JP4542679B2 - Method for removing target component from water to be treated and crystallization apparatus - Google Patents

Method for removing target component from water to be treated and crystallization apparatus Download PDF

Info

Publication number
JP4542679B2
JP4542679B2 JP2000221290A JP2000221290A JP4542679B2 JP 4542679 B2 JP4542679 B2 JP 4542679B2 JP 2000221290 A JP2000221290 A JP 2000221290A JP 2000221290 A JP2000221290 A JP 2000221290A JP 4542679 B2 JP4542679 B2 JP 4542679B2
Authority
JP
Japan
Prior art keywords
fine particles
target component
solid
water
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000221290A
Other languages
Japanese (ja)
Other versions
JP2002035765A (en
Inventor
橋本貴行
明賀春樹
山田一陽
浦井紀久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2000221290A priority Critical patent/JP4542679B2/en
Publication of JP2002035765A publication Critical patent/JP2002035765A/en
Application granted granted Critical
Publication of JP4542679B2 publication Critical patent/JP4542679B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被処理水中の所定の対象成分を晶析により除去する方法に関し、詳しくは、電子産業、発電所、アルミニウム工業、化学工業などから排出される排水中のフッ素イオン、リン酸イオン、重金属イオンを除去するのに適した晶析による除去方法に関する。また、本発明は、上記晶析方法を実施するための晶析装置に関する。
【0002】
【従来の技術】
工場などからの排水中の水質は厳しい規制がなされているが、その規制は年々厳しくなる傾向にある。電子産業(特に半導体関連)、発電所、アルミニウム工業などから排出される排水中には、フッ素、リンあるいは重金属類という近年厳しい排水基準が設けられている元素が含まれている場合が多く、これらを排水からより効率よく除去することが求められている。
【0003】
排水中のフッ素、リン、重金属等を除去する技術としては、凝集沈殿法、晶析法、等があるが、まずフッ素とリンに関して詳細に記述する。
【0004】
カルシウム化合物によるフッ素除去技術は従来より排水中のフッ素を除去する技術として広く使われている。カルシウム化合物によるフッ素の除去反応は▲1▼式により示されるように、難溶性のフッ化カルシウムを生成することによりなされる。
Ca2+ + 2F- → CaF2 ↓ ▲1▼
なお、カルシウム化合物としては水酸化カルシウム(Ca(OH)2)や塩化カルシウム(CaCl2)あるいは炭酸カルシウム(CaCO3)を使用する場合が多い。
【0005】
最も多く用いられているフッ化カルシウム沈殿法では、硫酸バンドやポリ塩化アルミニウムさらには高分子凝集剤の添加により、▲1▼式により生成されたCaF2をフロック化し、沈殿槽で固液分離することにより、排水からのフッ素除去を行っている。この方法は沈殿槽の設置面積が大きいこと、生成された沈殿汚泥の量が多いこと、汚泥の脱水性が良くないこと、等が課題となっている。
【0006】
他のフッ化カルシウム生成を利用したフッ素除去技術としては、特願昭59-63884に示されるように、フッ素とカルシウムを含有する固体粒子を充填した反応槽に、フッ素含有排水をカルシウム剤とともに導入して、固体粒子上にフッ化カルシウムを析出させる、いわゆるフッ化カルシウム晶析法がある。一般的には排水は反応槽の下部から導入し、固体粒子を流動化させながら上向流で通水し処理を行ない、必要に応じて反応槽流出水を循環している。この方法の長所としては、装置設置面積を低減できること、汚泥発生量が少ないこと、等が挙げられている。 なお、反応槽内に充填する固体粒子としてはフッ素とカルシウムを含有するものが一般的であるが、必ずしもフッ素とカルシウムを含有する必要はなく、砂や活性炭等の微細粒子が用いられる場合もある。
【0007】
一方、リンの排水中からの除去方法としては物理化学的な方法や生物学的な方法があるが、生物学的なリン除去法は下水処理での利用が主であり、産業排水処理では物理化学的なリン除去法が採用されることが大部分である。リン除去に使用される薬品としてはカルシウム化合物やアルミニウム化合物が一般的である。
【0008】
また、カルシウム化合物によるリン除去技術は従来より排水中のリンを除去する技術として広く使われている。カルシウム化合物によるリンの除去反応は▲2▼▲3▼式により示されるように、難溶性のリン酸カルシウムおよびリン酸ヒドロキシアパタイト(以下「リン酸カルシウム等」という)を生成することによりなされる。
3Ca2+ + 2PO4 3- → Ca3(PO4) 2 ↓ ▲2▼
5Ca2+ + OH- + 3PO4 3- → Ca5OH(PO4) 3 ↓ ▲3▼
なお、カルシウム化合物としては水酸化カルシウム(Ca(OH) 2)や塩化カルシウム(CaCl2)を使用する場合が多い。
【0009】
最も多く用いられている凝集沈殿法では、硫酸バンドやポリ塩化アルミニウムあるいは高分子凝集剤の添加により、▲2▼▲3▼式により生成されたリン酸カルシウム等をフロック化し、沈殿槽で固液分離することにより、排水からのリン除去を行っている。この方法は沈殿槽の設置面積が大きいこと、生成された沈殿汚泥の量が多いこと、汚泥の脱水性が良くないこと、等が課題となっている。
【0010】
他のリン酸カルシウム生成を利用したリン除去技術としては、リンとカルシウムを含有する固体粒子を充填した反応槽に、リン含有排水をカルシウム剤とともに導入して、固体粒子上にリン酸カルシウムを析出させる、いわゆるリン酸カルシウム晶析法が提案されている。この方法の長所としては、装置設置面積を低減できること、汚泥発生量が少ないこと、等が挙げられている。しかし、いわゆる下水処理の場合には、リンの濃度がもともとそれほど高くない場合が多いことや、極めて多量に処理することが要求される場合が多いことから、今までのところあまり実用化されていない方法である。なお、反応槽内に充填する固体粒子としてはリンとカルシウムを含有するものが一般的であるが、必ずしもリンとカルシウムを含有する必要はなく、砂や活性炭等の微細粒子が用いられる場合もある。
【0011】
また、銅、鉄、鉛等の重金属を排水から除去する技術としては、水酸化ナトリウム等の添加によりpHを上昇させて金属水酸化物の不溶体を形成することにより、凝集沈殿あるいは晶析除去する技術が代表的な除去技術として知られている。
【0012】
【発明が解決しようとする課題】
フッ素、リン、重金属のうちの少なくとも1種以上を含む排水から、これらの物質を晶析技術により除去する場合、晶析条件を至適条件に保つことにより良好な晶析物が形成され、処理水中の対象物質濃度を低減することができる。しかしながら発明者らがこの技術の詳細を検討した結果、晶析処理において2つの問題点が明らかとなった。
【0013】
一つ目の問題点は、反応槽内に局部的に過飽和域が形成されたり、晶析物同士の摩擦により(これは特に流動床式の晶析装置で顕著である)、処理水中に反応生成物に起因する微細粒子あるいは微細フロックが流出してしまうことである。
微細粒子等の流出は、処理水SS濃度を上昇させると共に、処理水中の対象物質濃度(例えば、全フッ素濃度、全リン濃度、全銅濃度、等)を上昇させてしまい、さらなる処理が必要となる。さらなる処理技術としては砂ろ過、凝集沈殿、膜処理等による固液分離が挙げられるが、これらの結果生成した汚泥の処理処分も追加の課題となる。
【0014】
二つ目の問題点は、生成した晶析物の有価物として回収再利用を考慮した場合に生じることであるが、上記微細粒子等の流出によって晶析物の回収率、すなわち排水中に含まれる全対象物質量に対して晶析物として回収できる物質量が低下することである。一般的に晶析で生成される晶析物はペレット状で取り扱いやすく、水との分離も容易であり、回収再利用の価値の高いものが得られる。
【0015】
本発明は、以上のような観点からなされたものであり、被処理水中から所定の対象成分を晶析により除去するに際し、対象成分を十分に除去すると共に、SS濃度も低く抑制した処理水を得ることを課題とする。また、本発明は、被処理水中からの対象成分の回収率をより向上させることを課題とする。
【0016】
【課題を解決するための手段】
本発明者らは、鋭意研究を進めたところ、除去しようとする対象成分を晶析させる反応槽から流出した微細粒子を回収し、この微細粒子を構成する対象成分を溶解して反応槽に再度送り込むことにより、処理水のSS濃度を低く抑制し、対象成分の除去、対象成分の回収を良好に行うことができることを見いだし、本発明を完成させた。
【0017】
すなわち、本発明は次の通りである。
(1) 対象成分を晶析させる反応槽から流出した微細粒子を固液分離し、固液分離した微細粒子から対象成分を溶解して再び反応槽に送給し、前記流出した微細粒子に含まれる対象成分を再晶析させる、被処理水からの対象成分除去方法であって、前記対象成分がフッ素であり、前記固液分離した微細粒子を含む液のpHを2.5以下にしてフッ素含有微細粒子を溶解する、被処理水からの対象成分除去方法。
(2) 対象成分を晶析させる反応槽から流出した微細粒子を固液分離し、固液分離した微細粒子から対象成分を溶解して再び反応槽に送給し、前記流出した微細粒子に含まれる対象成分を再晶析させる、被処理水からの対象成分除去方法であって、前記対象成分が銅などの重金属であり、前記固液分離した微細粒子を含む液のpHを5以下にして重金属含有微細粒子を溶解する、被処理水からの対象成分除去方法。
(3) 被処理水からフッ素を晶析させて除去する晶析装置において、被処理水中のフッ素を晶析させる反応槽と、反応槽から流出する微細粒子を分離する固液分離手段と、固液分離した微細粒子を含む液のpHを2.5以下とするpH調整剤を供給するpH調整剤供給手段と、前記固液分離手段で分離された微細粒子に含まれる前記対象成分を溶解する溶解槽と、前記固液分離手段により分離された微細粒子を前記溶解槽に送給する分離微細粒子送給手段と、前記溶解槽で溶解された前記対象成分を反応槽へ送給する溶解成分送給手段とを備える、晶析装置。
(4) 被処理水から銅などの重金属を晶析させて除去する晶析装置において、被処理水中の銅などの重金属を晶析させる反応槽と、反応槽から流出する微細粒子を分離する固液分離手段と、固液分離した微細粒子を含む液のpHを5以下とするpH調整剤を供給するpH調整剤供給手段と、前記固液分離手段で分離された微細粒子に含まれる前記対象成分を溶解する溶解槽と、前記固液分離手段により分離された微細粒子を前記溶解槽に送給する分離微細粒子送給手段と、前記溶解槽で溶解された前記対象成分を反応槽へ送給する溶解成分送給手段とを備える、晶析装置。
【0018】
【発明の実施の形態】
本発明の被処理水から対象成分を晶析させて除去する方法は、反応槽で除去しようとする対象成分を晶析させるとともに、対象成分を晶析させる反応槽から流出した微細粒子を固液分離し、固液分離した微細粒子から対象成分を溶解して再び反応槽に送給し、前記流出した微細粒子に含まれる対象成分を再晶析させることを特徴とする。
【0019】
本発明の方法は、被処理水として、電子産業(特に半導体関連)、発電所、アルミニウム工業などから排出される排水に好適に用いられる。以下、被処理水として排水を対象とした場合を例に実施の形態を説明する。
【0020】
まず最初の例として、排水中のフッ素をCaイオン存在下での晶析により除去する場合においては、反応槽で晶析に適する条件にフッ素イオン濃度、pH、Caイオン濃度を調整し、晶析を進めた後、晶析させた後の処理水(以下「晶析処理水」という場合がある)中に流出してしまう微細粒子であるSS成分の固液分離を行なう。このSSの大部分は反応槽内で生じたフッ化カルシウムの微細結晶あるいは微細フロックである。
【0021】
固液分離手段として、例えば砂ろ過を用いた場合には、晶析処理水中のSSはろ層上に捕捉され、SS除去をなされた後のろ過水はSS濃度の低い良好な処理水となる。一方、ろ層上に捕捉されたSS量が一定以上となると継続的に処理が困難になるため、逆洗によりろ層の再生がなされ、SS成分を高濃度に含んだ再生排水が排出される。この再生排水を、晶析処理前の排水(以下「原水」という場合がある)を反応槽に送給するライン(原水ライン)に返送する前、あるいは返送した後に、pHを2.5以下とするとSSに含まれるフッ素含有微細粒子は再溶解する。これを再度反応槽に送給することにより、再溶解したフッ素が晶析に利用されることとなる。
【0024】
番目の例として、重金属として銅を含む排水を例に挙げる。排水中の銅イオンをアルカリ性下での晶析により除去する場合においては、反応槽で晶析に適する条件に銅イオン濃度、pHを調整し、晶析を進めた後、晶析処理水中に流出してしまうSS成分の固液分離を行なう。このSSの大部分は反応槽内で生じた水酸化銅の微細結晶あるいは微細フロックである。
【0025】
固液分離手段として、例えば砂ろ過を用いた場合には、晶析処理水中のSSはろ層上に捕捉され、SS除去をなされた後のろ過水はSS濃度の低い良好な処理水となる。一方、ろ層上に捕捉されたSS量が一定以上となると継続的に処理が困難になるため、逆洗によりろ層の再生がなされ、SS分を高濃度に含んだ再生排水が排出される。この再生排水を原水ラインに返送する前、あるいは返送した後に、pHを5以下とするとSSに含まれる銅含有微細粒子は再溶解する。これを再度反応槽に送給することにより、再溶解した銅が晶析に利用されることとなる。
【0026】
なお、固液分離して溶解した対象成分は再度晶析させればよく、流出元の反応槽に返送して再度晶析させることができるが、複数の反応槽がある場合には流出元の反応槽には限定されず、例えば最上流側にすべての溶解物を供給してもよいし、より下流側で別途晶析させてもよい。
【0027】
また、上記以外の条件は、通常の晶析処理の技術に従って行えばよい。また、複数の対象成分を一つの反応槽で同時に晶析させる場合でも、本発明によればSS濃度が低く抑制された処理水を得ることができる。
【0028】
以上のような本発明の方法は、被処理水中の対象成分を晶析させる反応槽と、反応槽から流出する微細粒子を分離する固液分離手段と、前記固液分離手段で分離された微細粒子に含まれる前記対象成分を溶解する溶解槽と、前記固液分離手段により分離された微細粒子を含む再生用処理水を前記溶解槽に送給する分離微細粒子送給手段と、前記溶解槽で溶解された対象成分を含む溶液を反応槽へ送給する溶解成分送給手段とを備える、晶析装置を用いることにより好適に実施できる。
【0029】
反応槽では、除去対象成分の晶析が行われる。反応槽には対象成分の晶析のために槽内のpHを調整するためのpH調整剤を供給する手段、Caなどの薬剤を供給するための手段、晶析させて得られるペレットを回収するための手段をそれぞれ設けることができる。さらに反応槽には、反応槽内の所定成分の濃度調整や反応槽内の被処理水を流動させるための処理水循環ラインを設けることもできる。
【0030】
固液分離手段としては、例えば、砂ろ過装置などが例示されるがこれに限定されるものではなく、沈殿分離、膜処理、等の手段でもよく、反応槽から排出されるSSを固液分離できるものであればよい。固液分離手段として、例えば砂ろ過装置を用いる場合、ろ過層で微細粒子を捕捉し、この微細粒子を逆洗手段を設けることなどにより分離微細粒子送給手段を通じて溶解槽へと送り込む。
【0031】
溶解槽では対象成分を含む微細粒子を溶解する。微細粒子は例えばpHを調整することなどにより溶解することができ、そのために溶解槽には例えば酸供給ラインなどのpH調整剤供給手段が設けられる。溶解槽は、原水を反応槽に送給するライン(原水ライン)上に設けても、または原水ライン上とは別に設けてもよい。原水ライン上に設けた場合、原水ラインの一部が溶解成分送給手段を兼ねることになる。原水ライン上とは別に設けた場合には、別途に溶解槽から溶解成分を送給する溶解成分送給手段が設けられる。
【0032】
さらに、本発明の晶析装置には、通常、晶析装置の備えることがあるその他の手段を設けてもよい。また、反応槽、固液分離手段、溶解槽、分離微細粒子送給手段、溶解成分送給手段などは対象となる被処理水などの条件により必要に応じて複数設けてもよい。また、溶解槽で溶解した対象成分は溶解槽から反応槽へと送られるが、複数の反応槽が設けられる場合、送り先となる反応槽は必ずしも上流側の反応槽に戻す場合に限定されず、例えば下流側にある別の反応槽に送給するようにしてもよい。ただし、反応槽の設置面積などの観点からは、上流側にある流出元の反応槽に戻す形態が好ましい。
【0033】
次に本発明の実施の形態を、排水中のフッ素除去の場合を例として、図面と共により詳細に説明する。
【0034】
図2は従来技術の実施形態を示したものであり、フッ素を含有した排水は、排水流入ライン1から反応槽3へ送給される。カルシウム化合物はカルシウム添加ライン2を介して反応槽3に供給され、固体粒子やペレットが流動している晶析部5で、晶析が起こり、排水中のフッ素が除去され、処理水は処理水ライン4を介して排出される。必要に応じて反応部を流動させるためや、晶析に適したフッ素濃度、カルシウム濃度とするために、循環ライン6を介して反応槽流出水を反応槽下部に循環することもある。晶析後のペレット等はペレット引抜ライン17から回収される。
【0035】
しかしながら、このような従来技術では、処理水へのフッ素を含む微細結晶の流出、等の課題があることが分かった。従来技術ではさらに固液分離を設けることもあるが、この固液分離後のSSは廃棄物として処分されることとなる。
【0036】
図1は本発明の実施形態の一例を示したものである。フッ素を含有した排水は、排水流入ライン1から反応槽3へ送給される。カルシウム化合物はカルシウム添加ライン2を介して反応槽3に供給され、固体粒子やペレットが流動している晶析部5で、晶析が起こり、排水中のフッ素が除去され、処理水は晶析処理水ライン7を介して排出される。必要に応じて反応部を流動させるためや、晶析に適したフッ素濃度、カルシウム濃度とするために、循環ライン6を介して反応槽流出水を反応槽下部に循環することもある。晶析後のペレット等はペレット引抜ライン17から回収される。
【0037】
晶析処理水中にはフッ化カルシウムを主体としたSSが含有されているため、砂ろ過装置8に送給され、砂ろ過層10で固液分離され、SSは砂ろ過層に捕捉され、SSの除去された処理水が砂ろ過処理水ライン9を介して排出される。SSが捕捉された砂ろ過層は、逆洗用水ライン11を介して導入される逆洗用水により洗浄され、SSを含んだ逆洗排水は逆洗排水ライン12を介して、SS溶解槽13に送給される。
【0038】
SSが送給されるSS溶解槽13では酸供給ライン15を介して酸が注入されpH2に調整され、再溶解したフッ素含有水は、排水流入ライン1から反応槽3へ送給される。逆洗、SS溶解、再溶解したフッ素含有水の供給等は、連続的でなくバッチ的に行うこともできる。
【0039】
なお、図1、図2はフッ素を除去する場合を例として示したものであり、フッ素はpH3〜12程度の広い範囲で晶析可能なため、pH調整剤を反応槽に送給するラインを設けていないが、対象成分の晶析のためにpHの調整が必要な場合は反応槽にpH調整剤を送給するためのラインが設けられる。
【0040】
【実施例】
以下に実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。
【0041】
<実施例1>
フッ化ナトリウム100mgF/lを水道水に溶解したものを模擬排水として、図1に示すフローで実験を行なった。反応槽は高さ2m、容量300mlの円柱型アクリルカラムを用いた。固液分離槽には砂ろ過を用いた。模擬排水の流量は3リットル/h、反応槽では循環は行なわなかった。消石灰は模擬排水流量基準で500mgCa/l添加した。砂ろ過の逆洗は1週間に2回実施し、SS溶解槽のpHは塩酸の添加によりpH2に調整した。SS溶解後のフッ素含有水は適宜模擬排水に1日間で均等となるように注入する形で反応槽に導入した。実験開始時に平均粒径0.1mmのろ過砂を50ml各反応槽に添加し、実験開始後2週間目から砂ろ過、SS溶解の装置を稼動させ、4週間目から6週間目の水質を測定した。
【0042】
砂ろ過後の処理水質は、フッ素4mgF/l、SS2mg/lと良好な値を示し、反応槽内に生成されたペレットはフッ化カルシウム含有率96%であった。流出したSS成分は主としてフッ化カルシウムであるため、模擬排水中に含まれていたフッ素100mg/lのうち、約95%がペレット化し回収再利用が可能となり、残りの約5%(4mgF/l+2mgSS/l×19/39、原子量:Ca;40、F;19)が処理水側へ移行したこととなる。
【0043】
<比較例1>
フッ化ナトリウム100mgF/lを水道水に溶解したものを模擬排水として、図2に示すフローで実験を行なった。反応槽は高さ2m、容量300mlの円柱型アクリルカラムを用いた。模擬排水の流量は3リットル/h、反応槽では循環は行なわなかった。消石灰は模擬排水流量基準で500mgCa/l添加した。実験開始時に平均粒径0.1mmのろ過砂を50ml各反応槽に添加し、実験開始後4週間目から6週間目の水質を測定した。
【0044】
晶析処理後の処理水質は、フッ素4mgF/l、SS18mg/lであり、反応槽内に生成されたペレットはフッ化カルシウム含有率96%であった。流出したSS成分は主としてフッ化カルシウムであるため、模擬排水中に含まれていたフッ素100mg/lのうち、約87%がペレット化し回収再利用が可能となり、残りの約13%(4mgF/l+18mgSS/l×19/39、原子量:Ca;40、F;19)が処理水側へ移行したこととなる。
【0045】
【発明の効果】
本発明によれば、被処理水中から除去しようとする対象成分を十分に除去すると共に、SS濃度も低く抑制した良好な水質の処理水を得ることができる。また、本発明によれば、被処理水中からの対象成分の回収率をより向上させることができる。
【図面の簡単な説明】
【図1】本発明の方法および装置の実施形態の一例を示す図である。
【図2】従来の晶析装置を示す図である。
【符号の説明】
1:排水流入ライン
2:カルシウム添加ライン
3:反応槽
4:処理水ライン
5:晶析部
6:循環ライン
7:晶析処理水ライン
8:砂ろ過装置
9:砂ろ過処理水ライン
10:砂ろ過層
11:逆洗用水ライン
12:逆洗排水ライン
13:SS溶解槽
14:再供給ライン
15:酸供給ライン
17:ペレット引抜ライン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for removing a predetermined target component in water to be treated by crystallization, and more specifically, fluorine ions, phosphate ions in waste water discharged from the electronics industry, power plant, aluminum industry, chemical industry, etc. The present invention relates to a crystallization removal method suitable for removing heavy metal ions. The present invention also relates to a crystallization apparatus for carrying out the crystallization method.
[0002]
[Prior art]
The water quality in the wastewater from factories and the like is strictly regulated, but the regulation tends to be stricter year by year. Wastewater discharged from the electronics industry (especially in the semiconductor industry), power plants, and aluminum industries often contains elements that have established strict drainage standards such as fluorine, phosphorus, or heavy metals in recent years. Is more efficiently removed from wastewater.
[0003]
Techniques for removing fluorine, phosphorus, heavy metals, etc. in the wastewater include a coagulation precipitation method and a crystallization method. First, fluorine and phosphorus will be described in detail.
[0004]
Fluorine removal technology using calcium compounds has been widely used as a technology for removing fluorine from wastewater. The fluorine removal reaction by the calcium compound is carried out by generating poorly soluble calcium fluoride as shown by the formula (1).
Ca 2+ + 2F - → CaF 2 ↓ ▲ 1 ▼
As calcium compounds, calcium hydroxide (Ca (OH) 2 ), calcium chloride (CaCl 2 ), or calcium carbonate (CaCO 3 ) is often used.
[0005]
In the calcium fluoride precipitation method, which is most commonly used, CaF 2 produced by the formula (1) is flocked by adding a sulfuric acid band, polyaluminum chloride, or a polymer flocculant, and solid-liquid separated in a precipitation tank. In this way, fluorine is removed from the waste water. This method has problems such as a large installation area of the settling tank, a large amount of generated sludge, and poor dewaterability of the sludge.
[0006]
As another fluorine removal technology using calcium fluoride generation, as shown in Japanese Patent Application No. 59-63884, fluorine-containing wastewater is introduced together with calcium agent into a reaction tank filled with solid particles containing fluorine and calcium. Thus, there is a so-called calcium fluoride crystallization method in which calcium fluoride is precipitated on solid particles. In general, wastewater is introduced from the lower part of the reaction tank, and the solid particles are fluidized and passed in an upward flow for treatment, and the reaction tank effluent is circulated as necessary. Advantages of this method include that the installation area of the apparatus can be reduced and that the amount of sludge generated is small. In addition, although the thing containing fluorine and calcium is common as a solid particle with which it fills in the reaction tank, it does not necessarily need to contain fluorine and calcium, and fine particles, such as sand and activated carbon, may be used. .
[0007]
On the other hand, there are physicochemical methods and biological methods for removing phosphorus from wastewater, but biological phosphorus removal methods are mainly used in sewage treatment, and in industrial wastewater treatment, Mostly chemical phosphorus removal methods are employed. As chemicals used for removing phosphorus, calcium compounds and aluminum compounds are generally used.
[0008]
Further, phosphorus removal technology using calcium compounds has been widely used as technology for removing phosphorus in wastewater. As shown by the formulas (2) and (3), the phosphorus removal reaction by the calcium compound is carried out by producing hardly soluble calcium phosphate and hydroxyapatite phosphate (hereinafter referred to as “calcium phosphate etc.”).
3Ca 2+ + 2PO 4 3- → Ca 3 (PO 4 ) 2 ↓ ▲ 2 ▼
5Ca 2+ + OH - + 3PO 4 3- → Ca 5 OH (PO 4) 3 ↓ ▲ 3 ▼
As calcium compounds, calcium hydroxide (Ca (OH) 2 ) and calcium chloride (CaCl 2 ) are often used.
[0009]
In the most commonly used coagulation-precipitation method, the addition of sulfuric acid band, polyaluminum chloride, or polymer coagulant flocks calcium phosphate, etc. produced by the formulas (2) and (3), and solid-liquid separates them in a precipitation tank. In this way, phosphorus is removed from the waste water. This method has problems such as a large installation area of the settling tank, a large amount of generated sludge, and poor dewaterability of the sludge.
[0010]
As another phosphorus removal technique using calcium phosphate production, so-called calcium phosphate is formed by introducing phosphorous-containing wastewater together with a calcium agent into a reaction vessel filled with solid particles containing phosphorus and calcium and precipitating calcium phosphate on the solid particles. A crystallization method has been proposed. Advantages of this method include that the installation area of the apparatus can be reduced and that the amount of sludge generated is small. However, in the case of so-called sewage treatment, the concentration of phosphorus is often not so high from the beginning, and it is often required to treat extremely large amounts, so that it has not been practically used so far. Is the method. In addition, although the thing containing phosphorus and calcium is common as a solid particle with which it fills in a reaction tank, it does not necessarily need to contain phosphorus and calcium, and fine particles, such as sand and activated carbon, may be used. .
[0011]
In addition, technologies for removing heavy metals such as copper, iron, and lead from wastewater include removal of coagulated precipitates or crystallization by increasing the pH by adding sodium hydroxide to form an insoluble metal hydroxide. This technique is known as a typical removal technique.
[0012]
[Problems to be solved by the invention]
When these substances are removed from wastewater containing at least one of fluorine, phosphorus, and heavy metals by crystallization technology, good crystallization products are formed by maintaining the crystallization conditions at the optimum conditions. The target substance concentration in water can be reduced. However, as a result of studying the details of this technique by the inventors, two problems in the crystallization process have been clarified.
[0013]
The first problem is that a supersaturated region is locally formed in the reaction tank or the friction between the crystallized substances (this is particularly noticeable in fluidized bed type crystallizer). Fine particles or fine flocs resulting from the product flow out.
The outflow of fine particles increases the concentration of SS in the treated water and also increases the concentration of target substances in the treated water (for example, total fluorine concentration, total phosphorus concentration, total copper concentration, etc.), and further processing is required. Become. Further processing techniques include solid-liquid separation by sand filtration, coagulation sedimentation, membrane treatment, etc., but the disposal of sludge generated as a result of these is an additional issue.
[0014]
The second problem arises when recovery and reuse is considered as a valuable material of the generated crystallization product, but the recovery rate of the crystallization product by the outflow of the above fine particles, that is, included in the wastewater. That is, the amount of substance that can be recovered as a crystallized product decreases with respect to the total amount of target substance. In general, the crystallized product produced by crystallization is in the form of pellets, is easy to handle, can be easily separated from water, and is highly valuable for recovery and reuse.
[0015]
The present invention has been made from the above viewpoint, and when removing a predetermined target component from the water to be treated by crystallization, the target component is sufficiently removed, and treated water in which the SS concentration is suppressed to be low is also provided. It is a problem to obtain. Moreover, this invention makes it a subject to improve the recovery rate of the target component from to-be-processed water more.
[0016]
[Means for Solving the Problems]
As a result of diligent research, the present inventors recovered fine particles that flowed out of the reaction vessel that crystallizes the target component to be removed, dissolved the target component that constitutes the fine particle, and returned to the reaction vessel again. As a result, it was found that the SS concentration of the treated water can be suppressed to a low level, the removal of the target component and the recovery of the target component can be performed satisfactorily, and the present invention has been completed.
[0017]
That is, the present invention is as follows.
(1) Solid-liquid separation of fine particles flowing out from the reaction tank for crystallizing the target component, dissolving the target components from the solid-liquid separated fine particles, and feeding them to the reaction tank again, included in the outflowed fine particles The target component is removed from the water to be recrystallized by recrystallizing the target component, wherein the target component is fluorine, and the pH of the liquid containing the solid-liquid separated fine particles is set to 2.5 or less. The target component removal method from to- be- processed water which melt | dissolves a containing fine particle.
(2) The solid particles separated from the reaction vessel for crystallizing the target component are subjected to solid-liquid separation, and the target component is dissolved from the fine particles obtained by solid-liquid separation and fed back to the reaction vessel. The target component is removed from the water to be treated by recrystallization, wherein the target component is a heavy metal such as copper, and the pH of the liquid containing fine particles separated by solid-liquid separation is set to 5 or less. The target component removal method from to- be- processed water which melt | dissolves a heavy metal containing fine particle.
(3) In a crystallization apparatus for crystallizing and removing fluorine from the water to be treated, a reaction tank for crystallizing fluorine in the water to be treated, a solid-liquid separation means for separating fine particles flowing out from the reaction tank, PH adjusting agent supplying means for supplying a pH adjusting agent for adjusting the pH of the liquid containing the fine particles separated to 2.5 or less, and the target component contained in the fine particles separated by the solid-liquid separating means is dissolved. Dissolving component that feeds the target component dissolved in the dissolution tank, the separation fine particle feeding unit that feeds the fine particles separated by the solid-liquid separation unit to the dissolution tank, and the reaction component A crystallization apparatus comprising a feeding means.
(4) In a crystallization apparatus that crystallizes and removes heavy metals such as copper from the water to be treated, a reaction tank that crystallizes heavy metals such as copper in the water to be treated and a solid that separates fine particles flowing out of the reaction tank. A liquid separation means, a pH adjuster supply means for supplying a pH adjuster having a pH of 5 or less of the liquid containing the solid-liquid separated fine particles, and the object contained in the fine particles separated by the solid-liquid separation means A dissolution tank for dissolving the components, a separation fine particle feeding means for feeding the fine particles separated by the solid-liquid separation means to the dissolution tank, and the target component dissolved in the dissolution tank is sent to the reaction tank. A crystallization apparatus comprising a dissolved component feeding means for feeding.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The method of crystallizing and removing the target component from the water to be treated according to the present invention crystallizes the target component to be removed in the reaction tank, and solid-liquid the fine particles flowing out from the reaction tank for crystallizing the target component. The target component is dissolved from the fine particles separated and solid-liquid separated and fed again to the reaction vessel, and the target component contained in the outflowed fine particles is recrystallized.
[0019]
The method of the present invention is suitably used for wastewater discharged from the electronics industry (particularly related to semiconductors), power plants, aluminum industries, etc. as treated water. Hereinafter, an embodiment will be described by taking as an example a case where wastewater is targeted as water to be treated.
[0020]
As a first example, when removing fluorine from wastewater by crystallization in the presence of Ca ions, the fluoride ion concentration, pH, and Ca ion concentration are adjusted to conditions suitable for crystallization in the reaction tank. Then, the SS component, which is fine particles flowing out into the treated water after crystallization (hereinafter sometimes referred to as “crystallized treated water”), is subjected to solid-liquid separation. Most of this SS is fine crystals or fine flocs of calcium fluoride generated in the reaction vessel.
[0021]
For example, when sand filtration is used as the solid-liquid separation means, SS in the crystallization treated water is trapped on the filter layer, and the filtered water after the removal of SS is good treated water having a low SS concentration. On the other hand, when the amount of SS trapped on the filter layer exceeds a certain level, it becomes difficult to process continuously, so the filter layer is regenerated by backwashing, and the regenerated wastewater containing a high concentration of SS components is discharged. . If this recycled wastewater is returned to the line (raw water line) that feeds the wastewater before crystallization treatment (hereinafter sometimes referred to as “raw water”) to the reaction tank (raw water line), or after returning it, the pH will be 2.5 or less. The fluorine-containing fine particles contained in the redissolved. By re-feeding this to the reaction tank, the re-dissolved fluorine is used for crystallization.
[0024]
As a second example, drainage containing copper as a heavy metal is taken as an example. When removing copper ions from wastewater by crystallization under alkaline conditions, adjust the copper ion concentration and pH to conditions suitable for crystallization in the reaction tank, proceed with crystallization, and then flow into the crystallization water. Solid-liquid separation of the SS component that will occur. Most of the SS is fine crystals or fine flocs of copper hydroxide generated in the reaction vessel.
[0025]
For example, when sand filtration is used as the solid-liquid separation means, SS in the crystallization treated water is trapped on the filter layer, and the filtered water after the removal of SS is good treated water having a low SS concentration. On the other hand, if the amount of SS trapped on the filter layer exceeds a certain level, it becomes difficult to treat continuously, so the filter layer is regenerated by backwashing, and the regenerated wastewater containing a high concentration of SS is discharged. . Before returning the recycled wastewater to the raw water line or after returning it, if the pH is 5 or less, the copper-containing fine particles contained in the SS are redissolved. By re-feeding this to the reaction vessel, the re-dissolved copper will be used for crystallization.
[0026]
The target component dissolved by solid-liquid separation may be crystallized again, and can be returned to the reaction tank of the outflow source and recrystallized, but if there are multiple reaction tanks, It is not limited to a reaction tank, For example, all the melt may be supplied to the uppermost stream side, and you may crystallize separately on the more downstream side.
[0027]
The conditions other than the above may be performed in accordance with a normal crystallization technique. Further, even when a plurality of target components are simultaneously crystallized in one reaction tank, treated water with a low SS concentration can be obtained according to the present invention.
[0028]
The method of the present invention as described above includes a reaction tank for crystallizing a target component in water to be treated, a solid-liquid separation means for separating fine particles flowing out from the reaction tank, and a fine particle separated by the solid-liquid separation means. A dissolution tank for dissolving the target component contained in particles, a separation fine particle feeding means for feeding the treatment water for regeneration containing fine particles separated by the solid-liquid separation means to the dissolution tank, and the dissolution tank It can implement suitably by using a crystallization apparatus provided with the melt | dissolution component feed means which feeds the solution containing the object component melt | dissolved by (1) to a reaction tank.
[0029]
In the reaction tank, the component to be removed is crystallized. In the reaction tank, a means for supplying a pH adjusting agent for adjusting the pH in the tank for crystallization of the target component, a means for supplying a chemical such as Ca, and a pellet obtained by crystallization are collected. Means for each can be provided. Furthermore, the reaction tank can be provided with a treated water circulation line for adjusting the concentration of the predetermined components in the reaction tank and for flowing the water to be treated in the reaction tank.
[0030]
Examples of the solid-liquid separation means include, but are not limited to, a sand filtration device, and may be means such as precipitation separation, membrane treatment, etc., and solid-liquid separation of SS discharged from the reaction tank is possible. Anything is possible. For example, when a sand filtration device is used as the solid-liquid separation means, fine particles are captured by the filtration layer, and the fine particles are fed into the dissolution tank through the separation fine particle feeding means by providing a backwashing means.
[0031]
In the dissolution tank, fine particles containing the target component are dissolved. The fine particles can be dissolved, for example, by adjusting the pH. For this purpose, the dissolution tank is provided with a pH adjusting agent supply means such as an acid supply line. The dissolution tank may be provided on a line (raw water line) for supplying raw water to the reaction tank, or may be provided separately from the raw water line. When provided on the raw water line, a part of the raw water line also serves as the dissolved component feeding means. When provided separately from the raw water line, a dissolved component feeding means for separately feeding the dissolved component from the dissolving tank is provided.
[0032]
Furthermore, the crystallization apparatus of the present invention may be provided with other means that may normally be included in the crystallization apparatus. A plurality of reaction tanks, solid-liquid separation means, dissolution tanks, separated fine particle feeding means, dissolved component feeding means, and the like may be provided as necessary depending on the conditions of the water to be treated. In addition, the target component dissolved in the dissolution tank is sent from the dissolution tank to the reaction tank, but when a plurality of reaction tanks are provided, the reaction tank as the destination is not necessarily limited to returning to the upstream reaction tank, For example, it may be fed to another reaction tank on the downstream side. However, from the viewpoint of the installation area of the reaction tank, it is preferable to return to the outflow source reaction tank on the upstream side.
[0033]
Next, an embodiment of the present invention will be described in more detail with reference to the drawings, taking as an example the case of removing fluorine in waste water.
[0034]
FIG. 2 shows an embodiment of the prior art, and wastewater containing fluorine is fed from the wastewater inflow line 1 to the reaction tank 3. The calcium compound is supplied to the reaction vessel 3 through the calcium addition line 2 and crystallization occurs in the crystallization part 5 in which solid particles and pellets flow, fluorine in the waste water is removed, and the treated water is treated water. It is discharged via line 4. In order to cause the reaction part to flow as necessary, or to obtain a fluorine concentration and a calcium concentration suitable for crystallization, the reaction tank effluent may be circulated to the lower part of the reaction tank via the circulation line 6. The pellets and the like after crystallization are collected from the pellet drawing line 17.
[0035]
However, it has been found that such conventional techniques have problems such as the outflow of fine crystals containing fluorine to the treated water. In the prior art, solid-liquid separation may be further provided, but the SS after this solid-liquid separation is disposed as waste.
[0036]
FIG. 1 shows an example of an embodiment of the present invention. The fluorine-containing waste water is fed from the waste water inflow line 1 to the reaction tank 3. The calcium compound is supplied to the reaction tank 3 through the calcium addition line 2 and crystallization occurs in the crystallization part 5 in which solid particles and pellets flow, fluorine in the waste water is removed, and the treated water is crystallized. It is discharged through the treated water line 7. In order to cause the reaction part to flow as necessary, or to obtain a fluorine concentration and a calcium concentration suitable for crystallization, the reaction tank effluent may be circulated to the lower part of the reaction tank via the circulation line 6. The pellets and the like after crystallization are collected from the pellet drawing line 17.
[0037]
Since the crystallized water contains SS mainly composed of calcium fluoride, it is fed to the sand filter 8 and separated into solid and liquid by the sand filter layer 10, and the SS is captured by the sand filter layer. The treated water removed is discharged through the sand filtration treated water line 9. The sand filtration layer in which SS is captured is washed with backwash water introduced through the backwash water line 11, and the backwash wastewater containing SS is fed into the SS dissolution tank 13 through the backwash drainage line 12. Be sent.
[0038]
In the SS dissolution tank 13 to which SS is fed, acid is injected through the acid supply line 15 and adjusted to pH 2, and the re-dissolved fluorine-containing water is fed from the waste water inflow line 1 to the reaction tank 3. Backwashing, SS dissolution, re-dissolution of fluorine-containing water, etc. can be performed not continuously but batchwise.
[0039]
1 and 2 show an example in which fluorine is removed. Since fluorine can be crystallized in a wide range of about pH 3 to 12, a line for feeding a pH adjusting agent to the reaction vessel is shown. Although not provided, when pH adjustment is required for crystallization of the target component, a line for supplying a pH adjusting agent to the reaction vessel is provided.
[0040]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
[0041]
<Example 1>
Experiments were performed with the flow shown in FIG. 1 using 100 mg F / l sodium fluoride dissolved in tap water as simulated waste water. The reaction tank used was a cylindrical acrylic column having a height of 2 m and a capacity of 300 ml. Sand filtration was used for the solid-liquid separation tank. The flow rate of the simulated waste water was 3 liters / h, and the reactor was not circulated. Slaked lime was added at 500mgCa / l based on simulated wastewater flow rate. Sand filtration was backwashed twice a week, and the pH of the SS dissolution tank was adjusted to pH 2 by the addition of hydrochloric acid. Fluorine-containing water after dissolution of SS was introduced into the reaction tank as appropriate by injecting it into the simulated waste water so that it would be even over one day. At the start of the experiment, 50 ml of filter sand with an average particle size of 0.1 mm was added to each reaction tank, and the sand filtration and SS dissolution equipment was operated from the second week after the start of the experiment, and the water quality was measured from the fourth to sixth weeks. .
[0042]
The quality of treated water after sand filtration was as good as 4 mgF / l fluorine and 2 mg / l SS, and the pellets produced in the reaction vessel had a calcium fluoride content of 96%. Outflowing SS component is mainly calcium fluoride, so out of 100mg / l of fluorine contained in the simulated waste water, about 95% is pelletized and can be recovered and reused, and the remaining 5% (4mgF / l + 2mgSS) / l × 19/39, atomic weight: Ca; 40, F; 19) is transferred to the treated water side.
[0043]
<Comparative Example 1>
Experiments were performed with the flow shown in FIG. 2 using 100 mg F / l sodium fluoride dissolved in tap water as simulated waste water. The reaction tank used was a cylindrical acrylic column having a height of 2 m and a capacity of 300 ml. The flow rate of the simulated waste water was 3 liters / h, and the reactor was not circulated. Slaked lime was added at 500mgCa / l based on simulated wastewater flow rate. At the start of the experiment, 50 ml of filter sand having an average particle size of 0.1 mm was added to each reaction vessel, and the water quality was measured from 4 to 6 weeks after the start of the experiment.
[0044]
The treated water quality after the crystallization treatment was fluorine 4 mg F / l, SS 18 mg / l, and the pellets produced in the reaction tank had a calcium fluoride content of 96%. Outflowing SS component is mainly calcium fluoride, so out of 100mg / l of fluorine contained in the simulated waste water, about 87% is pelletized and can be recovered and reused, and the remaining 13% (4mgF / l + 18mgSS) / l × 19/39, atomic weight: Ca; 40, F; 19) is transferred to the treated water side.
[0045]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, while removing the target component which it is going to remove from to-be-processed water fully, the process water of the favorable water quality which suppressed the SS density | concentration low can be obtained. Moreover, according to this invention, the collection | recovery rate of the target component from to-be-processed water can be improved more.
[Brief description of the drawings]
FIG. 1 illustrates an example of an embodiment of the method and apparatus of the present invention.
FIG. 2 is a diagram showing a conventional crystallization apparatus.
[Explanation of symbols]
1: Wastewater inflow line 2: Calcium addition line 3: Reaction tank 4: Treated water line 5: Crystallization section 6: Circulation line 7: Crystallization treated water line 8: Sand filtration device 9: Sand filtration treated water line
10: Sand filtration layer
11: Backwash water line
12: Backwash drainage line
13: SS dissolution tank
14: Resupply line
15: Acid supply line
17: Pellet drawing line

Claims (4)

対象成分を晶析させる反応槽から流出した微細粒子を固液分離し、固液分離した微細粒子から対象成分を溶解して再び反応槽に送給し、前記流出した微細粒子に含まれる対象成分を再晶析させる、被処理水からの対象成分除去方法であって、前記対象成分がフッ素であり、前記固液分離した微細粒子を含む液のpHを2.5以下にしてフッ素含有微細粒子を溶解する、被処理水からの対象成分除去方法。 The fine particles that flowed out of the reaction tank for crystallizing the target component are solid-liquid separated, the target component is dissolved from the solid-liquid separated fine particles, and then sent to the reaction tank again. The target component contained in the flowed-out fine particles Is a method for removing a target component from water to be recrystallized, wherein the target component is fluorine, and the liquid containing the solid-liquid separated fine particles has a pH of 2.5 or less, and fluorine-containing fine particles The target component removal method from to- be- processed water which melt | dissolves. 対象成分を晶析させる反応槽から流出した微細粒子を固液分離し、固液分離した微細粒子から対象成分を溶解して再び反応槽に送給し、前記流出した微細粒子に含まれる対象成分を再晶析させる、被処理水からの対象成分除去方法であって、前記対象成分が銅などの重金属であり、前記固液分離した微細粒子を含む液のpHを5以下にして重金属含有微細粒子を溶解する、被処理水からの対象成分除去方法。 The fine particles that flowed out of the reaction tank for crystallizing the target component are solid-liquid separated, the target component is dissolved from the solid-liquid separated fine particles, and then sent to the reaction tank again. The target component contained in the flowed-out fine particles Is a method for removing a target component from water to be recrystallized, wherein the target component is a heavy metal such as copper, and the pH of the liquid containing fine particles separated by solid-liquid separation is set to 5 or less so The target component removal method from to- be- processed water which melt | dissolves particle | grains. 被処理水からフッ素を晶析させて除去する晶析装置において、被処理水中のフッ素を晶析させる反応槽と、反応槽から流出する微細粒子を分離する固液分離手段と、固液分離した微細粒子を含む液のpHを2.5以下とするpH調整剤を供給するpH調整剤供給手段と、前記固液分離手段で分離された微細粒子に含まれる前記対象成分を溶解する溶解槽と、前記固液分離手段により分離された微細粒子を前記溶解槽に送給する分離微細粒子送給手段と、前記溶解槽で溶解された前記対象成分を反応槽へ送給する溶解成分送給手段とを備える、晶析装置。In a crystallization apparatus for crystallizing and removing fluorine from the water to be treated, a reaction tank for crystallizing fluorine in the water to be treated, a solid-liquid separation means for separating fine particles flowing out of the reaction tank, and solid-liquid separation A pH adjuster supply means for supplying a pH adjuster that adjusts the pH of the liquid containing fine particles to 2.5 or less; a dissolution tank for dissolving the target component contained in the fine particles separated by the solid-liquid separation means; Separation fine particle feeding means for feeding fine particles separated by the solid-liquid separation means to the dissolution tank, and dissolution component feeding means for feeding the target component dissolved in the dissolution tank to the reaction tank A crystallization apparatus. 被処理水から銅などの重金属を晶析させて除去する晶析装置において、被処理水中の銅などの重金属を晶析させる反応槽と、反応槽から流出する微細粒子を分離する固液分離手段と、固液分離した微細粒子を含む液のpHを5以下とするpH調整剤を供給するpH調整剤供給手段と、前記固液分離手段で分離された微細粒子に含まれる前記対象成分を溶解する溶解槽と、前記固液分離手段により分離された微細粒子を前記溶解槽に送給する分離微細粒子送給手段と、前記溶解槽で溶解された前記対象成分を反応槽へ送給する溶解成分送給手段とを備える、晶析装置。In a crystallization apparatus that crystallizes and removes heavy metals such as copper from the water to be treated, a reaction tank for crystallizing heavy metals such as copper in the water to be treated, and a solid-liquid separation means for separating fine particles flowing out of the reaction tank And a pH adjuster supply means for supplying a pH adjuster for adjusting the pH of the liquid containing the fine particles separated by solid-liquid separation to 5 or less, and the target component contained in the fine particles separated by the solid-liquid separation means is dissolved. A dissolving tank, a separated fine particle feeding means for feeding the fine particles separated by the solid-liquid separation means to the dissolving tank, and a dissolving for feeding the target component dissolved in the dissolving tank to the reaction tank A crystallization apparatus comprising a component feeding means.
JP2000221290A 2000-07-21 2000-07-21 Method for removing target component from water to be treated and crystallization apparatus Expired - Lifetime JP4542679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000221290A JP4542679B2 (en) 2000-07-21 2000-07-21 Method for removing target component from water to be treated and crystallization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000221290A JP4542679B2 (en) 2000-07-21 2000-07-21 Method for removing target component from water to be treated and crystallization apparatus

Publications (2)

Publication Number Publication Date
JP2002035765A JP2002035765A (en) 2002-02-05
JP4542679B2 true JP4542679B2 (en) 2010-09-15

Family

ID=18715729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000221290A Expired - Lifetime JP4542679B2 (en) 2000-07-21 2000-07-21 Method for removing target component from water to be treated and crystallization apparatus

Country Status (1)

Country Link
JP (1) JP4542679B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340210A (en) * 2002-05-28 2003-12-02 Japan Organo Co Ltd Cleaning method for filter apparatus
WO2004067139A1 (en) * 2003-01-31 2004-08-12 Ebara Corporation Method and apparatus for removing ion in fluid by crystallization
JP5222672B2 (en) * 2008-01-31 2013-06-26 オルガノ株式会社 Crystallization reactor and crystallization reaction method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309464A (en) * 1998-04-28 1999-11-09 Mitsubishi Heavy Ind Ltd Crystallization dephosphorization method and its device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111091A (en) * 1974-07-19 1976-01-28 Hitachi Chemical Co Ltd ETSUCHINGUHAIEKIKARANO KETSUSHORYUSANDONO KAISHUHOHO
JPS588913B2 (en) * 1975-10-16 1983-02-18 ユニチカ株式会社 Pyrolin Sandwich
JPS5513171A (en) * 1978-07-17 1980-01-30 Mitsubishi Rayon Co Ltd Treatment of phosphorus-containing waste water
JPS5524570A (en) * 1978-08-11 1980-02-21 Ebara Infilco Co Ltd Removing method for phosphates in solution
JPS5678680A (en) * 1979-12-03 1981-06-27 Kurita Water Ind Ltd Treatment for water containing fluoride ion
JPS60248288A (en) * 1984-05-23 1985-12-07 Asahi Glass Co Ltd Treatment of waste water from mine
JPS6193893A (en) * 1984-10-15 1986-05-12 Ebara Infilco Co Ltd Removal of phosphorus in liquid
JPH069679B2 (en) * 1985-05-21 1994-02-09 三菱重工業株式会社 Method for removing fluorine in flue gas desulfurization wastewater
JPH0489315A (en) * 1990-07-30 1992-03-23 Toagosei Chem Ind Co Ltd Method for recovering copper sulfate and alkali chloride from aqueous copper chloride solution containing hydrochoric acid
JP3994227B2 (en) * 1996-03-27 2007-10-17 栗田工業株式会社 Treatment method for concentrated phosphoric acid-containing wastewater
JP3880190B2 (en) * 1998-02-26 2007-02-14 株式会社荏原製作所 Method and apparatus for treating manganese-containing water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309464A (en) * 1998-04-28 1999-11-09 Mitsubishi Heavy Ind Ltd Crystallization dephosphorization method and its device

Also Published As

Publication number Publication date
JP2002035765A (en) 2002-02-05

Similar Documents

Publication Publication Date Title
JP6091033B2 (en) Water treatment method and water treatment system
CN104140174A (en) Combined treatment method for ammonia chloride waste water through rare earth extraction separation
TWI383958B (en) Wastewater treatment methods
JP4519485B2 (en) Phosphorus recovery method and apparatus
JP2001096281A (en) Method of recovering desalted water from fluorine- containing waste water
JP4660247B2 (en) Water treatment method and apparatus
JP4542679B2 (en) Method for removing target component from water to be treated and crystallization apparatus
JP3908585B2 (en) Treatment method for fluorine-containing wastewater
JP2007262443A (en) Sodium chloride electrolisis method
JP5217883B2 (en) Method and apparatus for treating phosphoric acid, nitric acid and water containing organic acid
JP3399276B2 (en) Treatment method for fluorine-containing wastewater
CN111099773A (en) Desulfurization wastewater treatment method and system
JP4568391B2 (en) Fluidized bed crystallization reactor
JP4139600B2 (en) Treatment method of wastewater containing fluorine
JP5032784B2 (en) Sodium chloride production system
JP4669625B2 (en) Crystallization reactor equipped with crystallization reaction component recovery means
JP2002035766A (en) Method for removing fluorine and phosphorus in wastewater
JP2002292201A (en) Crystallization reaction apparatus provided with means for vaporizing/concentrating treated water
JP3918294B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP2002292201A5 (en)
JP4370745B2 (en) Method for treating fluorine-containing water containing phosphate ions
JP3921922B2 (en) Dephosphorization method
JPH0315512B2 (en)
JP3622407B2 (en) Water treatment method
JP2002292202A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Ref document number: 4542679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term