated into the activated sludge flocs, and the settling properties of the activated sludge flocs in the final settling tank 28 can be improved. In FIG. 7, 29 is a valve, 31 is a diffuser pipe, 3
2 is a mud drain pipe, 33 is a mud drain valve, 34 is a wash water pipe,
35 is a valve. The reason for co-suspending inert granules is to reduce the amount of phosphate minerals required, and we are considering reducing costs by reducing the amount of phosphate minerals that are initially introduced. As a result, when inert granules that do not contain calcium phosphate, such as sand made of other phosphate minerals, coexist, the surface of the sand does not change much for about a month after the start of operation, but
After the moon, the surface of the sand gradually became whitish, and
During Kagetsu, they discovered that the appearance changed to something that could not be distinguished from phosphate minerals. X-ray diffraction analysis of the precipitate attached to the surface of the sand revealed that it was a calcium phosphate compound containing mainly Ca 5 (OH) (PO 4 ) 3 , and that the sand that had changed to this state was equivalent to a phosphate mineral. Column tests showed that it has the ability to dephosphorize catalytically. On the other hand, when operating under the same conditions without coexisting any phosphate minerals and suspending only inert sand particles, the removal rate of phosphate ions remained low even after 6 months of continuous operation. It was only about 10-20%. Therefore, in the mixing and stirring step in the tank 1, inert granules such as sand, coke, activated carbon, anthracite, zeolite, and synthetic resin are co-suspended together with phosphate mineral granules. Even if the amount of phosphate mineral particles is small, phosphoric acid can be effectively removed. Examples of the present invention are shown below. Example 1 A circular tank with a diameter of 0.5m and a direct depth of 25m, a diameter of 0.2m
A draft tube with a length of 2 m is installed in the center of the circular tank, and an axial flow impeller with a diameter of 0.15 m is installed in the middle of the draft tube. While stirring at 150 rpm, phosphate rock from Florida (particle size 0.1 to 0.2 mm) is poured into the tank capacity. (490
) to 10% Volume and silica sand (particle size 0.1~0.2
mm) at 10% of the tank capacity, and while suspending and fluidizing it, sewage biologically treated water (PH7.4, M alkalinity 90-110ppm, orthophosphoric acid 8.0-12.4ppm as
PO 4 SS (15-25 ppm) was flowed in at a flow rate of 120/min. In addition, slaked lime is placed inside the draft tube.
The injection rate was such that the pH was 8 to 9. The water area load of the granule separation section was set to 150 m 3 /m 2 ·d. The operation continued under these conditions for about 6 months, and when a small amount of phosphate rock in the contact reaction tank 1 was taken out and the particle size was measured using a microscope, no enlargement in the particle size of the phosphate rock that was introduced at the start of operation was observed. Nakatsuta. In addition, the outflow water from the granular material separation section (SS35~
50ppm) is an anthracite/sand two-layer filtration device (anthracite grain size 1.5mm layer thickness 40cm sand grain size 0.6mm layer thickness)
60cm) at a speed of 200m/d and measured the quality of the overflow water.

【表】 であつた。 実施例 2 実施例1において、2ケ月間運転を続けたの
ち、槽内からリン鉱石と砂の混合物(資料Aと称
す)をとりだし、直径5cm長さ1mのアクリルカ
ラム内に層厚60cmで充填したもの、およびリン鉱
石だけのもの、砂だけのもの、の3本のカラムを
並列し、3者のリン除去能力をCa(OH)2をPH8.0
になるように添加し、LV=20m/Hで通水して
調べた。 原水には実施例1に記した下水の生物処理水を
用いた。 この結果は次表のようであつた。
[Table] It was. Example 2 In Example 1, after continuous operation for two months, a mixture of phosphate rock and sand (referred to as Material A) was taken out from the tank and packed into an acrylic column with a diameter of 5 cm and a length of 1 m to a layer thickness of 60 cm. Three columns were arranged in parallel: one containing only phosphate rock, one containing only phosphate rock, and one containing only sand.
The test was carried out by adding water so that The biologically treated sewage water described in Example 1 was used as the raw water. The results were as shown in the table below.

【表】 資料Aの接触脱リン能力は、リン鉱石のみのも
のと差が認められなかつた。 実施例 3 実施例1におけるアンスラー過歌層の逆洗排
水を逆洗廃水槽に貯留したのち、接触反応槽1に
返送し、接触反応槽内のリン鉱石粒状体を除いた
SSの濃度を約200ppmになるようにコントロール
したこと以外は実施例1と同一条件で運転した。
この結果次表のように処理水のリン酸濃度が低下
した。
[Table] There was no difference in the catalytic dephosphorization ability of Material A compared to that of phosphate rock only. Example 3 The backwash wastewater from the Ansler Kaga Formation in Example 1 was stored in a backwash wastewater tank, and then returned to the contact reaction tank 1 to remove phosphate rock granules in the contact reaction tank.
The operation was carried out under the same conditions as in Example 1, except that the SS concentration was controlled to be about 200 ppm.
As a result, the phosphoric acid concentration of the treated water decreased as shown in the following table.

【表】 以上のように本発明によれば流動層操作が理想
的状態に維持しやすく、リン酸塩鉱物の取り出
し、および補給操作が不要となり、また粒径0.5
mm以下の細粒径のリン鉱石を使用しても従来法の
ような問題を生ずることなく安定的に操作でき、
かつ装置のよりコンパクト化を可能にするほか、
処理に際して用いられるリン酸塩鉱物の所要量を
削減し著しく経済的なコストで質的にも良好な処
理水を大量に得られる利益がある。
[Table] As described above, according to the present invention, it is easy to maintain fluidized bed operation in an ideal state, there is no need to take out and replenish phosphate minerals, and the particle size is 0.5
Even when using phosphate rock with a fine particle size of mm or less, it can be operated stably without causing the problems of conventional methods.
In addition to making the equipment more compact,
There is an advantage in that the required amount of phosphate minerals used in the treatment can be reduced and a large amount of treated water of good quality can be obtained at a significantly economical cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の概念的フローシート、第
2図は系統説明図、第3図は他の実施例の縦断面
図、第4図及至第6図は混合撹拌部の他の実施例
の縦断面図、第7図は活性汚泥法に適用した例の
系統説明図である。 1……槽、2……粒状体分離部、3……固液分
離部、4……回転撹拌翼、5,6,8……配管、
7……ポンプ、9……循環路、10……ドラフト
チユーブ、11……集水溝、12……仕切壁、1
3……過層、14……洗浄排水管、15……開
閉弁、16……吸込管、17……吐出管、18…
…ポンプ、19……空気供給管、20……駆動装
置、21……逆洗水弁、22……逆洗水配管、2
3……隔壁、24……回転軸、25……原水供給
管、26……ノズル、27……曝気槽、28……
最終沈殿池、29……弁、30……配管、31…
…散気管、32……排泥管、33……排泥弁、3
4……洗浄水配管、35……弁。
Fig. 1 is a conceptual flow sheet of the method of the present invention, Fig. 2 is an explanatory diagram of the system, Fig. 3 is a longitudinal cross-sectional view of another embodiment, and Figs. 4 to 6 are other embodiments of the mixing and stirring section. FIG. 7 is a diagram illustrating a system applied to the activated sludge method. 1... Tank, 2... Granular material separation section, 3... Solid-liquid separation section, 4... Rotating stirring blade, 5, 6, 8... Piping,
7...Pump, 9...Circulation path, 10...Draft tube, 11...Water collection groove, 12...Partition wall, 1
3...Superlayer, 14...Washing drain pipe, 15...Opening/closing valve, 16...Suction pipe, 17...Discharge pipe, 18...
... Pump, 19 ... Air supply pipe, 20 ... Drive device, 21 ... Backwash water valve, 22 ... Backwash water piping, 2
3... Partition wall, 24... Rotating shaft, 25... Raw water supply pipe, 26... Nozzle, 27... Aeration tank, 28...
Final sedimentation tank, 29... Valve, 30... Piping, 31...
...Diffuser pipe, 32...Sludge drain pipe, 33...Sludge drain valve, 3
4...Washing water piping, 35...Valve.

Claims (1)

【特許請求の範囲】[Claims] 1 リン酸イオンを含む被処理液にカルシウム剤
を添加し、混合撹拌部でリン酸カルシウムを含有
するリン酸塩鉱物粒状体と共にリン酸カルシウム
不含有の砂、コークス、活性炭、アンスラサイ
ト、ゼオライト、合成樹脂などの不活性粒状体を
共存懸濁させて混合撹拌状態下で接触させ、リン
酸イオンを不溶性のリン酸カルシウム沈殿に転換
せしめたのち、粒状体分離部で前記リン酸塩鉱物
粒状体並びに不活性粒状体を分離回収して前記混
合撹拌部に返送し、且つ前記粒状体分離部からの
流出液中のリン酸カルシウム沈殿を含むSSを固
液分離部にて除去することを特徴とする液中のリ
ン酸塩類の除去方法。
1. A calcium agent is added to the liquid to be treated containing phosphate ions, and in a mixing and stirring section, sand, coke, activated carbon, anthracite, zeolite, synthetic resin, etc. that do not contain calcium phosphate are mixed together with phosphate mineral granules containing calcium phosphate. After the inert granules are co-suspended and brought into contact with each other under mixing and stirring to convert phosphate ions into insoluble calcium phosphate precipitates, the phosphate mineral granules and inert granules are separated in a granule separation section. The phosphates in the liquid are separated and recovered and returned to the mixing and stirring section, and the SS containing calcium phosphate precipitates in the effluent from the granule separation section is removed in the solid-liquid separation section. Removal method.
JP9789078A 1978-08-11 1978-08-11 Removing method for phosphates in solution Granted JPS5524570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9789078A JPS5524570A (en) 1978-08-11 1978-08-11 Removing method for phosphates in solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9789078A JPS5524570A (en) 1978-08-11 1978-08-11 Removing method for phosphates in solution

Publications (2)

Publication Number Publication Date
JPS5524570A JPS5524570A (en) 1980-02-21
JPS6242677B2 true JPS6242677B2 (en) 1987-09-09

Family

ID=14204339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9789078A Granted JPS5524570A (en) 1978-08-11 1978-08-11 Removing method for phosphates in solution

Country Status (1)

Country Link
JP (1) JPS5524570A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712892A (en) * 1980-06-25 1982-01-22 Ebara Infilco Co Ltd Disposal of phosphate ion-containing waste water
JPH0121038Y2 (en) * 1984-12-18 1989-06-23
JPH0712477B2 (en) * 1987-02-16 1995-02-15 ユニチカ株式会社 How to remove phosphorus in water
JP2578136B2 (en) * 1987-10-30 1997-02-05 ユニチカ株式会社 Wastewater treatment method and apparatus
JP4519965B2 (en) * 1999-08-10 2010-08-04 三菱化工機株式会社 Crystallization dephosphorization apparatus and crystallization dephosphorization method
JP4542679B2 (en) * 2000-07-21 2010-09-15 オルガノ株式会社 Method for removing target component from water to be treated and crystallization apparatus
JP4223334B2 (en) * 2003-06-18 2009-02-12 アタカ大機株式会社 Phosphorus recovery equipment
JP4628013B2 (en) * 2004-04-20 2011-02-09 ミヤマ株式会社 Fluorine-containing water treatment apparatus and treatment method
JP4892212B2 (en) * 2004-09-28 2012-03-07 三菱マテリアル株式会社 Reaction crystallizer
JP4871384B2 (en) * 2009-10-13 2012-02-08 水ing株式会社 Treatment equipment for phosphorus-containing wastewater
JP2014200781A (en) * 2013-04-10 2014-10-27 アタカ大機株式会社 Phosphorus recovery apparatus and phosphorus recovery method
JP6442014B1 (en) * 2017-09-13 2018-12-19 株式会社流機エンジニアリング Processing apparatus and processing method for liquid to be processed

Also Published As

Publication number Publication date
JPS5524570A (en) 1980-02-21

Similar Documents

Publication Publication Date Title
US4576714A (en) System for the clarification of sewage and other liquid-containing wastes
US4029575A (en) Phosphorus removal from waste water
Owen Removal of phosphorus from sewage plant effluent with lime
EP1000904B1 (en) Method for recovering phosphate from sludge and system therefor
US4024055A (en) Method of reducing lead and acid waste contamination in battery plant operation
Pizzi Water Treatment Plant Residuals Pocket Field Guide
Matsumiya et al. Phosphorus Removal from Sidestreams by Crystallisation of Magnesium‐Ammonium‐Phosphate Using Seawater
JPS6242677B2 (en)
US2204703A (en) Treatment of wastes
KR20140131239A (en) Sewage and wastewater treatment system with crystallization apparatus for phosphorus recovery
US3839199A (en) Method of softening water to provide easily drained and easily filtered precipitates
JPH0712477B2 (en) How to remove phosphorus in water
JP4368159B2 (en) Method for treating wastewater containing phosphate
JP4568391B2 (en) Fluidized bed crystallization reactor
JP4439040B2 (en) Wastewater treatment equipment
JPH10323677A (en) Waste water treatment device
JPH0130554B2 (en)
Behrman et al. Accelerated lime-soda water softening
KR100371870B1 (en) Process and apparatus for recovering and removing orthophosphates from sewage and wastes
JPS648597B2 (en)
JPH0231895A (en) Process and apparatus for treating filthy water
JPS6193893A (en) Removal of phosphorus in liquid
KR100480807B1 (en) Calcium hydroxide feeding apparatus having filter, the calcium hydroxide feeding methods using the same and the water purifying methods thereof
JPH0127913Y2 (en)
JPH1110166A (en) Dephosphorization device