JPH11267665A - Dephosphorizing device - Google Patents

Dephosphorizing device

Info

Publication number
JPH11267665A
JPH11267665A JP7231598A JP7231598A JPH11267665A JP H11267665 A JPH11267665 A JP H11267665A JP 7231598 A JP7231598 A JP 7231598A JP 7231598 A JP7231598 A JP 7231598A JP H11267665 A JPH11267665 A JP H11267665A
Authority
JP
Japan
Prior art keywords
reaction tower
map
particles
water
large diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7231598A
Other languages
Japanese (ja)
Inventor
Masao Tsunekawa
正雄 恒川
Tetsuro Fukase
哲朗 深瀬
Masahide Shibata
雅秀 柴田
Satoshi Ishizuka
諭 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP7231598A priority Critical patent/JPH11267665A/en
Publication of JPH11267665A publication Critical patent/JPH11267665A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent sticking of magnesium ammonium phosphate(MAP) particles, in a state that they settled, since the MAP particles are sufficiently fluidized, even though the MAP particles grow to larger sizes. SOLUTION: The reaction tower 1 forms a storage part 11 with a small diameter cylindrical shape at the lower part, and the upper side of the storage part 11 has a taper part 12 with the diameter enlarged toward the upper direction and the upper side of the taper part 12 is a large diameter part 13 with a large diameter. An introduction pipe 2 of raw water is connected to the taper part 12, and a feed tube 3 of magnesium salt solution such as MgCl2 and a feed pipe 4 an alkali chemical such as NaOH, are connected to the lower part of the large diameter part 13. An inflow side of a circulation piping 5 is connected to the upper part of the reaction tower 1, and an outflow side of the circulation piping 5 is connected to the lower part of the storage part. An overflow dam 8 is provided on uppermost part of the reaction tower 1, and a takeout piping 9 for treated water is connected to the overflow dam 8.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリン含有水中のリン
をMAP(リン酸マグネシウムアンモニウム)として除
去、回収する装置に係り、特に反応塔内の下部における
MAP粒子同士の固着を防止するよう改良した脱リン装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for removing and recovering phosphorus in water containing phosphorus as MAP (magnesium ammonium phosphate), and particularly to an apparatus for preventing MAP particles from sticking to each other at a lower portion in a reaction tower. It relates to a dephosphorization device.

【0002】[0002]

【従来の技術】下水、し尿、排水等の嫌気、好気処理工
程で発生する汚泥脱水濾液、消化脱離液等のリン含有水
からリンを除去する装置として、リン含有水中にマグネ
シウムイオンを添加して、該水中に含有されるアンモニ
ア及びリンとマグネシウムとからMAPを生成させ、生
成したMAP粒子を分離回収する装置がある。
2. Description of the Related Art Magnesium ions are added to phosphorus-containing water as a device for removing phosphorus from phosphorus-containing water such as sludge dewatered filtrate and digestion desorbed liquid generated in anaerobic and aerobic treatment processes such as sewage, human waste, and wastewater. Then, there is an apparatus for generating MAP from ammonia and phosphorus and magnesium contained in the water, and separating and recovering the generated MAP particles.

【0003】このMAP生成反応を利用する従来の脱リ
ン装置の一つとして、原水を反応塔下部に導入し、処理
水を反応塔上部より取り出すと共に、循環手段により該
反応塔の上部から処理水の一部を該反応塔下部へ循環さ
せるものがある。
As one of the conventional dephosphorizers utilizing this MAP formation reaction, raw water is introduced into the lower part of the reaction tower, treated water is taken out from the upper part of the reaction tower, and treated water is circulated from the upper part of the reaction tower by means of circulation. Some are circulated to the lower part of the reaction tower.

【0004】この脱リン装置において、MAP粒子は上
昇する水流により展開されている。この上昇水流は、原
水と循環水とが混ざったものである。
[0004] In this dephosphorization apparatus, the MAP particles are developed by a rising water flow. This rising water flow is a mixture of raw water and circulating water.

【0005】この脱リン装置から回収されたMAP粒子
を移送、脱水、乾燥等する場合、MAP粒子は1mm以
上の大きな粒径を有していることが望ましい。
When the MAP particles recovered from the dephosphorizer are transferred, dehydrated, dried, or the like, it is desirable that the MAP particles have a large particle size of 1 mm or more.

【0006】[0006]

【発明が解決しようとする課題】このような大径のMA
P粒子は、反応塔内において上昇流によっても展開され
ず沈降したままとなり易い。即ち、粒径3mmのMAP
粒子の流動化開始速度(空塔速度)は、約100m/H
rであり、上昇水流がそれよりも低速であるとMAP粒
子は反応塔下部に沈降したままとなる。このように沈降
したままのMAP粒子は、粒子同士の間にMAPが析出
し粒子同士が固着してしまい、やがて反応塔下部のMA
P粒子が固形化するようになる。このようにMAP粒子
が固形化すると、MAP粒子を反応塔の底部から引き抜
くことは不可能となり、酸溶解や棒で突くなどの特別な
対策をとらざるを得なくなる。
SUMMARY OF THE INVENTION Such a large-diameter MA
The P particles are likely to remain settled in the reaction tower without being developed even by the upward flow. That is, a MAP having a particle size of 3 mm
The fluidization start velocity (superficial velocity) of the particles is about 100 m / H
If the ascending water flow is slower, the MAP particles will remain settled at the bottom of the reactor. In the MAP particles that have settled in this way, MAP precipitates between the particles and the particles are fixed to each other, and eventually the MA in the lower part of the reaction tower is removed.
P particles become solidified. When the MAP particles are solidified in this way, it becomes impossible to pull out the MAP particles from the bottom of the reaction tower, and special measures such as acid dissolution and sticking with a stick have to be taken.

【0007】本発明は、このようなMAP粒子の固形化
を防止し、反応塔下部から常にMAP粒子をスムーズに
抜き出すことが可能な脱リン装置を提供することを目的
とする。
[0007] It is an object of the present invention to provide a dephosphorization apparatus capable of preventing such MAP particles from being solidified and constantly extracting MAP particles smoothly from the lower portion of the reaction tower.

【0008】[0008]

【発明が解決しようとする課題】本発明の脱リン装置
は、原水を反応塔下部に導入し、処理水を反応塔上部よ
り取り出すと共に、循環手段により該反応塔の上部から
水の一部を該反応塔下部へ循環させる脱リン装置におい
て、該反応塔の下部に該塔の水平断面積よりも小さい水
平断面積を有した(好ましくは筒状の)貯留部を設け、
該貯留部に対し前記循環手段により水を循環させるよう
にしたことを特徴とするものである。
In the dephosphorizer of the present invention, raw water is introduced into the lower part of the reaction tower, treated water is taken out from the upper part of the reaction tower, and a part of the water is removed from the upper part of the reaction tower by the circulation means. In the dephosphorizer circulating to the lower part of the reaction tower, a (preferably cylindrical) storage part having a horizontal cross-sectional area smaller than the horizontal cross-sectional area of the tower is provided at the lower part of the reaction tower,
Water is circulated to the storage section by the circulation means.

【0009】かかる脱リン装置においては、循環水を水
平断面積が小さい貯留部に導入するため、貯留部におけ
る上昇水流速が大きなものとなり、大径のMAP粒子で
あっても貯留部内において流動するようになる。このた
め、反応塔下部内におけるMAP粒子同士の固着が防止
される。
In such a dephosphorization apparatus, since the circulating water is introduced into the storage section having a small horizontal cross-sectional area, the rising water flow velocity in the storage section becomes large, and even large-diameter MAP particles flow in the storage section. Become like For this reason, MAP particles are prevented from sticking to each other in the lower portion of the reaction tower.

【0010】[0010]

【発明の実施の形態】図1は実施の形態に係る脱リン装
置の模式的な断面図である。
FIG. 1 is a schematic sectional view of a dephosphorizing apparatus according to an embodiment.

【0011】反応塔1は、下部が小径円筒状の貯留部1
1となっており、この貯留部11の上側が上方に向って
拡径するテーパ部12となっており、該テーパ部12の
上側が大径の大径部13となっている。この反応塔1の
頂部は開放している。
The reaction tower 1 has a storage section 1 having a small cylindrical portion at its lower part.
The upper side of the storage portion 11 is a tapered portion 12 whose diameter increases upward, and the upper side of the tapered portion 12 is a large diameter portion 13 having a large diameter. The top of the reaction tower 1 is open.

【0012】このテーパ部12に原水(下水、し尿の嫌
気消化脱離液、生し尿等のリン含有水)の導入配管2が
接続され、テーパ部12の直上の大径部13下部にはM
gCl2等のマグネシウム塩溶液(マグネシウム塩を含
有するものであれば良く、海水であっても良い。)の供
給管3及びNaOH等のアルカリ剤の供給管4が接続さ
れている。
An inlet pipe 2 for raw water (phosphorus water such as sewage, anaerobic digestion and desorbed liquid of night soil, raw human urine, etc.) is connected to the tapered portion 12.
A supply pipe 3 for a magnesium salt solution such as gCl 2 (so long as it contains a magnesium salt and may be seawater) and a supply pipe 4 for an alkali agent such as NaOH are connected.

【0013】反応塔1の上部には循環配管5の流入側が
接続されており、この循環配管5の流出側は貯留部11
の下部(底部であっても良い。)に接続されている。こ
の配管5には循環ポンプ5aが設けられている。
An inflow side of a circulation pipe 5 is connected to an upper portion of the reaction tower 1.
Is connected to a lower portion (or a bottom portion). The piping 5 is provided with a circulation pump 5a.

【0014】該貯留部11の底部にはMAP粒子の抜き
出し用の配管6が接続されており、この配管6にはバル
ブ7が設けられている。反応塔1の最上部には溢流堰8
が設けられ、この溢流堰8に処理水の取出用の配管9が
接続されている。
A pipe 6 for extracting MAP particles is connected to the bottom of the storage section 11, and the pipe 6 is provided with a valve 7. At the top of the reaction tower 1 is an overflow weir 8
A pipe 9 for taking out treated water is connected to the overflow weir 8.

【0015】このように構成された脱リン装置の作動に
ついて次に説明する。
The operation of the thus-configured dephosphorizer will be described below.

【0016】反応塔1には、MAPが析出するpH条
件、即ちpH8〜10となるように、供給管4よりNa
OH等のアルカリ剤が注入される。また、MAPの析出
にマグネシウムが不足する場合には、供給管3よりMg
Cl2等のマグネシウム塩溶液を注入する。
In the reaction tower 1, Na is supplied through the supply pipe 4 so that the pH condition at which MAP is precipitated, that is, pH 8-10.
An alkaline agent such as OH is injected. When magnesium is insufficient for MAP precipitation, Mg is supplied from the supply pipe 3.
Inject a magnesium salt solution such as Cl 2 .

【0017】反応塔1内では、既に析出しているMAP
粒子を種晶としてMAPが造粒される。即ち、原水の流
入と処理水の循環とによりMAP粒子が流動状態とな
り、このMAP粒子の表面に新たなMAPが析出して、
MAP粒子が粒成長する。
In the reaction tower 1, MAP which has already been deposited
MAP is granulated using the particles as seed crystals. That is, the MAP particles are brought into a fluidized state by the inflow of the raw water and the circulation of the treated water, and new MAP is deposited on the surface of the MAP particles.
The MAP particles grow.

【0018】このMAPの析出プロセスにおいて、原水
のリン濃度が高いと、種晶の不存在下でMAPの微小結
晶が自己析出し、大粒のMAP粒子が得られないという
不具合があるが、この脱リン装置では、反応塔1の処理
水を配管5及びポンプ5aにより抜き出して循環するこ
とにより、反応塔1内のMAP造粒反応部のリン濃度を
低下させることができる。これにより反応塔1内のMA
Pの過飽和度が低下し、MAPは微小結晶として自己析
出することなく、種晶のMAP粒子の表面でのみ析出し
てMAP粒子の大粒子化を促進する。この処理水の循環
は、反応塔1内のMAP造粒反応部のリン濃度をリン酸
塩濃度100mg/L以下、特に40〜80mg/Lと
なるように行うのが好ましい。
In the MAP precipitation process, if the phosphorus concentration of the raw water is high, there is a problem that MAP microcrystals are self-precipitated in the absence of seed crystals and large MAP particles cannot be obtained. In the phosphorus device, the treated water in the reaction tower 1 is extracted and circulated by the pipe 5 and the pump 5a, so that the phosphorus concentration in the MAP granulation reaction section in the reaction tower 1 can be reduced. Thereby, the MA in the reaction tower 1
The supersaturation degree of P decreases, and MAP does not self-precipitate as microcrystals, but precipitates only on the surface of seed MAP particles and promotes the enlargement of MAP particles. It is preferable that the circulation of the treated water be performed so that the phosphorus concentration in the MAP granulation reaction section in the reaction tower 1 is not more than 100 mg / L, particularly preferably 40 to 80 mg / L.

【0019】MAPの析出により、リン濃度が低下した
処理水は反応塔1内を上昇して溢流堰8を越え、配管9
より排出される。
The treated water whose phosphorus concentration has decreased due to the precipitation of MAP rises in the reaction tower 1, exceeds the overflow weir 8, and passes through the pipe 9.
Is more exhausted.

【0020】反応塔1内で粒大化したMAP粒子は、反
応塔1下部の貯留部11に沈降してくるが、この貯留部
11の径(水平断面積)が小さく、循環配管5から流入
する循環水の上昇流速が100m/Hr以上となってい
る。このため、粒径1mm程度の大径のMAP粒子もこ
の貯留部11内で流動するようになり、貯留部11にお
けるMAP粒子の固化が防止される。
The MAP particles that have become large in the reaction tower 1 settle in the storage section 11 below the reaction tower 1, but the diameter (horizontal cross-sectional area) of the storage section 11 is small, and the MAP particles flow in from the circulation pipe 5. The rising flow velocity of the circulating water is 100 m / Hr or more. For this reason, the large-diameter MAP particles having a particle diameter of about 1 mm also flow in the storage section 11, and the MAP particles in the storage section 11 are prevented from being solidified.

【0021】反応塔1内のMAP粒子量が過剰になった
場合は、ポンプ5aを停止し、バルブ7を開いて貯留部
11からMAP粒子を排出する。この場合、MAP粒子
相互が固着していないので、MAP粒子はきわめてスム
ーズに排出される。
When the amount of MAP particles in the reaction tower 1 becomes excessive, the pump 5a is stopped, the valve 7 is opened, and the MAP particles are discharged from the storage unit 11. In this case, since the MAP particles do not adhere to each other, the MAP particles are discharged very smoothly.

【0022】なお、図1の脱リン装置において、テーパ
部12の水平に対する傾斜角度は60°以上(例えば6
0〜75°)とするのが好ましい。
In the dephosphorizer shown in FIG. 1, the inclination angle of the tapered portion 12 with respect to the horizontal is 60 ° or more (for example, 6 °).
0 to 75).

【0023】大径部13及び貯留部11を円筒形とする
場合、貯留部11の径は大径部13の径の1/5以下
(例えば1/5〜1/8)とするのが好ましい。
When the large diameter portion 13 and the storage portion 11 are cylindrical, the diameter of the storage portion 11 is preferably 1 / or less (for example, 5〜 to 8) of the diameter of the large diameter portion 13. .

【0024】循環配管5の流入端は、反応塔1内の液面
から100cm以内(例えば50〜100cm)の高さ
に接続されるのが好ましい。
The inflow end of the circulation pipe 5 is preferably connected to a height of 100 cm or less (for example, 50 to 100 cm) from the liquid level in the reaction tower 1.

【0025】配管3,4の接続部は、テーパ部12の上
端から30cm以内(例えば10〜30cm)に接続さ
れるのが好ましい。原水配管2は、テーパ部12の下端
から20cm以内(例えば5〜20cm)に接続される
のが好ましい。
The connecting portions of the pipes 3 and 4 are preferably connected within 30 cm (for example, 10 to 30 cm) from the upper end of the tapered portion 12. The raw water pipe 2 is preferably connected within 20 cm (for example, 5 to 20 cm) from the lower end of the tapered portion 12.

【0026】貯留部11における上昇流速は100m/
Hr以上とくに120m/Hr以上(例えば120〜1
60m/Hr)とするのが好ましい。この流速の場合、
粒径1〜2mmのMAP粒子の展開率は約30〜50%
となる。
The rising flow velocity in the storage section 11 is 100 m /
Hr or more, especially 120 m / Hr or more (for example, 120 to 1
60 m / Hr). At this flow rate,
The expansion rate of MAP particles having a particle size of 1 to 2 mm is about 30 to 50%
Becomes

【0027】なお、図示の例では、マグネシウム塩及び
アルカリ剤のみを添加しているが、MAPの生成にアン
モニア成分が不足する場合には、反応塔に更にアンモニ
ウムやアンモニウム塩を添加する。
In the illustrated example, only the magnesium salt and the alkali agent are added. However, when the ammonia component is insufficient for the generation of MAP, ammonium or an ammonium salt is further added to the reaction tower.

【0028】本発明において、反応塔及び貯留部の水平
断面は円に限らず、方形や多角形の筒形であっても良い
が、円筒形であることが好ましい。
In the present invention, the horizontal cross section of the reaction tower and the storage section is not limited to a circle, but may be a square or polygonal cylinder, but is preferably a cylinder.

【0029】[0029]

【発明の効果】以上の通り、本発明によるとMAP粒子
が大径に成長しても反応塔の貯留部内で十分に流動する
ようになり、沈下したまま固着することが無い。従っ
て、本発明の脱リン装置によると、反応塔の底部からM
AP粒子をスムーズに排出することが可能となる。
As described above, according to the present invention, even when the MAP particles grow to a large diameter, they flow sufficiently in the storage part of the reaction tower, and do not adhere as they sink. Therefore, according to the dephosphorization apparatus of the present invention, M
AP particles can be discharged smoothly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施の形態に係る脱リン装置の断面図である。FIG. 1 is a cross-sectional view of a phosphorus removal device according to an embodiment.

【符号の説明】[Explanation of symbols]

1 反応塔 5 循環配管 11 貯留部 12 テーパ部 13 大径部 DESCRIPTION OF SYMBOLS 1 Reaction tower 5 Circulation piping 11 Storage part 12 Tapered part 13 Large diameter part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石塚 諭 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Satoshi Ishizuka 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo Inside Kurita Water Industries Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原水を反応塔下部に導入し、処理水を反
応塔上部より取り出すと共に、循環手段により該反応塔
の上部から水の一部を該反応塔下部へ循環させる脱リン
装置において、 該反応塔の下部に該塔の水平断面積よりも小さい水平断
面積を有した貯留部を設け、該貯留部に対し前記循環手
段により水を循環させるようにしたことを特徴とする脱
リン装置。
1. A dephosphorizer for introducing raw water into a lower portion of a reaction tower, removing treated water from an upper portion of the reaction tower, and circulating a part of water from an upper portion of the reaction tower to a lower portion of the reaction tower by a circulating means. A dephosphorizer having a storage section having a horizontal cross-sectional area smaller than the horizontal cross-sectional area of the tower provided at a lower portion of the reaction tower, and circulating water in the storage section by the circulation means. .
JP7231598A 1998-03-20 1998-03-20 Dephosphorizing device Pending JPH11267665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7231598A JPH11267665A (en) 1998-03-20 1998-03-20 Dephosphorizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7231598A JPH11267665A (en) 1998-03-20 1998-03-20 Dephosphorizing device

Publications (1)

Publication Number Publication Date
JPH11267665A true JPH11267665A (en) 1999-10-05

Family

ID=13485732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7231598A Pending JPH11267665A (en) 1998-03-20 1998-03-20 Dephosphorizing device

Country Status (1)

Country Link
JP (1) JPH11267665A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095726A (en) * 2003-09-22 2005-04-14 Mitsubishi Materials Corp Reacting/crystallizing method and apparatus therefor
WO2005077834A1 (en) 2004-02-13 2005-08-25 The University Of British Columbia Fluidized bed wastewater treatment
JP2005329398A (en) * 2004-04-20 2005-12-02 Ishikawajima Harima Heavy Ind Co Ltd Dephosphorization apparatus
JP2006239648A (en) * 2005-03-07 2006-09-14 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for dephosphorization
EP2489641A1 (en) 2011-02-15 2012-08-22 Ostara Nutrient Recovery Technologies Inc. Methods and apparatus for struvite recovery using upstream CO2 injection
EP2489640A1 (en) 2011-02-15 2012-08-22 Ostara Nutrient Recovery Technologies Inc. Methods and apparatus for struvite recovery using upstream phosphate injection
US8263034B2 (en) 2008-02-11 2012-09-11 Entechs Co. Nitrogen-rich waste water treatment method and method for producing struvite
EP2683659A1 (en) * 2011-03-10 2014-01-15 Ostara Nutrient Recovery Technologies Inc. Reactor for precipitating solutes from wastewater and associated methods
CN113443692A (en) * 2020-03-27 2021-09-28 赛奇·洛巴诺夫 Method and apparatus for recovering size-selected nutrients from wastewater by elutriation
KR102330774B1 (en) * 2021-03-03 2021-11-24 이주봉 Ozone dissolution reaction apparatus for advanced oxidation treatment

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095726A (en) * 2003-09-22 2005-04-14 Mitsubishi Materials Corp Reacting/crystallizing method and apparatus therefor
WO2005077834A1 (en) 2004-02-13 2005-08-25 The University Of British Columbia Fluidized bed wastewater treatment
US7622047B2 (en) 2004-02-13 2009-11-24 The University Of British Columbia Fluidized bed wastewater treatment
AU2004315614B2 (en) * 2004-02-13 2010-07-15 The University Of British Columbia Fluidized bed wastewater treatment
US7922897B2 (en) 2004-02-13 2011-04-12 The University Of British Columbia Fluidized bed wastewater treatment apparatus
KR101098890B1 (en) * 2004-02-13 2011-12-26 더 유니버시티 오브 브리티쉬 콜롬비아 Fluidized Bed Wastewater Treatment
JP2005329398A (en) * 2004-04-20 2005-12-02 Ishikawajima Harima Heavy Ind Co Ltd Dephosphorization apparatus
JP4586582B2 (en) * 2004-04-20 2010-11-24 株式会社Ihi Dephosphorization device
JP2006239648A (en) * 2005-03-07 2006-09-14 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for dephosphorization
JP4586581B2 (en) * 2005-03-07 2010-11-24 株式会社Ihi Dephosphorization device
US8263034B2 (en) 2008-02-11 2012-09-11 Entechs Co. Nitrogen-rich waste water treatment method and method for producing struvite
EP2489641A1 (en) 2011-02-15 2012-08-22 Ostara Nutrient Recovery Technologies Inc. Methods and apparatus for struvite recovery using upstream CO2 injection
EP2489640A1 (en) 2011-02-15 2012-08-22 Ostara Nutrient Recovery Technologies Inc. Methods and apparatus for struvite recovery using upstream phosphate injection
EP2683659A1 (en) * 2011-03-10 2014-01-15 Ostara Nutrient Recovery Technologies Inc. Reactor for precipitating solutes from wastewater and associated methods
KR20140014222A (en) * 2011-03-10 2014-02-05 오스타라 뉴트리언트 리커버리 테크놀로지스 인크. Reactor for precipitating solutes from wastewater and associated methods
EP2683659A4 (en) * 2011-03-10 2015-01-07 Ostara Nutrient Recovery Technologies Inc Reactor for precipitating solutes from wastewater and associated methods
US10266433B2 (en) 2011-03-10 2019-04-23 Ostara Nutrient Recovery Technologies Inc. Reactor for precipitating solutes from wastewater and associated methods
CN113443692A (en) * 2020-03-27 2021-09-28 赛奇·洛巴诺夫 Method and apparatus for recovering size-selected nutrients from wastewater by elutriation
US11220445B2 (en) 2020-03-27 2022-01-11 Sergey Lobanov Process and apparatus for sized nutrient recovery from wastewater by elutriation
KR102330774B1 (en) * 2021-03-03 2021-11-24 이주봉 Ozone dissolution reaction apparatus for advanced oxidation treatment

Similar Documents

Publication Publication Date Title
CN106630084A (en) Method and system for treating high-fluorine high-hardness wastewater by two-stage two-phase fluidized bed through self crystallization
CN104925986A (en) Near-zero discharge treatment system for pickling waste liquid and washing wastewater in steel industry and process thereof
JPH11267665A (en) Dephosphorizing device
JP4519485B2 (en) Phosphorus recovery method and apparatus
JP3876489B2 (en) Waste water treatment equipment
JP2576679B2 (en) Dephosphorization device
JPS6242677B2 (en)
JP4568391B2 (en) Fluidized bed crystallization reactor
JP5808638B2 (en) Method and apparatus for treating wastewater containing high concentration calcium and alkali
JP2698310B2 (en) Anaerobic wastewater treatment system and its operation method
JPH11300369A (en) Dephosphorizing device and dephosphorizing equipment
JP4147609B2 (en) Dephosphorization device
JPH10323677A (en) Waste water treatment device
JP2008183562A (en) Dephosphorization apparatus
JP3726429B2 (en) Dephosphorization device
JP2000334474A (en) Method for removing phosphorus from waste water
JP3921922B2 (en) Dephosphorization method
JPH11267663A (en) Dephosphorizing device
JP4053273B2 (en) Reaction crystallization method and apparatus
JPH1157748A (en) Method of removing phosphorus
JP4438402B2 (en) Dephosphorization method
CN210974185U (en) Advanced phosphorus removal and phosphorus recovery device for secondary effluent of sewage treatment plant
CN216472404U (en) Fluidized bed phosphorus recovery reactor
KR100371870B1 (en) Process and apparatus for recovering and removing orthophosphates from sewage and wastes
CN110395824B (en) Advanced phosphorus removal and phosphorus recovery device and method for secondary effluent of sewage treatment plant