JP4519485B2 - Phosphorus recovery method and apparatus - Google Patents

Phosphorus recovery method and apparatus Download PDF

Info

Publication number
JP4519485B2
JP4519485B2 JP2004060413A JP2004060413A JP4519485B2 JP 4519485 B2 JP4519485 B2 JP 4519485B2 JP 2004060413 A JP2004060413 A JP 2004060413A JP 2004060413 A JP2004060413 A JP 2004060413A JP 4519485 B2 JP4519485 B2 JP 4519485B2
Authority
JP
Japan
Prior art keywords
calcium
phosphorus
calcium phosphate
concentration
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004060413A
Other languages
Japanese (ja)
Other versions
JP2005246249A (en
Inventor
和彰 島村
俊博 田中
英之 石川
Original Assignee
荏原エンジニアリングサービス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荏原エンジニアリングサービス株式会社 filed Critical 荏原エンジニアリングサービス株式会社
Priority to JP2004060413A priority Critical patent/JP4519485B2/en
Publication of JP2005246249A publication Critical patent/JP2005246249A/en
Application granted granted Critical
Publication of JP4519485B2 publication Critical patent/JP4519485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

本発明は、上水、下水、し尿系汚水、工業用水、工場廃水、その他あらゆる液体中に存在するリン酸塩類を除去する方法及び装置に関し、特に、安価な薬剤を用いつつも処理性能を低下させることのないリンの回収方法及び装置に関する。   The present invention relates to a method and an apparatus for removing phosphates present in water, sewage, human waste sewage, industrial water, factory wastewater, and other liquids, and in particular, the treatment performance is lowered while using inexpensive chemicals. The present invention relates to a method and an apparatus for recovering phosphorus that is not allowed to occur.

一般に自然水系に排出される上記の各種液体中には、無機性のリン酸塩としてオルトリン酸塩や各種の縮合リン酸塩、更に有機性のリン酸塩などが様々な状態で存在しており、これらのリン酸塩類の存在が湖沼、内海、内湾などの閉鎖性水域のあおこ、赤潮発生の誘起因子となっている。更に各種の用水として使用する場合に装置、配管内に生物学的なスライムが発生し、また、化学的なスケールが形成されて、事故発生の重大な原因となっている。   In general, the various liquids discharged into natural water systems contain orthophosphates, various condensed phosphates, and organic phosphates in various states as inorganic phosphates. The presence of these phosphates has been a trigger for the occurrence of red tides in closed waters such as lakes, inland seas, and inner bays. Furthermore, when it is used as various types of irrigation water, biological slime is generated in the apparatus and piping, and a chemical scale is formed, which is a serious cause of accidents.

特に、下水処理場において、生汚泥や余剰汚泥を濃縮する際に生じる分離水、汚泥を脱水した脱離液中には高濃度のリン酸塩が含まれており、これらの廃水が水処理系に返送されると、水処理系で取りきれなくなったリン酸塩が自然水系に放流され、上記の問題を助長している。従って、これら廃水中に存在するリン酸塩類を除去する必要から、各種のリン除去方法が検討されているが、その一つとして、晶析技術を用いたリンの除去技術が提案されている。特に充填塔内にリン酸塩鉱物を充填させて、原水中のリン酸塩類と添加したカルシウム及びアルカリ剤によって、前記リン酸塩鉱物表面でリン酸カルシウムを析出させ、リンを除去している。   In particular, the separation water produced when concentrating raw sludge and excess sludge at the sewage treatment plant, and the desorbed liquid from which the sludge has been dehydrated contain high concentrations of phosphate. When it is returned to, the phosphate that cannot be removed by the water treatment system is discharged into the natural water system, which promotes the above problem. Accordingly, various phosphorus removal methods have been studied because of the need to remove phosphates present in the wastewater, and as one of them, a phosphorus removal technique using a crystallization technique has been proposed. In particular, a phosphate mineral is packed in a packed tower, and calcium phosphate is precipitated on the phosphate mineral surface by phosphates in raw water and added calcium and an alkaline agent to remove phosphorus.

特許文献1には、リン酸カルシウムを含有するリン酸塩鉱物の充填塔に原水をそのpHを6.0以上としてカルシウム剤を添加して通液することにより液中に存在するリン酸塩類を除去するに際し、前記充填塔より流出する液の一部を充填塔へ循環せしめると共に前記カルシウム剤を前記充填塔に直接あるいはその直前において注入することを特徴とする液中リン酸塩類の除去方法が示されている。
また、特許文献2には、リン酸カルシウムを含有する脱リン材を流動化せしめた層にリン含有水廃水を通液して、カルシウムイオンの存在下で液中のリンを除去する方法において、脱リン材の流動層内の上部でpHを検知し、流動層内の下部にアルカリ剤を注入して層内のpHを8.5〜11.0の範囲に保持するように調整しながら処理することを特徴とする液中のリン酸塩の除去方法が示されている。
In Patent Document 1, phosphates present in a liquid are removed by passing raw water through a packed column of phosphate mineral containing calcium phosphate with a calcium agent added at a pH of 6.0 or higher. In this case, a method for removing phosphates in the liquid is shown in which a part of the liquid flowing out from the packed tower is circulated to the packed tower and the calcium agent is injected directly or immediately before the packed tower. ing.
Patent Document 2 discloses a method in which phosphorus-containing water wastewater is passed through a layer obtained by fluidizing a dephosphorization material containing calcium phosphate to remove phosphorus in the solution in the presence of calcium ions. Detecting pH at the upper part of the fluidized bed of the material and injecting an alkaline agent into the lower part of the fluidized bed to adjust the pH in the range of 8.5 to 11.0. A method for removing phosphate in a liquid characterized by the above is shown.

リン含有排水を反応晶析槽内に導入し、カルシウム化合物及び/又はアルカリ剤を添加すると共にリン酸カルシウムを含有する結晶種の流動床を形成しながら前記リン含有排水中のリンと前記結晶種とを接触させて、前記リン含有排水中のリンをリン酸カルシウム化合物として分離する晶析脱リン方法において、前記反応晶析槽内に導入されるリン含有排水の流量に応じて前記反応晶析槽内に注入するカルシウム化合物及び/又はアルカリ剤の量をフィードフォワード制御する晶析脱リン方法が提案されている。
さらに、晶析対象成分を含む原水と、水酸化カルシウム含有液とを晶析反応槽に供給し、晶析反応槽の内部の種晶上に、晶析対象成分とカルシウムとの反応物を析出させることにより、晶析対象成分が低減された処理水を生じさせる晶析処理方法において、水酸化カルシウム含有液が、水酸化カルシウムに酸を添加して得られた、pH9以下の前記含有液である晶析処理方法が提供され、この晶析処理方法により、pHが調整されていない水酸化カルシウムスラリーを使用する場合に比べて、処理水中の晶析対象成分濃度の顕著な低減、および良好かつ安定的な晶析処理の継続を可能にする手段が提案されている。
Phosphorus-containing wastewater is introduced into the reaction crystallization tank, and calcium in the phosphorus-containing wastewater and the crystal seeds are added while forming a fluidized bed of crystal seeds containing calcium phosphate while adding a calcium compound and / or an alkaline agent. In the crystallization dephosphorization method for contacting and separating phosphorus in the phosphorus-containing wastewater as a calcium phosphate compound, injection into the reaction crystallization tank according to the flow rate of the phosphorus-containing wastewater introduced into the reaction crystallization tank A crystallization dephosphorization method has been proposed in which the amount of calcium compound and / or alkali agent to be fed is feedforward controlled.
Furthermore, the raw water containing the crystallization target component and the calcium hydroxide-containing liquid are supplied to the crystallization reaction tank, and the reaction product of the crystallization target component and calcium is deposited on the seed crystal inside the crystallization reaction tank. In the crystallization treatment method for producing treated water with reduced crystallization target components, the calcium hydroxide-containing liquid is the above-mentioned containing liquid having a pH of 9 or less obtained by adding an acid to calcium hydroxide. A certain crystallization treatment method is provided, and this crystallization treatment method provides a significant reduction in the concentration of the component to be crystallized in the treated water as compared with the case of using a calcium hydroxide slurry whose pH is not adjusted, and is good and Means have been proposed that allow stable crystallization to continue.

このような脱リン方法を適用すれば、リン酸カルシウムが晶析した脱リン材の分離、脱水が極めて容易であり、従来のような化学的凝集沈殿法によるいわゆる凝沈汚泥と比較すると、濃縮装置、脱水機、乾燥機などの従来技術による汚泥処理施設をまったく必要としないだけでなく、リンを資源として再利用が容易な状態で回収することが可能である。   If such a dephosphorization method is applied, separation and dehydration of the dephosphorization material in which calcium phosphate is crystallized are extremely easy. Compared with a so-called coagulation sludge by a chemical coagulation precipitation method as in the past, Not only do sludge treatment facilities of the prior art such as dehydrators and dryers are not required, but it is possible to collect phosphorus in a state where it can be easily reused as a resource.

特開昭53−101842号公報JP-A-53-101842 特開昭60−168587号公報Japanese Patent Application Laid-Open No. 60-1658587

しかしながら、今までに述べた従来の流動層式脱リン方法では以下のような問題があった。
(a)カルシウム剤とアルカリ剤の添加位置が異なるため、装置を大型化した場合に、両薬品の良好な混合状態が得られ難く、反応効率を低下させていた。
(b)高濃度のアルカリ剤を直接リアクターに注入した場合に、アルカリ剤の拡散がうまく行かず、局所的な過飽和度の生成によって、微細なリン酸カルシウムが生成し、それらは処理水と共に流出し回収率が低下した。
(c)リアクター上部でpHを検知し、アルカリ剤をリアクター底部に注入するため、注入したアルカリ剤がpH計に検知されるまでにタイムラグが生じていた。その結果、リアクター内のpHに変動があり、それに伴って処理水質も時間変動した。
(d)消石灰など難溶性のカルシウム剤を用いた場合、添加量が多いと溶解しきれずに処理水と共に流出し薬品コストの増加や処理水質の悪化を招いた。
(e)原水リン濃度が変動すると、薬品の添加量が多すぎたり少な過ぎたりして、処理水質が変動した。
従って、本発明が解決しようとする課題は、上記の問題点を解決し、安価な薬剤を用いつつも処理性能を低下させることのない廃液中のリンの回収方法及び装置を提供することにある。
However, the conventional fluidized bed dephosphorization methods described so far have the following problems.
(A) Since the addition positions of the calcium agent and the alkali agent are different, when the apparatus is enlarged, it is difficult to obtain a good mixed state of both chemicals, and the reaction efficiency is lowered.
(B) When a high concentration alkaline agent is directly injected into the reactor, the diffusion of the alkaline agent is not successful, and the generation of local supersaturation produces fine calcium phosphate, which flows out and is recovered with the treated water. The rate fell.
(C) Since the pH was detected at the top of the reactor and the alkaline agent was injected into the bottom of the reactor, there was a time lag until the injected alkaline agent was detected by the pH meter. As a result, the pH in the reactor fluctuated, and the treated water quality fluctuated with time.
(D) When a poorly soluble calcium agent such as slaked lime is used, if the added amount is large, it cannot be completely dissolved and flows out with the treated water, resulting in an increase in chemical costs and a deterioration in the treated water quality.
(E) When the raw water phosphorus concentration fluctuated, the amount of chemical added was too much or too little, and the quality of the treated water fluctuated.
Accordingly, the problem to be solved by the present invention is to provide a method and an apparatus for recovering phosphorus in waste liquid that solves the above-mentioned problems and does not deteriorate the processing performance while using an inexpensive drug. .

本発明は、下記の手段により上記の課題を解決した。
(1)リンを含む廃水をカルシウム化合物含有液とリン酸カルシウム晶析反応槽に供給して、リン酸カルシウムを析出させる廃水中のリンの回収方法において、前記リンを含む廃水を前記リン酸カルシウム晶析反応槽の底部に導入し、前記リン酸カルシウム晶析反応槽の流出水の一部にスラリー状及び/或いは固体であって難溶性のカルシウム化合物を添加すると共に、該カルシウム化合物が添加された液のpHを検出して、検出されたpH値に応じてpH調整剤を供給してpHを調整した後、カルシウム濃度及びpHが調整された循環水を前記リン酸カルシウム晶析反応槽の底部に返送することを特徴とするリンの回収方法。
(2)リンを含む廃水の濃度を測定し、該リン濃度の値に応じて前記カルシウム化合物の添加量を制御すると共に、前記リン酸カルシウム晶析反応槽の流出水のオルトリン酸濃度を10mg/リットル以下とすることを特徴とする前記(1)記載のリンの回収方法。
(3)前記カルシウム化合物が、水酸化カルシウム又は酸化カルシウムであることを特徴とする前記(1)又は(2)に記載のリンの回収方法。
(4)リンを含む廃水をカルシウム化合物含有液とリン酸カルシウム晶析反応槽に供給して、リン酸カルシウムを析出させる廃水中のリンの回収装置において、前記リンを含む廃水を前記リン酸カルシウム晶析反応槽の底部に導入する廃水導入口と、前記リン酸カルシウム晶析反応槽の流出水の一部が循環する循環水槽と、前記循環水槽にスラリー状及び/或いは固体であって難溶性のカルシウム化合物を添加する添加手段と、該カルシウム化合物が添加された循環水槽内の液のpHを検出するpH検出装置、pH調整剤を前記循環水槽に供給する供給装置と、前記検出されたpH値に応じて前記pH調整剤の供給量を制御する制御装置とカルシウム濃度及びpHが調整された前記循環水を前記リン酸カルシウム晶析反応槽の底部に返送する配管とを備えたことを特徴とするリンの回収装置。
(5)前記制御装置は、リンを含む廃水のリンの濃度を測定する測定装置により検出されたリン濃度に応じて前記カルシウム化合物の添加量を制御することを特徴とする前記(4)に記載のリンの回収装置。
The present invention has solved the above problems by the following means.
(1) In a method for recovering phosphorus in wastewater by supplying wastewater containing phosphorus to a calcium compound-containing liquid and a calcium phosphate crystallization reaction tank to precipitate calcium phosphate, the wastewater containing phosphorus is removed from the bottom of the calcium phosphate crystallization reaction tank In addition, a slurry and / or solid and hardly soluble calcium compound is added to a part of the effluent of the calcium phosphate crystallization reaction tank, and the pH of the solution to which the calcium compound is added is detected. And adjusting the pH by supplying a pH adjuster according to the detected pH value, and then returning the circulating water adjusted in calcium concentration and pH to the bottom of the calcium phosphate crystallization reaction tank. Recovery method.
(2) Phosphorus determine the concentration of the wastewater containing, together in accordance with the value of the phosphorus concentration to control the amount of the calcium compound, orthophosphoric acid concentration of the effluent water of the calcium phosphate crystallization reaction tank 10mg / l or less The method for recovering phosphorus according to (1) above, wherein
(3) The method for recovering phosphorus according to (1) or (2), wherein the calcium compound is calcium hydroxide or calcium oxide.
(4) Supplying waste water containing phosphorus to a calcium compound-containing liquid and a calcium phosphate crystallization reaction tank, and collecting phosphorus in waste water to precipitate calcium phosphate, the waste water containing phosphorus is the bottom of the calcium phosphate crystallization reaction tank A waste water introduction port to be introduced into the circulating water tank, a circulating water tank in which a part of the effluent of the calcium phosphate crystallization reaction tank circulates, and an addition means for adding a slurry-like and / or solid and hardly soluble calcium compound to the circulating water tank A pH detecting device for detecting the pH of the liquid in the circulating water tank to which the calcium compound is added, a supply device for supplying a pH adjusting agent to the circulating water tank, and the pH adjusting agent according to the detected pH value A controller for controlling the supply amount of the water and the circulating water whose calcium concentration and pH are adjusted are returned to the bottom of the calcium phosphate crystallization reaction tank Phosphorus recovery apparatus is characterized in that a tube.
(5) The said control apparatus controls the addition amount of the said calcium compound according to the phosphorus concentration detected by the measuring apparatus which measures the density | concentration of the phosphorus of the wastewater containing phosphorus, The said (4) characterized by the above-mentioned. Phosphorus recovery equipment.

本発明によれば、廃水中のリンをリン酸カルシウムで回収する方法において、リン酸カルシウム晶析反応槽の流出水の一部にスラリー状及び/或いは固体のカルシウム化合物を添加すると共に、カルシウム化合物が添加された液のpHを検出して、検出されたpH値に応じてpH調整剤を供給してpHを調整し、このカルシウム化合物を添加し、pHを調整した液を前記リン酸カルシウム晶析反応槽に返送して循環し、且つ原水のリン濃度を測定し、リン濃度の値に応じて前記液へのカルシウム化合物の添加量を制御することで、安価な薬剤を用いつつも処理性能を低下させることのないリン回収方法及び装置を提供することができた。   According to the present invention, in a method for recovering phosphorus in wastewater with calcium phosphate, a slurry and / or solid calcium compound is added to a part of the effluent of the calcium phosphate crystallization reaction tank, and the calcium compound is added. The pH of the liquid is detected, a pH adjuster is supplied according to the detected pH value, the pH is adjusted, this calcium compound is added, and the pH adjusted liquid is returned to the calcium phosphate crystallization reaction tank. Circulate and measure the phosphorus concentration of raw water and control the amount of calcium compound added to the liquid according to the value of phosphorus concentration, so that the processing performance is not lowered while using an inexpensive drug A phosphorus recovery method and apparatus could be provided.

本発明を実施するための最良の形態を図面を参照して詳細に説明する。
なお、実施の形態および実施例を説明する全図において、同一機能を有する構成要素は同一の符号を付けて説明する。
The best mode for carrying out the present invention will be described in detail with reference to the drawings.
Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments and examples.

図1は、本発明を実施する処理系の一形態を示し、リン酸カルシウム晶析槽1、循環水調整槽2からなる。なお、ここでいう「リン酸カルシウム」とは、リン酸とカルシウムからなる結晶性化合物の総称であり、リン酸1カルシウムやリン酸3カルシウム、ヒドロキシアパタイトなどを示す。リン酸カルシウム晶析槽1には、原水供給管3と循環水4の供給管5、処理水6の流出管7、製品結晶抜き出し管8が接続されている。循環水調整槽2には、処理水6の一部を引き込む引込管9、スラリー状及び/或いは固体のカルシウム化合物10の供給管11、pH調整剤12の供給管13、pH計14、循環水4の供給管5が接続されている。   FIG. 1 shows an embodiment of a treatment system for carrying out the present invention, which includes a calcium phosphate crystallization tank 1 and a circulating water adjustment tank 2. The term “calcium phosphate” here is a general term for crystalline compounds composed of phosphoric acid and calcium, and refers to monocalcium phosphate, tricalcium phosphate, hydroxyapatite, and the like. A raw water supply pipe 3, a supply pipe 5 for circulating water 4, an outflow pipe 7 for treated water 6, and a product crystal extraction pipe 8 are connected to the calcium phosphate crystallization tank 1. In the circulating water adjustment tank 2, a drawing pipe 9 for drawing a part of the treated water 6, a supply pipe 11 for a slurry and / or solid calcium compound 10, a supply pipe 13 for a pH adjusting agent 12, a pH meter 14, circulating water 4 supply pipes 5 are connected.

添加する薬品は、スラリー状及び/或いは固体のカルシウム化合物10として、水酸化カルシウム、石膏、炭酸カルシウム、酸化カルシウムなどを用いる。いわゆる難溶性のカルシウム化合物であり、市水や鉱酸などで一部は溶解したスラリー状態及び/或いは固体の状態で供給する。pH調整剤12には硫酸、塩酸、苛性ソーダなどを用いることができる。本発明の実施の形態では、カルシウム化合物10として水酸化カルシウム、pH調整剤として硫酸を用いる。   As the chemical to be added, calcium hydroxide, gypsum, calcium carbonate, calcium oxide or the like is used as the slurry-like and / or solid calcium compound 10. It is a so-called poorly soluble calcium compound, and is supplied in a slurry state and / or a solid state that is partially dissolved with city water or mineral acid. As the pH adjuster 12, sulfuric acid, hydrochloric acid, caustic soda and the like can be used. In the embodiment of the present invention, calcium hydroxide is used as the calcium compound 10 and sulfuric acid is used as the pH adjuster.

リン酸カルシウム晶析槽1には、予め種晶を所定の高さとなるように充填させる。種晶は、カルシウム含有粒状物質が好ましく、リン鉱石、骨炭、石灰岩、大理石、サンゴ砂、石膏、ドロマイトなどが使用できる。粒径は、0.1mm〜3.0mm、好ましくは0.1〜1.0mmのものが好ましい。ここでは、骨炭を用いた場合を説明する。リン酸カルシウム晶析槽1は、固定槽でも流動層でもよい。以下流動層を例にとって説明する。   The calcium phosphate crystallization tank 1 is previously filled with seed crystals so as to have a predetermined height. The seed crystal is preferably a calcium-containing granular material, and phosphate ore, bone charcoal, limestone, marble, coral sand, gypsum, dolomite and the like can be used. The particle diameter is 0.1 mm to 3.0 mm, preferably 0.1 to 1.0 mm. Here, a case where bone charcoal is used will be described. The calcium phosphate crystallization tank 1 may be a fixed tank or a fluidized bed. Hereinafter, a fluidized bed will be described as an example.

原水15及び循環水4はリン酸カルシウム晶析槽1の底部より、上向流で連続通水される。原水15が骨炭層を通過する間に、原水中のリン及び循環水中のカルシウムとアルカリの反応により、骨炭の表面でリン酸カルシウムを生成し、原水中のリンの除去がなされる。リン濃度をより低くするには反応pHを高くしたり、反応時のカルシウム濃度を高くする必要がある。リン酸カルシウム晶析槽1でリン酸カルシウムが晶析した骨炭の一部を適時引き抜くことで、リンを回収する。この際、骨炭層の充填高さを低くなり過ぎないようにする。図面の説明では、リアクター底部より回収しているが、エアリフトポンプを利用して取り出すようにしてもよい。
循環水調整槽2は、処理水6の一部9を導入してそれに水酸化カルシウムを溶解させる。通常処理水にはカルシウムが残存しており、処理水を用いて水酸化カルシウムを溶解することでカルシウム化合物の使用量が低減する。水酸化カルシウムの溶解によってカルシウムイオン濃度及びアルカリ濃度が高くなった溶液を循環水4としてリン酸カルシウム晶析槽1に返送する。水酸化カルシウムの添加は間欠的でも連続的でもよい。
The raw water 15 and the circulating water 4 are continuously passed upward from the bottom of the calcium phosphate crystallization tank 1. While the raw water 15 passes through the bone charcoal layer, calcium phosphate is generated on the surface of the bone charcoal by the reaction between phosphorus in the raw water and calcium in the circulating water and alkali, and phosphorus in the raw water is removed. In order to lower the phosphorus concentration, it is necessary to increase the reaction pH or to increase the calcium concentration during the reaction. Phosphorus is recovered by drawing out a part of bone charcoal crystallized with calcium phosphate in the calcium phosphate crystallization tank 1 in a timely manner. At this time, the filling height of the bone charcoal layer should not be too low. In the description of the drawings, the fuel is recovered from the bottom of the reactor, but may be extracted using an air lift pump.
The circulating water adjustment tank 2 introduces a part 9 of the treated water 6 and dissolves calcium hydroxide therein. Usually, calcium remains in the treated water, and the amount of calcium compound used is reduced by dissolving calcium hydroxide using the treated water. A solution in which the calcium ion concentration and the alkali concentration are increased by dissolution of calcium hydroxide is returned to the calcium phosphate crystallization tank 1 as circulating water 4. The addition of calcium hydroxide may be intermittent or continuous.

ところで、水酸化カルシウムを添加しただけでは以下のような不具合があった。
1)水酸化カルシウムなどの難溶性のカルシウム化合物は溶解速度が遅く、また、高濃度では一部が溶解するだけで大部分は固体として存在しスラリー状となった。溶解しなかったカルシウム化合物は、リン酸カルシウムの晶析反応に寄与することなく、処理水と共に流出し薬品コストの増加につながっていた。
2)水酸化カルシウムの溶解によって生じるアルカリによって、リン酸カルシウム晶析槽内のpHが所定のpHよりも高くなる場合がある。高pHでは、処理水のオルトリン酸濃度がより低下する一方で、微細なリン酸カルシウムを生成する。微細なリン酸カルシウムは十分な沈降速度がなく、処理水と共に流出するため、リン回収率は低下する。また、カルシウム源に石膏を用いた場合では、石膏の溶解によって生じる硫酸によって、pHが低下してしまい、リン酸カルシウムの晶析が進まなくなる場合があった。
3)従来、原水のリン濃度の変動に水酸化カルシウムの添加量が追従できず、処理水質が変動した。特に水酸化カルシウムの添加が過大となると、微細なリン酸カルシウムが多数析出し回収率が低下した。また、添加量が過少であると、処理水にオルトリン酸が残留し、同様に回収率は低下した。
By the way, just adding calcium hydroxide has the following problems.
1) A hardly soluble calcium compound such as calcium hydroxide has a low dissolution rate, and at a high concentration, only a part of the compound is dissolved, and most of the compound exists as a solid and becomes a slurry. The calcium compound that did not dissolve out flowed with the treated water without contributing to the crystallization reaction of calcium phosphate, leading to an increase in chemical cost.
2) The pH in the calcium phosphate crystallization tank may be higher than a predetermined pH due to alkali generated by dissolution of calcium hydroxide. At high pH, the concentration of orthophosphoric acid in the treated water is further decreased while fine calcium phosphate is generated. Fine calcium phosphate does not have a sufficient sedimentation rate and flows out together with the treated water, so that the phosphorus recovery rate decreases. Further, when gypsum is used as a calcium source, the pH is lowered by sulfuric acid generated by dissolution of gypsum, and crystallization of calcium phosphate may not proceed.
3) Conventionally, the amount of calcium hydroxide added could not follow the fluctuation of the phosphorus concentration of raw water, and the quality of the treated water fluctuated. In particular, when the amount of calcium hydroxide added was excessive, a large amount of fine calcium phosphate precipitated and the recovery rate decreased. Moreover, when the addition amount was too small, orthophosphoric acid remained in the treated water, and the recovery rate similarly decreased.

本発明では、原水のリン濃度を測定し、リン濃度の値に応じて前記カルシウム化合物の添加量を制御する。カルシウム化合物の添加量(原水1リットル当たり)は(1)式のように、原水濃度に比例して増大させると共に、処理水のリン濃度を10mg/リットル以下、好ましくは5mg/リットル以下とするために処理水に50〜200mg/リットル程度残留させる。なお、処理水のリン濃度が高いと循環調整槽で微細なリン酸カルシウムが多数析出し回収率が低下する。   In this invention, the phosphorus concentration of raw | natural water is measured and the addition amount of the said calcium compound is controlled according to the value of phosphorus concentration. The amount of calcium compound added (per liter of raw water) is increased in proportion to the raw water concentration and the treated water phosphorus concentration is 10 mg / liter or less, preferably 5 mg / liter or less, as shown in equation (1). To about 50 to 200 mg / liter in the treated water. In addition, when the phosphorus concentration of treated water is high, many fine calcium phosphates will precipitate in a circulation adjustment tank, and a recovery rate will fall.

カルシウム化合物の添加量(mg/リットル−原水)
=(Cp×40/31×10/6)+(50〜200)−(Cca)・・・(1)
本発明では、循環水調整槽2にpH計14を設置し、処理水6に水酸化カルシウムを添加すると共に硫酸を添加し、水酸化カルシウムを溶解させると共に、循環水調整槽2内のpHが所定のpHとなるように調整する。所定のpHとは、処理水6が所望のオルトリン酸濃度になるようにすると共に、微細なリン酸カルシウムが析出しないように設定することが好ましい。所望のオルトリン酸濃度を得るためのpHは、オルトリン酸を10mg/リットル以下でpHを7.5以上、同じく5mg/リットル以下で8.0以上、同じく1mg/リットル以下で8.5以上とする。
同様にカルシウム化合物の添加によって、pHが低下してしまう場合は、pH調整剤12としてアルカリを添加する。
Amount of calcium compound added (mg / liter-raw water)
= (Cp × 40/31 × 10/6) + (50 to 200) − (Cca) (1)
In the present invention, a pH meter 14 is installed in the circulating water adjustment tank 2, calcium hydroxide is added to the treated water 6 and sulfuric acid is added to dissolve the calcium hydroxide, and the pH in the circulating water adjustment tank 2 is adjusted. Adjust to a predetermined pH. The predetermined pH is preferably set so that the treated water 6 has a desired orthophosphoric acid concentration and fine calcium phosphate does not precipitate. The pH for obtaining a desired orthophosphoric acid concentration is 10 mg / liter or less for orthophosphoric acid, pH 7.5 or more, similarly 5 mg / liter or less is 8.0 or more, and 1 mg / liter or less is 8.5 or more. .
Similarly, when the pH is lowered by the addition of the calcium compound, an alkali is added as the pH adjuster 12.

本発明では、循環ラインでカルシウム塩濃度の調整及びpH調整をすることで、比較的低濃度でカルシウム及びアルカリをリアクターに供給することが可能となる。循環水4は水量が原水量に比較し0.5〜20倍と多い条件を設定することにより、リン酸カルシウム晶析槽内でのカルシウム及びpH調整剤12の拡散性が良好となる。その結果、高過飽和度となることなく原水15のリンと良好に混合し、回収率低下を防ぐことができる。   In the present invention, it is possible to supply calcium and alkali to the reactor at a relatively low concentration by adjusting the calcium salt concentration and adjusting the pH in the circulation line. The circulating water 4 has a water amount that is 0.5 to 20 times larger than that of the raw water, so that the diffusibility of calcium and the pH adjuster 12 in the calcium phosphate crystallization tank is improved. As a result, it is possible to mix well with phosphorus in the raw water 15 without high supersaturation, and to prevent a reduction in the recovery rate.

以下において、本発明を実施例により更に詳細に説明するが、本発明の範囲はこれらの実施例により限定されるものではない。   In the following, the present invention will be described in more detail by way of examples, but the scope of the present invention is not limited by these examples.

実施例1
実施例1では、図1に示すような処理フローを用いて、余剰汚泥を浮上分離した際の分離水からリンをリン酸カルシウムとして回収した。処理装置は、リン酸カルシウム晶析槽1、循環水調整槽2からなり、リン酸カルシウム晶析槽1の高さは4.5mである。カルシウム源には水酸化カルシウム、pH調整剤12には硫酸を用いた。硫酸の添加は、循環水調整槽2に設置されたpH計14より検出されたpH値に応じて、オン−オフ制御した。また、水酸化カルシウムの添加は、原水15のリン濃度に応じて添加量を制御した。
リン酸カルシウム晶析槽1内には予め平均粒径が0.7mmの骨炭を2.5mの高さに充填した。原水15及び循環水4は上向流で通水し骨炭を流動させた。処理水6の一部9を調整槽2に引き込み、水酸化カルシウム及び硫酸を添加した液を循環水4とした。水酸化カルシウムの添加量は原水流量に対し150mg−Ca/リットルとした。原水のT−Pは40mg/リットルで、処理水のT−Pは5mg/リットル、PO−Pは2mg/リットルであった。リン回収率は88%であった。
Example 1
In Example 1, phosphorus was recovered as calcium phosphate from the separated water when surplus sludge was floated and separated using a treatment flow as shown in FIG. A processing apparatus consists of the calcium phosphate crystallization tank 1 and the circulating water adjustment tank 2, and the height of the calcium phosphate crystallization tank 1 is 4.5 m. Calcium hydroxide was used as the calcium source, and sulfuric acid was used as the pH adjuster 12. The addition of sulfuric acid was on-off controlled according to the pH value detected by the pH meter 14 installed in the circulating water adjustment tank 2. Moreover, the addition amount of calcium hydroxide was controlled in accordance with the phosphorus concentration of the raw water 15.
The calcium phosphate crystallization tank 1 was previously filled with bone charcoal having an average particle size of 0.7 mm to a height of 2.5 m. The raw water 15 and the circulating water 4 were passed in an upward flow to flow bone charcoal. A portion 9 of the treated water 6 was drawn into the adjustment tank 2, and a solution obtained by adding calcium hydroxide and sulfuric acid was used as the circulating water 4. The amount of calcium hydroxide added was 150 mg-Ca / liter with respect to the raw water flow rate. The TP of raw water was 40 mg / liter, the TP of treated water was 5 mg / liter, and PO 4 -P was 2 mg / liter. The phosphorus recovery rate was 88%.

比較例1
図3に示すような処理フローを用いて、余剰汚泥を浮上分離した際の分離水からリンをリン酸カルシウムとして回収した。処理装置は、リン酸カルシウム晶析槽1からなる。カルシウム源には水酸化カルシウム、pH調整剤12には硫酸を用いた。水酸化カルシウム及びpH調整剤12は原水供給管3に定量注入した。原水のT−Pは40mg/リットルで、処理水のT−Pは15mg/リットル、PO−Pは2mg/リットルであった。リン回収率は63%と実施例1と比較して低下した。原水供給管内に薬品を添加したことで、配管内で微細なリン酸カルシウムが析出したため、リン回収率が低下したと考えられる。
Comparative Example 1
Using the treatment flow as shown in FIG. 3, phosphorus was recovered as calcium phosphate from the separated water when surplus sludge was floated and separated. The processing apparatus comprises a calcium phosphate crystallization tank 1. Calcium hydroxide was used as the calcium source, and sulfuric acid was used as the pH adjuster 12. Calcium hydroxide and pH adjuster 12 were quantitatively injected into the raw water supply pipe 3. The TP of raw water was 40 mg / liter, the TP of treated water was 15 mg / liter, and PO 4 -P was 2 mg / liter. The phosphorus recovery rate was 63%, which was lower than that in Example 1. It is thought that the addition of chemicals into the raw water supply pipe caused the precipitation of fine calcium phosphate in the pipe, resulting in a decrease in phosphorus recovery rate.

比較例2
実施例1と比較して原水リン濃度を100mg/リットルとして、処理水質を比較した。水酸化カルシウムの添加量は原水流量に対し200mg−Ca/リットルとした。その他の操作条件は実施例1と同じとした。原水のT−Pは100mg/リットルで、通水開始5日後の処理水のT−Pは30mg/リットル、PO−Pは15mg/リットルであった。このとき、循環水調整槽2のリン濃度は、T−Pは30mg/リットル、PO−Pは8mg/リットルであった。処理水6よりも循環水調整槽2内のPO−Pが低下していることから、水酸化カルシウムを添加することで反応が促進され、循環水調整槽2内で微細なリン酸カルシウムが生成したと考えられる。微細なリン酸カルシウムはリン酸カルシウム晶析槽1から流出したため、処理水T−Pが高くなった。
Comparative Example 2
Compared with Example 1, the raw water phosphorus concentration was 100 mg / liter, and the treated water quality was compared. The amount of calcium hydroxide added was 200 mg-Ca / liter with respect to the raw water flow rate. Other operating conditions were the same as in Example 1. The TP of the raw water was 100 mg / liter, the TP of the treated water 5 days after the start of water flow was 30 mg / liter, and the PO 4 -P was 15 mg / liter. At this time, the phosphorus concentration in the circulating water adjustment tank 2 was 30 mg / liter for TP and 8 mg / liter for PO 4 -P. Since PO 4 -P in the circulating water adjustment tank 2 is lower than the treated water 6, the reaction is promoted by adding calcium hydroxide, and fine calcium phosphate is generated in the circulating water adjustment tank 2. it is conceivable that. Since the fine calcium phosphate flowed out of the calcium phosphate crystallization tank 1, the treated water TP became high.

比較例3
実施例1と比較して原水リン濃度を150mg/リットルにして、処理水質を比較した。水酸化カルシウムの添加量は原水流量に対し300mg−Ca/リットルとした。その他の操作条件は実施例1と同じとした。原水のT−Pは150mg/リットルで、通水開始5日後の処理水のT−Pは75mg/リットル、PO−Pは30mg/リットルであった。このとき、循環水調整槽2のリン濃度は、T−Pは75mg/リットル、PO−Pは20mg/リットルであった。比較例1同様に、循環水調整槽2は、水酸化カルシウムを添加することで、反応が促進され、微細なリン酸カルシウムが生成した。
Comparative Example 3
Compared to Example 1, the raw water phosphorus concentration was 150 mg / liter, and the treated water quality was compared. The amount of calcium hydroxide added was 300 mg-Ca / liter with respect to the raw water flow rate. Other operating conditions were the same as in Example 1. The TP of the raw water was 150 mg / liter, the TP of the treated water 5 days after the start of water flow was 75 mg / liter, and the PO 4 -P was 30 mg / liter. At this time, the phosphorus concentration in the circulating water adjustment tank 2 was 75 mg / liter for TP and 20 mg / liter for PO 4 -P. As in Comparative Example 1, in the circulating water adjustment tank 2, by adding calcium hydroxide, the reaction was accelerated and fine calcium phosphate was generated.

本発明のリンの回収方法及び装置を高濃度のリン酸塩を含む廃水の処理系に適用すると、効率よくリンをリン酸カルシウムとして回収することが出来るので、下水処理場等に於いて実用化される。   When the method and apparatus for recovering phosphorus according to the present invention is applied to a treatment system for wastewater containing a high concentration of phosphate, phosphorus can be efficiently recovered as calcium phosphate, which is practically used in sewage treatment plants and the like. .

本発明の廃水中の脱リンに用いたリン酸カルシウム晶析反応のフローシートを示す図である。It is a figure which shows the flow sheet of the calcium-phosphate crystallization reaction used for the dephosphorization in the wastewater of this invention. 本発明の別の実施態様を示す、廃水中の脱リンに用いたリン酸カルシウム晶析反応のフローシートを示す図である。It is a figure which shows the flow sheet of the calcium-phosphate crystallization reaction used for the dephosphorization in waste water which shows another embodiment of this invention. 従来の、廃水中の脱リンに用いたリン酸カルシウム晶析反応のフローシートの一例を示す図である。It is a figure which shows an example of the flow sheet | seat of the conventional calcium-phosphate crystallization reaction used for the dephosphorization in wastewater.

符号の説明Explanation of symbols

1 リン酸カルシウム晶析槽
2 循環水調整槽
3 原水供給管
4 循環水
5 循環水供給管
6 処理水
7 処理水流出管
8 製品結晶抜出管
9 処理水引込管
10 カルシウム化合物
11 カルシウム化合物の供給管
12 pH調整剤
13 pH調整剤供給管
14 pH計
15 原水
16 原水タンク
17 リン濃度計
DESCRIPTION OF SYMBOLS 1 Calcium phosphate crystallization tank 2 Circulating water adjustment tank 3 Raw water supply pipe 4 Circulating water 5 Circulating water supply pipe 6 Treated water 7 Treated water outflow pipe 8 Product crystal extraction pipe 9 Treated water intake pipe 10 Calcium compound 11 Calcium compound supply pipe 12 pH adjuster 13 pH adjuster supply pipe 14 pH meter 15 Raw water 16 Raw water tank 17 Phosphorus concentration meter

Claims (5)

リンを含む廃水をカルシウム化合物含有液とリン酸カルシウム晶析反応槽に供給して、リン酸カルシウムを析出させる廃水中のリンの回収方法において、前記リンを含む廃水を前記リン酸カルシウム晶析反応槽の底部に導入し、前記リン酸カルシウム晶析反応槽の流出水の一部にスラリー状及び/或いは固体であって難溶性のカルシウム化合物を添加すると共に、該カルシウム化合物が添加された液のpHを検出して、検出されたpH値に応じてpH調整剤を供給してpHを調整した後、カルシウム濃度及びpHが調整された循環水を前記リン酸カルシウム晶析反応槽の底部に返送することを特徴とするリンの回収方法。 In a method for recovering phosphorus in wastewater by supplying wastewater containing phosphorus to a calcium compound-containing liquid and a calcium phosphate crystallization reaction tank to precipitate calcium phosphate, the wastewater containing phosphorus is introduced into the bottom of the calcium phosphate crystallization reaction tank. In addition, a slurry and / or solid and hardly soluble calcium compound is added to a part of the effluent of the calcium phosphate crystallization reaction tank, and the pH of the solution to which the calcium compound is added is detected and detected. A method for recovering phosphorus, comprising adjusting a pH by supplying a pH adjusting agent according to the pH value, and then returning circulating water adjusted in calcium concentration and pH to the bottom of the calcium phosphate crystallization reaction tank . リンを含む廃水の濃度を測定し、該リン濃度の値に応じて前記カルシウム化合物の添加量を制御すると共に、前記リン酸カルシウム晶析反応槽の流出水のオルトリン酸濃度を10mg/リットル以下とすることを特徴とする請求項1記載のリンの回収方法。 The concentration of the waste water containing phosphorus were measured, with according to the value of the phosphorus concentration to control the amount of the calcium compound, the orthophosphate concentration in the effluent of the calcium phosphate crystallization reaction tank to below 10mg / liter The method for recovering phosphorus according to claim 1. 前記カルシウム化合物が、水酸化カルシウム又は酸化カルシウムであることを特徴とする請求項1又は請求項2に記載のリンの回収方法。The method for recovering phosphorus according to claim 1 or 2, wherein the calcium compound is calcium hydroxide or calcium oxide. リンを含む廃水をカルシウム化合物含有液とリン酸カルシウム晶析反応槽に供給して、リン酸カルシウムを析出させる廃水中のリンの回収装置において、前記リンを含む廃水を前記リン酸カルシウム晶析反応槽の底部に導入する廃水導入口と、前記リン酸カルシウム晶析反応槽の流出水の一部が循環する循環水槽と、前記循環水槽にスラリー状及び/或いは固体であって難溶性のカルシウム化合物を添加する添加手段と、該カルシウム化合物が添加された循環水槽内の液のpHを検出するpH検出装置、pH調整剤を前記循環水槽に供給する供給装置と、前記検出されたpH値に応じて前記pH調整剤の供給量を制御する制御装置とカルシウム濃度及びpHが調整された前記循環水を前記リン酸カルシウム晶析反応槽の底部に返送する配管とを備えたことを特徴とするリンの回収装置。The waste water containing phosphorus is supplied to the calcium compound-containing liquid and the calcium phosphate crystallization reaction tank, and the waste water containing phosphorus is introduced into the bottom of the calcium phosphate crystallization reaction tank in the phosphorus recovery apparatus for precipitating calcium phosphate. A waste water introduction port, a circulating water tank in which a part of the effluent of the calcium phosphate crystallization reaction tank circulates, an addition means for adding a slurry and / or solid and poorly soluble calcium compound to the circulating water tank, A pH detection device for detecting the pH of the liquid in the circulating water tank to which the calcium compound is added, a supply device for supplying a pH adjusting agent to the circulating water tank, and a supply amount of the pH adjusting agent according to the detected pH value A control device for controlling the concentration of water and piping for returning the circulating water adjusted in calcium concentration and pH to the bottom of the calcium phosphate crystallization reaction tank; Phosphorus recovery apparatus characterized by comprising. 前記制御装置は、リンを含む廃水のリンの濃度を測定する測定装置により検出されたリン濃度に応じて前記カルシウム化合物の添加量を制御することを特徴とする請求項4に記載のリンの回収装置。The said control apparatus controls the addition amount of the said calcium compound according to the phosphorus concentration detected by the measuring apparatus which measures the density | concentration of the phosphorus of the wastewater containing phosphorus, The collection | recovery of phosphorus of Claim 4 characterized by the above-mentioned. apparatus.
JP2004060413A 2004-03-04 2004-03-04 Phosphorus recovery method and apparatus Expired - Fee Related JP4519485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004060413A JP4519485B2 (en) 2004-03-04 2004-03-04 Phosphorus recovery method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004060413A JP4519485B2 (en) 2004-03-04 2004-03-04 Phosphorus recovery method and apparatus

Publications (2)

Publication Number Publication Date
JP2005246249A JP2005246249A (en) 2005-09-15
JP4519485B2 true JP4519485B2 (en) 2010-08-04

Family

ID=35027246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004060413A Expired - Fee Related JP4519485B2 (en) 2004-03-04 2004-03-04 Phosphorus recovery method and apparatus

Country Status (1)

Country Link
JP (1) JP4519485B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138935A (en) * 2014-03-03 2014-07-31 Mitsui Zosen Environment Engineering Corp Device for recovering phosphorus from phosphorus-containing water
JP2016047534A (en) * 2015-11-12 2016-04-07 三井造船環境エンジニアリング株式会社 Apparatus for recovering phosphorus from phosphorus-containing water

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4829610B2 (en) * 2004-12-28 2011-12-07 財団法人電力中央研究所 Production method of adsorbent mainly composed of hydroxyapatite crystals
JP4647640B2 (en) * 2007-06-29 2011-03-09 オルガノ株式会社 Crystallization reactor and crystallization reaction method
JP2009120449A (en) * 2007-11-16 2009-06-04 Amino Up Chemical Co Ltd Method for producing bioapatite, and method for separating substance having biological activity
JP5139376B2 (en) * 2009-06-25 2013-02-06 オルガノ株式会社 Crystallization reaction method, crystallization reaction apparatus and calcium agent
JP5172882B2 (en) * 2010-03-12 2013-03-27 株式会社東芝 Water treatment equipment
JP5187376B2 (en) * 2010-04-22 2013-04-24 吉澤石灰工業株式会社 Removal agent for heavy metal ions in waste water and method for removing heavy metal ions using the same
JP5656582B2 (en) * 2010-11-19 2015-01-21 メタウォーター株式会社 Method and apparatus for producing calcium phosphate from sludge incineration ash
KR101287111B1 (en) * 2011-04-05 2013-07-17 부천개발 주식회사 Manufacturing method of calcium phosphate using waste water
JP5439439B2 (en) * 2011-07-04 2014-03-12 水ing株式会社 Sludge treatment apparatus, phosphorus production method and sludge treatment method
JP5540034B2 (en) * 2012-03-07 2014-07-02 三井造船環境エンジニアリング株式会社 Phosphorus recovery equipment for phosphorus-containing water
JP6342232B2 (en) * 2014-06-19 2018-06-13 水ing株式会社 Phosphorus recovery apparatus and phosphorus recovery method
JP6500534B2 (en) * 2015-03-20 2019-04-17 日本製鉄株式会社 Method and apparatus for removing phosphorus from water
KR102387660B1 (en) * 2021-10-28 2022-04-19 주식회사 리켐텍 A method for synthesizing hydroxyapatite using sludge that produced during the Li compound manufacturing process and the synthesizing hydroxyapatite thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101842A (en) * 1977-02-17 1978-09-05 Ebara Infilco Co Ltd Removing method of phosphates from liquid
JPS60168587A (en) * 1984-02-14 1985-09-02 Ebara Infilco Co Ltd Fluidized bed type catalytic dephosphorization
JPS61102290U (en) * 1984-12-10 1986-06-30
JPS61153191A (en) * 1984-12-26 1986-07-11 Ebara Infilco Co Ltd Catalytic dephosphorizer
JPS61216795A (en) * 1985-03-19 1986-09-26 Ebara Infilco Co Ltd Treatment of phosphorus-containing waste water
JPS62194497U (en) * 1986-05-30 1987-12-10
JPS6331593A (en) * 1986-07-25 1988-02-10 Ataka Kogyo Kk Removal of phosphate ion in water
JPS63242392A (en) * 1987-03-31 1988-10-07 Tokyo Met Gov Method for removing phosphorus contained in drainage
JP2001129560A (en) * 1999-11-02 2001-05-15 Kurita Water Ind Ltd Method and apparatus for treating phosphorus- containing water
JP2002102602A (en) * 2000-09-29 2002-04-09 Kurita Water Ind Ltd Crystallization reaction device
JP2002526256A (en) * 1998-10-05 2002-08-20 メルク エンド カムパニー インコーポレーテッド Treatment method for metal contaminated water
JP2002273456A (en) * 2001-03-23 2002-09-24 Kurita Water Ind Ltd Dephosphorizing method and device therefor
JP2002292204A (en) * 2001-03-30 2002-10-08 Japan Organo Co Ltd Crystallization reaction apparatus provided with means for controlling amount of raw water to be supplied and crystallization method to use the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101842A (en) * 1977-02-17 1978-09-05 Ebara Infilco Co Ltd Removing method of phosphates from liquid
JPS60168587A (en) * 1984-02-14 1985-09-02 Ebara Infilco Co Ltd Fluidized bed type catalytic dephosphorization
JPS61102290U (en) * 1984-12-10 1986-06-30
JPS61153191A (en) * 1984-12-26 1986-07-11 Ebara Infilco Co Ltd Catalytic dephosphorizer
JPS61216795A (en) * 1985-03-19 1986-09-26 Ebara Infilco Co Ltd Treatment of phosphorus-containing waste water
JPS62194497U (en) * 1986-05-30 1987-12-10
JPS6331593A (en) * 1986-07-25 1988-02-10 Ataka Kogyo Kk Removal of phosphate ion in water
JPS63242392A (en) * 1987-03-31 1988-10-07 Tokyo Met Gov Method for removing phosphorus contained in drainage
JP2002526256A (en) * 1998-10-05 2002-08-20 メルク エンド カムパニー インコーポレーテッド Treatment method for metal contaminated water
JP2001129560A (en) * 1999-11-02 2001-05-15 Kurita Water Ind Ltd Method and apparatus for treating phosphorus- containing water
JP2002102602A (en) * 2000-09-29 2002-04-09 Kurita Water Ind Ltd Crystallization reaction device
JP2002273456A (en) * 2001-03-23 2002-09-24 Kurita Water Ind Ltd Dephosphorizing method and device therefor
JP2002292204A (en) * 2001-03-30 2002-10-08 Japan Organo Co Ltd Crystallization reaction apparatus provided with means for controlling amount of raw water to be supplied and crystallization method to use the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138935A (en) * 2014-03-03 2014-07-31 Mitsui Zosen Environment Engineering Corp Device for recovering phosphorus from phosphorus-containing water
JP2016047534A (en) * 2015-11-12 2016-04-07 三井造船環境エンジニアリング株式会社 Apparatus for recovering phosphorus from phosphorus-containing water

Also Published As

Publication number Publication date
JP2005246249A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP4519485B2 (en) Phosphorus recovery method and apparatus
EP1593417A1 (en) Method and apparatus for removing ion in fluid by crystallization
KR20170093783A (en) Method for treating an effluent supersaturated with calcium carbonate in the presence of phosphonate precipitation-inhibiting products
US20060196835A1 (en) Method and apparatus for removing ions in liquid through crystallization method
JP3977757B2 (en) Dephosphorization method of waste water
JP4871384B2 (en) Treatment equipment for phosphorus-containing wastewater
JP4097910B2 (en) Method and apparatus for removing phosphorus
JPH11267665A (en) Dephosphorizing device
JP5808638B2 (en) Method and apparatus for treating wastewater containing high concentration calcium and alkali
JP4368159B2 (en) Method for treating wastewater containing phosphate
JP3921922B2 (en) Dephosphorization method
JPS60168587A (en) Fluidized bed type catalytic dephosphorization
JP4147609B2 (en) Dephosphorization device
JP2000334474A (en) Method for removing phosphorus from waste water
JP2008183562A (en) Dephosphorization apparatus
JP5222596B2 (en) Crystallization reactor
JP2005254053A (en) Method and apparatus for recovering phosphorus
JP2002292202A5 (en)
JP6407052B2 (en) Phosphorus recovery apparatus and phosphorus recovery method
JP4438402B2 (en) Dephosphorization method
JP3915245B2 (en) Aluminum recovery equipment from aluminum-containing sludge
JP2002035766A (en) Method for removing fluorine and phosphorus in wastewater
JP2000061473A (en) Method of removing phosphorus in sewage water
JP2002292202A (en) Crystallization reaction apparatus provided with means for recovering crystallization-reactive component
JP2001198582A (en) Dephosphorizing device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060628

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4519485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees