JP2005095726A - Reacting/crystallizing method and apparatus therefor - Google Patents

Reacting/crystallizing method and apparatus therefor Download PDF

Info

Publication number
JP2005095726A
JP2005095726A JP2003330451A JP2003330451A JP2005095726A JP 2005095726 A JP2005095726 A JP 2005095726A JP 2003330451 A JP2003330451 A JP 2003330451A JP 2003330451 A JP2003330451 A JP 2003330451A JP 2005095726 A JP2005095726 A JP 2005095726A
Authority
JP
Japan
Prior art keywords
water
treated
pressure chamber
fluidized bed
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003330451A
Other languages
Japanese (ja)
Other versions
JP4562366B2 (en
Inventor
Katsumi Moriyama
克美 森山
Masaroku Kawauchi
正六 川内
Tatsuki Watanabe
龍城 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HANSHIN DORYOKU KIKAI
Hanshin Engineering Co Ltd
Mitsubishi Materials Corp
Original Assignee
HANSHIN DORYOKU KIKAI
Hanshin Engineering Co Ltd
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HANSHIN DORYOKU KIKAI, Hanshin Engineering Co Ltd, Mitsubishi Materials Corp filed Critical HANSHIN DORYOKU KIKAI
Priority to JP2003330451A priority Critical patent/JP4562366B2/en
Publication of JP2005095726A publication Critical patent/JP2005095726A/en
Application granted granted Critical
Publication of JP4562366B2 publication Critical patent/JP4562366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crystallizing/dephosphorizing method and apparatus therefor, by each of which the amount of agglomerated calcium phosphate to be generated can be reduced without altering the flow rate ratio of circulation water/the water to be treated. <P>SOLUTION: When the water to be treated is introduced into a fluidized bed 14 from a pressure chamber 19 for the water to be treated through a jet nozzle 55 and a distributor 12 and circulation water is also introduced into the fluidized bed 14 through a pressure chamber 20 for the circulation water and the distributor 12, both of the water to be treated and the circulation water are mixed first with each other in a seed crystal of a fluidized state. Though the water to be treated has high phosphorus concentration and the circulation water has high Ca concentration and pH, the phosphorus in the water to be treated is crystallized on the surface of the seed crystal since they are mixed in the presence of the seed crystal. As a result, the amount of the agglomerated calcium phosphate to be generated can be reduced without altering the flow rate ratio of the circulation water/the water to be treated. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は反応晶析処理方法およびその装置、詳しくは例えば被処理水に含まれた目的成分の凝集物の発生量を低減する晶析脱リンなどの反応晶析処理技術に関する。   The present invention relates to a reaction crystallization treatment method and apparatus, and more particularly to a reaction crystallization treatment technique such as crystallization dephosphorization for reducing the amount of aggregates of target components contained in water to be treated.

例えば、下水処理水などのリンを含んだ被処理水の脱リン装置として、例えば凝集法の場合のようには汚泥が生成せず、最終的な生成物をリン資源として回収し、再利用が可能な晶析脱リン方法(反応晶析処理方法)が、注目されている。この一種として、流動床式の晶析脱リン方法が開発されている。流動床式では、反応槽の下部に内設された圧力室から、圧力室の上壁に形成されたディストリビュータを通して、その直上に設けられた流動床に向かって、リンを含有する被処理水を分配状態で導入し、この流動床で、流動床の一部を構成するリン酸カルシウムを含む種結晶と前記被処理水中のリンとを接触させることで、被処理水中のリンをヒドロキシアパタイトとして種結晶の表面に晶析して除去し、処理水を得る。   For example, as a dephosphorization apparatus for treated water containing phosphorus such as sewage treated water, sludge is not generated as in the case of the coagulation method, and the final product is recovered as a phosphorus resource and can be reused. A possible crystallization dephosphorization method (reaction crystallization treatment method) has attracted attention. As one type, a fluidized bed type crystallization dephosphorization method has been developed. In the fluidized bed type, water to be treated containing phosphorus is passed from a pressure chamber provided in the lower part of the reaction tank through a distributor formed on the upper wall of the pressure chamber toward a fluidized bed provided immediately above the distributor. In the fluidized bed, the seed crystal containing calcium phosphate constituting a part of the fluidized bed is brought into contact with phosphorus in the water to be treated so that phosphorus in the water to be treated is converted into hydroxyapatite. Crystallized and removed from the surface to obtain treated water.

この流動床式では、流動床内において、常時、所定の上向流速で種結晶を流動状態に維持する必要がある。そのため、反応槽内に圧力室を設けているが、被処理水を圧力室に供給させるだけでは、ディストリビュータを通した十分な水の流量が得られない。そこで、近年、例えば特許文献1に記載された晶析脱リン方法のように、圧力室に、被処理水だけでなく、処理水の一部を循環水として導入する方法が開発されている。この方法では、あらかじめ被処理水と循環水とを混合し、その混合水を圧力室に供給する方法が採られている。   In this fluidized bed type, it is necessary to always maintain the seed crystal in a fluidized state at a predetermined upward flow rate in the fluidized bed. Therefore, although a pressure chamber is provided in the reaction tank, a sufficient water flow rate through the distributor cannot be obtained only by supplying water to be treated to the pressure chamber. Therefore, in recent years, a method has been developed in which not only the water to be treated but also a part of the treated water is introduced into the pressure chamber as circulating water as in the crystallization dephosphorization method described in Patent Document 1, for example. This method employs a method in which treated water and circulating water are mixed in advance and the mixed water is supplied to the pressure chamber.

特開2002−301480号公報(第1頁、図1)JP 2002-301480 A (first page, FIG. 1)

しかしながら、被処理水と循環水との混合液を圧力室に供給する方式では、流動床より上流で循環水と被処理水とが混合される。被処理水は、リン酸イオン態りん(以下、リン)の濃度が高く、また、循環水は晶析操作を行うためにカルシウムイオンの濃度およびpHがそれぞれ高められている。そのため、混合時のリン濃度が、3要素(リン濃度、pH、カルシウムイオン濃度)で定まるリンの過溶解度以上であれば、リンはリン酸カルシウムの微細結晶(以下、凝集物)として混合液中に生成され易く、種結晶の表面に析出せず系外に排出される。よってリンは、晶析法により回収されない。   However, in the method of supplying a mixed liquid of treated water and circulating water to the pressure chamber, the circulating water and treated water are mixed upstream from the fluidized bed. The water to be treated has a high concentration of phosphate ion phosphorus (hereinafter referred to as phosphorus), and the circulating water has a calcium ion concentration and a pH increased in order to perform a crystallization operation. Therefore, if the phosphorus concentration at the time of mixing exceeds the phosphorus solubility determined by the three elements (phosphorus concentration, pH, calcium ion concentration), phosphorus is generated in the mixed solution as fine crystals of calcium phosphate (hereinafter, aggregates). It is easy to be done and is not deposited on the surface of the seed crystal but is discharged out of the system. Therefore, phosphorus is not recovered by the crystallization method.

凝集物の発生を回避するため、従来、循環水/被処理水の流量比を高め、リン濃度を過溶解度未満まで低下させる方法が知られている。しかしながら、この方法では循環水の循環用ポンプが大型化し、消費電力が増大するおそれがあった。さらには、所要の流動状態を超過することで、以下に示す不都合が発生するおそれがあった。すなわち、(1) 種結晶の表面に晶析したリン酸カルシウムが磨耗したり、剥離する。(2) 流動床の流動高さが大きくなり、反応槽の高さ寸法が大きくなるといった不都合が起き易い。   In order to avoid the generation of aggregates, conventionally, a method is known in which the flow rate ratio of circulating water / treated water is increased and the phosphorus concentration is reduced to less than the excessive solubility. However, in this method, the circulating water circulation pump becomes large and power consumption may increase. Furthermore, when the required flow state is exceeded, the following inconvenience may occur. That is, (1) Calcium phosphate crystallized on the surface of the seed crystal is worn or peeled off. (2) Inconveniences such as an increase in the flow height of the fluidized bed and an increase in the height of the reaction tank are likely to occur.

そこで、発明者は、鋭意研究の結果、種結晶が存在しない状態、すなわち流動床より上流では被処理水と循環水とを混合せず、被処理水と循環水とを個別に流動床に導入するか、被処理水と循環水とを流動床に導入する直前に初めて混合し、流動状態の種結晶の存在下ではじめて被処理水と循環水を混合させるようにすれば、大半のリンは、ヒドロキシアパタイトとして種結晶の表面に晶析され、リン酸カルシウムの凝集物としては生成され難いことを知見し、この発明を完成させた。   Therefore, as a result of earnest research, the inventor introduced the treated water and the circulating water individually into the fluidized bed without mixing the treated water and the circulating water upstream of the fluidized bed. If the treated water and circulating water are mixed for the first time just before being introduced into the fluidized bed, and the treated water and circulating water are mixed for the first time in the presence of seed crystals in a fluid state, most phosphorus is The present invention was completed by discovering that it was crystallized on the surface of the seed crystal as hydroxyapatite and hardly formed as an aggregate of calcium phosphate.

この発明は、循環水流量/被処理水流量比を変更することなく、被処理水に含まれる目的成分の凝集物の発生量を低減することができる反応晶析処理方法およびその装置を提供することを、その目的としている。   The present invention provides a reactive crystallization treatment method and apparatus capable of reducing the amount of aggregates of target components contained in the water to be treated without changing the ratio of the circulating water flow rate / the water to be treated flow rate. That is the purpose.

請求項1に記載の発明は、種結晶が存在する流動床に被処理水を導入し、前記流動床で被処理水と種結晶とを接触させることにより、前記種結晶の表面に被処理水中の目的成分を化合物として晶析して処理水を得るとともに、該処理水の一部を循環水として前記流動床に導入する反応晶析処理方法において、前記被処理水と循環水とを、前記流動床に導入する直前に初めて接触・混合させるか、または、個別に流動床に導入させる反応晶析処理方法である。   According to the first aspect of the present invention, the water to be treated is introduced into the fluidized bed in which the seed crystal exists, and the water to be treated and the seed crystal are brought into contact with each other in the fluidized bed, whereby the surface of the seed crystal is treated. In the reaction crystallization treatment method, a part of the treated water is obtained as circulated water and introduced into the fluidized bed, and the treated water and the circulated water are mixed together. It is a reaction crystallization treatment method in which contact / mixing is performed for the first time just before introduction into the fluidized bed, or individual introduction into the fluidized bed.

請求項1の発明によれば、被処理水と循環水とを、流動床に導入する直前に初めて接触・混合させるか、または、個別に流動床に導入させるので、混合時の目的成分の濃度が目的成分の過溶解度以上であっても、大半の目的成分は化合物として種結晶の表面に晶析される。その結果、被処理水中のリン濃度が変動しても、循環水流量/被処理水流量比を変更することなく、リン酸カルシウムの凝集物の発生量を低減することができる。   According to the first aspect of the present invention, the treated water and the circulating water are first contacted and mixed immediately before being introduced into the fluidized bed, or individually introduced into the fluidized bed. Is over the solubility of the target component, most of the target component is crystallized on the surface of the seed crystal as a compound. As a result, even if the phosphorus concentration in the water to be treated fluctuates, the amount of calcium phosphate agglomerates generated can be reduced without changing the ratio of the circulating water flow rate / treated water flow rate.

被処理水と循環水とは、流動床に導入する直前に初めて接触・混合させてもよい。また、個別に流動床に導入させてもよい。
被処理水の種類は限定されない。例えば、下水処理の二次処理水や下水汚泥処理工程における返流水、産業廃水などを採用することができる。
また、目的成分の種類は限定されない。例えば、りん酸態りん、フッ素、ホウ素、アンモニア、その他の重金属類などを採用することができる。
The treated water and the circulating water may be contacted and mixed for the first time immediately before being introduced into the fluidized bed. Moreover, you may introduce into a fluidized bed separately.
The kind of to-be-processed water is not limited. For example, secondary treated water for sewage treatment, return water in sewage sludge treatment process, industrial wastewater, etc. can be employed.
Moreover, the kind of target component is not limited. For example, phosphate phosphorus, fluorine, boron, ammonia, and other heavy metals can be employed.

請求項2に記載の発明は、前記流動床には薬液が添加され、該薬液は、前記被処理水と循環水とが流動床に導入される直前に、または流動床中で、前記被処理水と循環水とに接触・混合される請求項1に記載の反応晶析処理方法である。
薬液が、被処理水および循環水に接触・混合されるのは、被処理水と循環水とが流動床に導入される直前でもよい。または、流動床中でもよい。
薬液の種類は限定されない。例えば、消石灰(Ca(OH)2)、塩化カルシウム、水酸化ナトリウム、水酸化マグネシウムなどのアルカリ性水溶液を採用することができる。薬液の添加量は限定されない。
According to a second aspect of the present invention, a chemical solution is added to the fluidized bed, and the chemical solution is added to the fluidized bed immediately before or after the treated water and circulating water are introduced into the fluidized bed. It is the reaction crystallization processing method of Claim 1 contacted and mixed with water and circulating water.
The chemical solution may be brought into contact with and mixed with the water to be treated and the circulating water just before the water to be treated and the circulating water are introduced into the fluidized bed. Alternatively, it may be in a fluidized bed.
The kind of chemical | medical solution is not limited. For example, an alkaline aqueous solution such as slaked lime (Ca (OH) 2 ), calcium chloride, sodium hydroxide, magnesium hydroxide can be employed. The amount of the chemical solution added is not limited.

請求項3に記載の発明は、反応槽の下部に形成された圧力室から、該圧力室の上壁に形成された複数の吹出口を通して、前記反応槽の圧力室より上方に形成され、種結晶が存在する流動床にリンを含有した被処理水を導入し、前記流動床で被処理水中のリンと種結晶とを接触させて種結晶の表面にこの被処理水中のリンを晶析することで処理水を得るとともに、該処理水の一部を循環水として、前記圧力室から各吹出口を通して流動床に導入する反応晶析処理方法において、前記圧力室を、前記被処理水が導入される被処理水用圧力室と、前記循環水が導入される循環水用圧力室とに区画し、前記被処理水は、前記吹出口を通して被処理水用圧力室から流動床に導入する一方、前記循環水は、前記被処理水用の吹出口とは異なる吹出口を通して循環水用圧力室から流動床に導入する反応晶析処理方法である。   The invention according to claim 3 is formed above the pressure chamber of the reaction tank through a plurality of outlets formed in the upper wall of the pressure chamber from the pressure chamber formed in the lower part of the reaction tank. Treated water containing phosphorus is introduced into a fluidized bed where crystals are present, and phosphorus in the treated water is brought into contact with the seed crystals in the fluidized bed to crystallize phosphorus in the treated water on the surface of the seed crystals. In the reaction crystallization treatment method, the treated water is introduced into the pressure chamber by introducing into the fluidized bed from the pressure chamber through each outlet as part of the treated water as circulating water. The treated water pressure chamber and the circulating water pressure chamber into which the circulating water is introduced, and the treated water is introduced into the fluidized bed from the treated water pressure chamber through the outlet. The circulating water passes through a different outlet from the outlet for the treated water. From the circulation water pressure chamber is reactive crystallization process method of introducing into the fluidized bed.

この発明によれば、被処理水を被処理水用圧力室から吹出口を経て流動床に導入し、循環水を循環水用圧力室から別の吹出口を経て流動床に導入する。すなわち、被処理水と循環水とは別流路で流動床に流れ込む。そして、流動状態の種結晶中ではじめて循環水と被処理水とが混合される。被処理水はリン濃度が高く、循環水はカルシウムイオンの濃度とpHとが高い。しかしながら、種結晶の存在状態での混合であるため、混合時のリン濃度がリンの過溶解度以上であっても、大半のリンは、ヒドロキシアパタイトとして種結晶の表面に晶析される。その結果、被処理水中のリン濃度が変動しても、循環水流量/被処理水流量比を変更することなく、リン酸カルシウムの凝集物の発生量を低減することができる。   According to this invention, the water to be treated is introduced from the pressure chamber for water to be treated into the fluidized bed through the outlet, and the circulating water is introduced from the pressure chamber for circulating water into the fluidized bed through the other outlet. That is, the water to be treated and the circulating water flow into the fluidized bed through separate flow paths. And circulating water and to-be-processed water are mixed only in the seed crystal of a fluid state. The water to be treated has a high phosphorus concentration, and the circulating water has a high calcium ion concentration and pH. However, since the mixing is performed in the presence of the seed crystals, most of the phosphorus is crystallized on the surface of the seed crystals as hydroxyapatite even if the phosphorus concentration at the time of mixing is higher than the excessive solubility of phosphorus. As a result, even if the phosphorus concentration in the water to be treated fluctuates, the amount of calcium phosphate agglomerates generated can be reduced without changing the ratio of the circulating water flow rate / treated water flow rate.

リンを含有する被処理水の種類は限定されない。例えば、下水処理水、下水汚泥処理工程における返流水、産業廃水などが挙げられる。区画後の被処理水用圧力室と循環水用圧力室との配置は限定されない。例えば圧力室を上下(垂直方向)に配置してもよいし、左右(水平方向)に配置してもよい。その他、両室を中心部と外周部とに配置してもよい。
吹出口の形成数は1個でもよいし、2個以上でもよい。吹出口としては、例えば被処理水用加圧室の被処理水、循環水用加圧室の循環水を複数の流れに分配するディストリビュータを採用することができる。
吹出口は、被処理水用圧力室と循環水用圧力室とに別々に形成した方が好ましい。しかし、被処理水および循環水が吹出口を通過する時間は短時間であるので、同じ吹出口を兼用してもよい。
The kind of to-be-processed water containing phosphorus is not limited. For example, sewage treated water, return water in the sewage sludge treatment process, industrial wastewater, and the like can be mentioned. The arrangement of the pressure chamber for water to be treated and the pressure chamber for circulating water after division is not limited. For example, the pressure chambers may be arranged vertically (in the vertical direction) or left and right (in the horizontal direction). In addition, you may arrange | position both chambers in a center part and an outer peripheral part.
The number of air outlets formed may be one or two or more. As a blower outlet, the distributor which distributes the to-be-processed water of the pressurized chamber for to-be-processed water and the circulating water of the pressurized chamber for circulating water to a some flow, for example is employable.
The outlet is preferably formed separately in the pressure chamber for water to be treated and the pressure chamber for circulating water. However, since the time for the treated water and the circulating water to pass through the outlet is short, the same outlet may be used.

反応槽の被処理水中には、カルシウム化合物またはアルカリ剤を投入することができる。また、カルシウム化合物とアルカリ剤との両方を投入してもよい。カルシウム化合物とアルカリ剤とは、被処理水中のリンと反応して難溶解性のカルシウム塩を生成する。例えば、消石灰、塩化カルシウム、水酸化ナトリウム、水酸化マグネシウム、などのアルカリ性水溶液が挙げられる。
種結晶としては、例えばケイ酸カルシウム化合物、炭酸カルシウム、リン鉱石、骨炭、リン酸カルシウムを採用することができる。
種結晶の粒径は限定されない。例えば、0.15〜0.3mmである。
A calcium compound or an alkaline agent can be introduced into the water to be treated in the reaction tank. Moreover, you may throw in both a calcium compound and an alkaline agent. The calcium compound and the alkali agent react with phosphorus in the water to be treated to produce a hardly soluble calcium salt. For example, alkaline aqueous solutions, such as slaked lime, calcium chloride, sodium hydroxide, magnesium hydroxide, are mentioned.
As the seed crystal, for example, a calcium silicate compound, calcium carbonate, phosphate rock, bone charcoal, or calcium phosphate can be employed.
The grain size of the seed crystal is not limited. For example, it is 0.15-0.3 mm.

晶析脱リン法とは、種結晶の表面で晶析反応によりヒドロキシアパタイトの結晶を成長させる方法である。ヒドロキシアパタイトには、Ca、OH、PO4 のモル数が異なる幾つかの分子式がある。代表的には、(Ca5(OH)(PO43)で表されている。晶析反応を次式に示す。
5Ca2++OH-+3PO4→Ca5(OH)(PO43
晶析反応は、被処理水中のリンを難溶性のヒドロキシアパタイトとして析出させる。ヒドロキシアパタイトの溶解度積はきわめて小さく(Ks=10〜55.9)、低いリン濃度の処理水を得ることができる。処理水のpHは、対象とする被処理水の種類、濃度、目標とする処理水のリン濃度により異なるが、一般的にpH8〜10である。
The crystallization dephosphorization method is a method for growing a hydroxyapatite crystal by a crystallization reaction on the surface of a seed crystal. Hydroxyapatite has several molecular formulas that differ in the number of moles of Ca, OH, and PO 4 . Typically, it is represented by (Ca 5 (OH) (PO 4 ) 3 ). The crystallization reaction is shown in the following formula.
5Ca 2+ + OH + 3PO 4 → Ca 5 (OH) (PO 4 ) 3
In the crystallization reaction, phosphorus in the water to be treated is precipitated as hardly soluble hydroxyapatite. The solubility product of hydroxyapatite is very small (Ks = 10-55.9), and treated water with a low phosphorus concentration can be obtained. The pH of the treated water varies depending on the type and concentration of target treated water and the target phosphorous concentration of treated water, but is generally pH 8 to 10.

請求項4に記載の発明は、リンを含有する被処理水が貯留される反応槽と、該反応槽の下部内に形成され、複数の吹出口が上壁に形成された圧力室と、前記反応槽内の圧力室より上方に形成され、種結晶が存在する流動床と、前記圧力室に被処理水を供給する被処理水供給手段と、前記被処理水に含まれるリンと種結晶とを接触させ、前記被処理水中のリンを種結晶の表面に晶析することで除去して得られた処理水の一部を、前記各吹出口を通して、前記圧力室に循環水として供給する循環水供給手段とを備えた反応晶析処理装置において、前記圧力室を、前記被処理水が供給される被処理水用圧力室と、前記循環水が供給される循環水用圧力室とに区画し、前記吹出口は、前記被処理水用圧力室と流動床とを連通する吹出口と、前記循環水用圧力室と流動床とを連通する吹出口とを有し、前記被処理水供給手段は、前記被処理水を被処理水用圧力室に供給する被処理水供給流路を有し、前記循環水供給手段は、前記循環水を循環水用圧力室に供給する循環水供給流路を有している反応晶析処理装置である。   The invention according to claim 4 is a reaction tank in which water to be treated containing phosphorus is stored, a pressure chamber formed in a lower part of the reaction tank, and a plurality of outlets formed in an upper wall; A fluidized bed formed above the pressure chamber in the reaction tank and containing seed crystals, treated water supply means for supplying treated water to the pressure chambers, phosphorus and seed crystals contained in the treated water A part of the treated water obtained by removing phosphorus by crystallizing the surface of the seed water on the surface of the seed crystal, and supplying the pressure chamber as circulating water through each outlet In the reaction crystallization treatment apparatus including water supply means, the pressure chamber is divided into a pressure chamber for water to be treated to which the water to be treated is supplied and a pressure chamber for circulating water to which the circulating water is supplied. The outlet is configured to connect the pressure chamber for water to be treated and the fluidized bed, and the circulating water. A blowout opening communicating with the pressure chamber and the fluidized bed, and the treated water supply means includes a treated water supply flow path for supplying the treated water to the pressure chamber for treated water, and the circulation The water supply means is a reaction crystallization treatment apparatus having a circulating water supply channel for supplying the circulating water to the circulating water pressure chamber.

この発明によれば、被処理水を被処理水用圧力室から流動床に導入し、循環水を循環水用圧力室から流動床に導入する。これにより、流動状態の種結晶中ではじめて循環水と被処理水とが混合される。よって、混合時のリン濃度がリンの過溶解度以上でも、ほとんどのリンは種結晶の表面に晶析される。その結果、被処理水中のリン濃度が変動しても、循環水流量/被処理水流量比を変更することなく、リン酸カルシウムの凝集物の発生量を低減することができる。
被処理水供給手段と循環水供給手段とは、各種のポンプを駆動源としたものを採用することができる。
According to this invention, the water to be treated is introduced from the pressure chamber for water to be treated into the fluidized bed, and the circulating water is introduced from the pressure chamber for circulating water to the fluidized bed. Thereby, circulating water and to-be-processed water are mixed only in the seed crystal of a fluid state. Therefore, even if the phosphorus concentration at the time of mixing is higher than the excessive solubility of phosphorus, most phosphorus is crystallized on the surface of the seed crystal. As a result, even if the phosphorus concentration in the water to be treated fluctuates, the amount of calcium phosphate agglomerates generated can be reduced without changing the ratio of the circulating water flow rate / treated water flow rate.
The to-be-treated water supply means and the circulating water supply means can employ various pumps as drive sources.

請求項5に記載の発明は、前記被処理水供給流路の下流側の端部は、前記反応槽の周壁の一部から被処理水用圧力室に連通され、前記循環水供給流路の下流側の端部は、前記反応槽内を通って循環水用圧力室に連通された請求項4に記載の反応晶析処理装置である。
この発明によれば、被処理水供給流路の下流側の端部は反応槽の周壁の一部から被処理水用圧力室に連通され、循環水供給流路の下流側の端部は反応槽内を通って循環水用圧力室に連通されている。これにより、反応槽の下方に配管が存在せず、反応槽の施工およびメンテナンスが容易になる。
According to a fifth aspect of the present invention, the downstream end of the treated water supply flow path is communicated with a treated water pressure chamber from a part of the peripheral wall of the reaction tank, and the circulating water supply flow path 5. The reaction crystallization treatment apparatus according to claim 4, wherein the downstream end is communicated with the circulating water pressure chamber through the reaction vessel.
According to this invention, the downstream end of the treated water supply channel is communicated with the treated water pressure chamber from a part of the peripheral wall of the reaction tank, and the downstream end of the circulating water supply channel is reacted. It communicates with the pressure chamber for circulating water through the tank. Thereby, piping does not exist under the reaction tank, and the construction and maintenance of the reaction tank are facilitated.

請求項1および請求項3に記載の反応晶析処理方法および請求項4に記載の反応晶析処理装置によれば、被処理水と循環水とを、流動床に導入する直前に初めて接触・混合させるか、または、個別に流動床に導入させるので、被処理水中のリン濃度が変動しても、循環水流量/被処理水流量比を変更することなく、目的成分の凝集物の発生量を低減することができる。   According to the reaction crystallization treatment method according to claim 1 and claim 3 and the reaction crystallization treatment apparatus according to claim 4, the water to be treated and the circulating water are contacted for the first time just before being introduced into the fluidized bed. Because they are mixed or introduced individually into the fluidized bed, the amount of aggregates of the target component generated without changing the ratio of circulating water flow / treated water flow rate even if the phosphorus concentration in the treated water fluctuates Can be reduced.

特に、請求項5に記載の反応晶析処理装置によれば、被処理水供給流路は反応槽の周壁の一部から被処理水用圧力室と連通し、循環水供給流路は反応槽内を通って循環水用圧力室に連通したので、反応槽の下方には配管が存在せず、反応槽の施工およびメンテナンスが容易になる。   In particular, according to the reaction crystallization treatment apparatus according to claim 5, the treated water supply flow path communicates with a pressure chamber for treated water from a part of the peripheral wall of the reaction tank, and the circulating water supply flow path is the reaction tank. Since it communicated with the pressure chamber for circulating water through the inside, there is no piping below the reaction tank, and the construction and maintenance of the reaction tank becomes easy.

以下、図面を参照して、この発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1において、10はこの発明の実施例1に係る晶析脱リン装置(反応晶析処理装置)で、この晶析脱リン装置10は、リンを含有する被処理水が貯留される反応槽11と、反応槽11の下部内に形成され、多数のディストリビュータ(吹出口)12…が所定ピッチで上壁51に配設された圧力室13と、反応槽11内の圧力室13より上部に形成され、種結晶が存在する流動床14と、圧力室13に被処理水を供給する被処理水供給手段15と、被処理水に含まれるリンと種結晶とを接触させ、被処理水中のリンをヒドロキシアパタイトとして種結晶の表面に晶析して除去することで得られた処理水の一部を、圧力室13に循環水として供給する循環水供給手段16と、消石灰水溶液を貯留する消石灰水溶液供給槽17と、消石灰水溶液供給槽17内の消石灰水溶液を圧力室13に供給する消石灰水溶液供給手段18とを備えている。   In FIG. 1, 10 is a crystallization dephosphorization apparatus (reaction crystallization treatment apparatus) according to Embodiment 1 of the present invention, and this crystallization dephosphorization apparatus 10 is a reaction tank in which water to be treated containing phosphorus is stored. 11, a pressure chamber 13 formed in the lower part of the reaction tank 11, and a number of distributors (outlets) 12... Disposed on the upper wall 51 at a predetermined pitch, and above the pressure chamber 13 in the reaction tank 11. The formed fluidized bed 14 in which seed crystals are present, the water to be treated supplying means 15 for supplying the water to be treated to the pressure chamber 13, and the phosphorus and seed crystals contained in the water to be treated are brought into contact with each other. Circulating water supply means 16 for supplying a part of the treated water obtained by crystallizing and removing phosphorus as hydroxyapatite on the surface of the seed crystal as circulating water, and slaked lime for storing a slaked lime aqueous solution Aqueous solution supply tank 17 and slaked lime solution Slaked lime aqueous solution in the tank 17 and a slaked lime aqueous solution supplying means 18 for supplying to the pressure chamber 13.

反応槽11は、蓋を有した平面視して円形状の槽である。反応槽11の下部に形成された圧力室13は、被処理水が供給される下側の被処理水用圧力室19と、循環水が供給される上側の循環水用圧力室20とに、仕切り板52により区画されている。
反応槽11の上縁の外周部には、脱リン処理後の処理水が排出される環状の排水路11aが形成され、排水路11aの一部に排水管11bが連通されている。また、反応槽11の上部内には、周方向に一定ピッチで形成された多数のノズル孔を介して、処理水が貯留される領域において、SSを排出する環状のSS排出細管11cが配置されている。SS排出細管11cの一部と排水管11bの途中部とは、短尺な連通管11dにより連通されている。連通管11dの途中部には、開閉弁11eが設けられている。開閉弁11eを開き、排水管11bに処理水を流すと、連通管11dを介して、SS排出細管11c内が負圧化する。この負圧力により処理水中のSSがSS排出細管11cのノズル孔を通して、SS排出細管11c、連通管11d、排水管11bを経て外部に排出される。
The reaction tank 11 is a circular tank in plan view with a lid. The pressure chamber 13 formed in the lower part of the reaction tank 11 includes a lower pressure chamber for water to be treated 19 to which water to be treated is supplied and a pressure chamber for circulating water to the upper side to which circulating water is supplied. It is partitioned by a partition plate 52.
An annular drainage channel 11a through which treated water after dephosphorization is discharged is formed on the outer periphery of the upper edge of the reaction tank 11, and a drainage pipe 11b is communicated with a part of the drainage channel 11a. Further, in the upper part of the reaction tank 11, an annular SS discharge capillary 11c that discharges SS is disposed in a region where treated water is stored through a number of nozzle holes formed at a constant pitch in the circumferential direction. ing. Part of the SS discharge thin tube 11c and the middle portion of the drain tube 11b are communicated with each other through a short communication tube 11d. An open / close valve 11e is provided in the middle of the communication pipe 11d. When the on-off valve 11e is opened and the treated water is allowed to flow through the drain pipe 11b, the inside of the SS discharge narrow pipe 11c becomes negative pressure via the communication pipe 11d. Due to this negative pressure, the SS in the treated water is discharged to the outside through the nozzle hole of the SS discharge thin tube 11c, through the SS discharge thin tube 11c, the communication tube 11d, and the drain tube 11b.

反応槽11の中央部には、下端部が循環水用圧力室20の中央部に連通する長尺な内筒(循環水供給流路)21が、その軸線を反応槽11の軸線に合致させて立設されている。内筒21の上端は、反応槽11の流動床14より上方であって、処理水が貯留される領域に配置されている。
内筒21の上端部には、上端の開口部に向かって徐々に拡径した拡径部21aが一体形成されている。拡径部21aには、パイプ周方向に90度間隔で、大判な4枚のガイド羽根21b…が立設されている。各ガイド羽根21b…は、反応槽11の蓋付近まで延びている。
At the center of the reaction tank 11, a long inner cylinder (circulation water supply flow path) 21 whose lower end communicates with the center of the circulating water pressure chamber 20 has its axis aligned with the axis of the reaction tank 11. Standing up. The upper end of the inner cylinder 21 is disposed above the fluidized bed 14 of the reaction tank 11 and in a region where treated water is stored.
The upper end portion of the inner cylinder 21 is integrally formed with an enlarged diameter portion 21a that gradually increases in diameter toward the opening at the upper end. Four large guide blades 21b are erected on the enlarged diameter portion 21a at intervals of 90 degrees in the pipe circumferential direction. Each guide blade 21 b extends to the vicinity of the lid of the reaction tank 11.

反応槽11の蓋の中央部上には、処理水を内筒21に引き込むポンプ装置40用の電動モータ41が立設されている。電動モータ41の出力軸42は長尺で、小型の回転羽根22が固着された出力軸42の先端部(下端部)は、反応槽11の軸線に沿って、拡径部21aの元部付近に配置されている。電動モータ41により出力軸42を回転させると、回転羽根22が回転し、内筒21内で下方に向かう水流が発生する。これにより、反応槽11の上部の処理水が、拡径部21aから内筒21を介して、循環水用圧力室20に流れ込む。内筒21は、必ずしも反応槽11の軸線上に配置されなくてもよい。内筒21とポンプ装置40とにより、循環水供給手段16が構成される。   An electric motor 41 for the pump device 40 that draws treated water into the inner cylinder 21 is erected on the central portion of the lid of the reaction tank 11. The output shaft 42 of the electric motor 41 is long, and the front end portion (lower end portion) of the output shaft 42 to which the small rotating blade 22 is fixed is near the base portion of the enlarged diameter portion 21 a along the axis of the reaction tank 11. Is arranged. When the output shaft 42 is rotated by the electric motor 41, the rotary blade 22 is rotated, and a downward water flow is generated in the inner cylinder 21. Thereby, the treated water of the upper part of the reaction tank 11 flows into the circulating water pressure chamber 20 from the enlarged diameter portion 21a through the inner cylinder 21. The inner cylinder 21 is not necessarily arranged on the axis of the reaction tank 11. The inner cylinder 21 and the pump device 40 constitute the circulating water supply means 16.

被処理水供給手段15は、被処理水貯留槽23を有している。被処理水貯留槽23の底板と、被処理水用圧力室19の周側部の一部とは、被処理水供給管24(被処理水供給流路)により連通されている。被処理水供給管24の途中部には、上流部から順次に、電磁弁25と、被処理水供給ポンプ50とが配設されている。被処理水供給ポンプ50の作動により、被処理水貯留槽23中のリンを含有する被処理水が、前記被処理水用圧力室19に供給される。   The treated water supply means 15 has a treated water storage tank 23. The bottom plate of the treated water storage tank 23 and a part of the peripheral side portion of the treated water pressure chamber 19 are communicated by a treated water supply pipe 24 (treated water supply flow path). A solenoid valve 25 and a treated water supply pump 50 are disposed in the middle of the treated water supply pipe 24 sequentially from the upstream portion. By the operation of the treated water supply pump 50, treated water containing phosphorus in the treated water storage tank 23 is supplied to the pressure chamber 19 for treated water.

次に、図2および図3を参照して、圧力室13の上壁51と、ディストリビュータ12…とを詳細に説明する。
上壁51は円板形状を有し、中心部に前記内筒21の下端部の嵌入孔51aが形成されている。また、この嵌入孔51aの周囲には、ディストリビュータ12の装着孔51b…が60度間隔で6つ形成されている。また、上壁51の外周部の内部には、上壁51の外端面と各装着孔51b…とを連通する合計6本の細い連通路51c…が、嵌入孔51aを中心として放射状に形成されている。
Next, the upper wall 51 of the pressure chamber 13 and the distributors 12 will be described in detail with reference to FIGS.
The upper wall 51 has a disk shape, and a fitting hole 51a at the lower end of the inner cylinder 21 is formed at the center. Further, around the fitting hole 51a, six mounting holes 51b ... of the distributor 12 are formed at intervals of 60 degrees. In addition, a total of six narrow communication passages 51c that communicate the outer end surface of the upper wall 51 and the mounting holes 51b are formed radially inside the outer peripheral portion of the upper wall 51 with the fitting hole 51a as the center. ing.

反応槽11の下部の周囲には、支持部材53を介して、反応槽11より大径で、供給部54aを通して消石灰水溶液供給槽17の消石灰水溶液が供給される環状の連結管54が外装されている。連結管54の内周部には、周方向に60度間隔で、各連通路51c…に挿入される6本のノズル部54b…が、内方に向かって放射配置されている。各ノズル部54b…の長さは、対応する連通路51c…の長さと同じでる。消石灰水溶液供給槽17の消石灰水溶液は、供給部54aを介して連結管54に供給され、各ノズル部54b…から対応する装着孔51b…に供給される。また、連結管54の代わりに、各ノズル部54b…の連通部分にロータリーバルブをそれぞれ配置し、ロータリーバルブの開閉操作により、6本のノズル部54b…に消石灰水溶液を順次供給するようにしてもよい。   Around the lower part of the reaction tank 11, an annular connecting pipe 54 that is larger in diameter than the reaction tank 11 and is supplied with the slaked lime aqueous solution supply tank 17 of the slaked lime aqueous solution supply tank 17 through the supply part 54 a is provided through the support member 53. Yes. In the inner peripheral portion of the connecting pipe 54, six nozzle portions 54b, which are inserted into the communication passages 51c, are radially arranged inward at intervals of 60 degrees in the circumferential direction. The length of each nozzle part 54b ... is the same as the length of the corresponding communicating path 51c .... The slaked lime aqueous solution in the slaked lime aqueous solution supply tank 17 is supplied to the connecting pipe 54 via the supply part 54a, and is supplied from the nozzle parts 54b to the corresponding mounting holes 51b. Further, instead of the connecting pipe 54, a rotary valve is arranged at the communicating part of each nozzle part 54b, and the slaked lime aqueous solution is sequentially supplied to the six nozzle parts 54b by opening and closing the rotary valve. Good.

各ディストリビュータ12…は、対応する装着孔51b…の下部に装着される環状のノズル下部12a…と、対応する装着孔51b…の上部に装着される環状のノズル上部12b…と、ノズル上部12b…の上方に配置され、ノズル上部12b…を通過した流体を、流動床14の底面に向かって吹き出させるノズル傘板12c…とを有している。ノズル上部12b…は、上壁51の上面より若干上方に突出している。ノズル傘板12c…は、周方向に90度配置された4本の短尺な支柱12d…を介して、ノズル上部12b…との間に所定の流体通過用の隙間を保持して上壁51の上方に配置されている。
ノズル下部12a…とノズル上部12b…との間には、対応するノズル部54b…の先端が配置されている。したがって、連結管54に供給された消石灰水溶液は、ノズル部54b…を介して、対応するノズル下部12a…とノズル上部12b…との間から装着孔51b…に吹き出される。
Each distributor 12 has an annular nozzle lower part 12a attached to the lower part of the corresponding attachment hole 51b, an annular nozzle upper part 12b attached to the upper part of the corresponding attachment hole 51b, and a nozzle upper part 12b. .., And nozzle umbrella plates 12 c that allow the fluid that has passed through the nozzle upper portions 12 b to blow out toward the bottom surface of the fluidized bed 14. The upper nozzle portions 12b project slightly upward from the upper surface of the upper wall 51. The nozzle umbrella plate 12c... Holds a predetermined fluid passage gap with the nozzle upper portion 12b... Via four short columns 12d. It is arranged above.
Between the nozzle lower portions 12a and the nozzle upper portions 12b, tips of corresponding nozzle portions 54b are arranged. Therefore, the slaked lime aqueous solution supplied to the connecting pipe 54 is blown out from the corresponding nozzle lower part 12a... And nozzle upper part 12b.

一方、上壁51の各装着孔51b…との対向部分には、先端の開口部が、対応する装着孔51b…の下側の開口部の中心部付近に配置された吹出ノズル55…が、合計6本立設されている。各吹出ノズル55…は、下側の開口部が被処理水用圧力室19と連通されている。したがって、被処理水貯留槽23から被処理水用圧力室19に供給された被処理水は、吹出ノズル55…、ディストリビュータ12…を通過して、流動床14に吹き出される。   On the other hand, at the portions of the upper wall 51 facing the mounting holes 51b, there are blowout nozzles 55 in which the opening at the tip is arranged near the center of the lower opening of the corresponding mounting hole 51b. A total of 6 stands. As for each blowing nozzle 55 ..., the lower opening part is connected with the pressure chamber 19 for to-be-processed water. Therefore, the treated water supplied from the treated water storage tank 23 to the treated water pressure chamber 19 passes through the blowing nozzles 55... And the distributor 12, and is blown out to the fluidized bed 14.

前記消石灰水溶液供給槽17は、反応槽11の外に設置されている。その内容量は、7日分の処理に使用される消石灰水溶液を貯留可能な程度である。消石灰水溶液供給槽17には、電動モータ26により駆動する攪拌装置27が設けられている。消石灰水溶液の補給は、消石灰水溶液供給槽17に設けられた液面センサの検出信号に基づき、図示しない補給ポンプにより自動で行われる。
消石灰水溶液供給槽17には、ポンプ31が途中部に設けられた岐管30の一端部が連通されている。岐管30の他端部は、供給部54aに連通されている。反応槽11の蓋には、処理水のpHを検出するpHセンサ100が設けられている。pHセンサ100は、pH制御装置101の入力側に接続されている。処理水のpHは、pHセンサ100により検出され、得られた検出データに基づき、pH制御装置101からポンプ31に、所定量の消石灰水溶液を流動床14に供給する指令が出される。前記消石灰水溶液供給手段18は、岐管30,ポンプ31により構成される。
The slaked lime aqueous solution supply tank 17 is installed outside the reaction tank 11. Its internal capacity is such that it can store the slaked lime aqueous solution used for the treatment for 7 days. The slaked lime aqueous solution supply tank 17 is provided with a stirring device 27 driven by an electric motor 26. The replenishment of the slaked lime aqueous solution is automatically performed by a replenishment pump (not shown) based on the detection signal of the liquid level sensor provided in the slaked lime aqueous solution supply tank 17.
The slaked lime aqueous solution supply tank 17 communicates with one end of a branch pipe 30 provided with a pump 31 in the middle. The other end of the manifold 30 communicates with the supply unit 54a. The lid of the reaction tank 11 is provided with a pH sensor 100 that detects the pH of the treated water. The pH sensor 100 is connected to the input side of the pH control device 101. The pH of the treated water is detected by the pH sensor 100, and a command for supplying a predetermined amount of the slaked lime aqueous solution to the fluidized bed 14 is issued from the pH controller 101 to the pump 31 based on the obtained detection data. The slaked lime aqueous solution supply means 18 includes a manifold 30 and a pump 31.

次に、実施例1の晶析脱リン装置10を用いたリンを含有する被処理水の晶析脱リン方法を説明する。
まず、電磁弁25を開弁して被処理水供給ポンプ50を作動し、被処理水貯留槽23内の被処理水を被処理水供給管24を通して被処理水用圧力室19に供給する。循環水は、電動モータ41により回転羽根22を回転させることで、反応槽11の上部の処理水を、拡径部21aから内筒21を介して、循環水用圧力室20に供給する。その後、被処理水用圧力室19内の被処理水は、各吹出ノズル55…を介して、対応するディストリビュータ12を経て流動床14に導入される。一方、循環水用圧力室20内の循環水は、各ディストリビュータ12を通して、流動床14に導入される。
また、必要により供給される消石灰水溶液は、ポンプ31の作動により、消石灰水溶液供給槽17から岐管30、供給部54aを順次経て、連結管54、各ノズル部54b…を通して、対応する装着孔51b…から流動床14に導入される。
Next, the crystallization dephosphorization method of the to-be-processed water containing the phosphorus using the crystallization dephosphorization apparatus 10 of Example 1 is demonstrated.
First, the to-be-treated water supply pump 50 is operated by opening the electromagnetic valve 25, and the to-be-treated water in the to-be-treated water storage tank 23 is supplied to the to-be-treated water pressure chamber 19 through the to-be-treated water supply pipe 24. The circulating water supplies the treated water at the upper part of the reaction tank 11 to the circulating water pressure chamber 20 from the enlarged diameter portion 21a via the inner cylinder 21 by rotating the rotary blade 22 by the electric motor 41. Thereafter, the water to be treated in the pressure chamber 19 for water to be treated is introduced into the fluidized bed 14 through the corresponding nozzles 12 through the blowout nozzles 55. On the other hand, the circulating water in the circulating water pressure chamber 20 is introduced into the fluidized bed 14 through each distributor 12.
Further, the slaked lime aqueous solution to be supplied as needed passes through the manifold 30 and the supply part 54a in order from the slaked lime aqueous solution supply tank 17 by the operation of the pump 31, and then through the connecting pipe 54, each nozzle part 54b. Are introduced into the fluidized bed 14.

これにより、被処理水および循環水は、流動床14に導入される直前の各ディストリビュータ12…の内部で初めて接触・混合される。被処理水はリン濃度が高い。また、循環水は、消石灰水溶液供給槽17から供給された消石灰水溶液の影響により、カルシウムイオンの濃度とpHとが高められている。しかしながら、流動床14内での被処理水と循環水との混合は、種結晶の存在状態での混合となる。そのため、混合時のリン濃度がリンの過溶解度以上であっても、大半のリンは、ヒドロキシアパタイトとして種結晶の表面に晶析される。必要に応じて供給される消石灰水溶液も、同じように流動床14に導入される直前の各ディストリビュータ12…の内部で初めて、被処理水と循環水とに接触・混合される。   Thus, the water to be treated and the circulating water are contacted and mixed for the first time inside the distributors 12 immediately before being introduced into the fluidized bed 14. The treated water has a high phosphorus concentration. Further, the circulating water has a calcium ion concentration and a pH increased due to the influence of the slaked lime aqueous solution supplied from the slaked lime aqueous solution supply tank 17. However, the mixing of the water to be treated and the circulating water in the fluidized bed 14 is mixing in the presence of seed crystals. Therefore, even if the phosphorus concentration at the time of mixing is higher than the excessive solubility of phosphorus, most phosphorus is crystallized on the surface of the seed crystal as hydroxyapatite. Similarly, the slaked lime aqueous solution supplied as needed is also contacted and mixed with the water to be treated and the circulating water for the first time in each distributor 12... Just before being introduced into the fluidized bed 14.

その結果、リンがリン酸カルシウムの凝集物として発生し難くなる。よって、循環水流量/被処理水流量比を変更することなく、晶析法による回収ができない凝集物の発生量を低減することができる。
また、晶析脱リン装置10では、循環水供給流路として、反応槽11内に立設された内筒21を採用し、被処理水供給流路として、反応槽11の下部の周壁の一部に形成された被処理水供給管24を採用したので、従来装置のように反応槽11の底面部から配管が除去され、反応槽11の施工と、メンテナンスとが容易になる。
As a result, phosphorus is hardly generated as an aggregate of calcium phosphate. Therefore, the amount of aggregates that cannot be recovered by the crystallization method can be reduced without changing the circulating water flow rate / treated water flow rate ratio.
Further, in the crystallization dephosphorization apparatus 10, an inner cylinder 21 erected in the reaction tank 11 is adopted as a circulating water supply flow path, and a lower peripheral wall of the reaction tank 11 is used as a water to be treated supply flow path. Since the to-be-processed water supply pipe | tube 24 formed in the part was employ | adopted, piping is removed from the bottom face part of the reaction tank 11 like a conventional apparatus, and construction and maintenance of the reaction tank 11 become easy.

ここで、図4〜図6と、図7のグラフとを参照して、実際に従来法とこの発明法とに対して施された晶析脱リン試験の結果を報告する。図4〜図6中、図1の晶析脱リン装置10と同じ部品には、同一符号を附する。
図7のグラフ中、比較例1では、リンを含有する被処理水と循環水とが1つの圧力室13で混合され、消石灰水溶液が外部の配管40aを通して流動床14の下部に供給される晶析脱リン装置10A(図4)を採用した。試験例1では、圧力室13が下側の被処理水用圧力室19と上側の循環水用圧力室20とに上下に区画され、反応槽11の周壁に設けられた循環水供給管41aの途中に消石灰水溶液が配管40bを通して混入される晶析脱リン装置10B(図5)を採用した。試験例2では、圧力室13が同じく下側の被処理水用圧力室19と上側の循環水用圧力室20とに区画され、消石灰水溶液が外からの配管40aを通して流動床14の下部に供給される晶析脱リン装置10C(図6)を採用した。
実験条件は、比較例1および試験例1,2ともに、被処理水のリン濃度(リン酸イオン態りん濃度)4.7mg/リットル、循環水流量/被処理水流量比10、流動床14の制御pH9.8、空塔速度10/hrである。
Here, with reference to FIGS. 4 to 6 and the graph of FIG. 7, the results of the crystallization dephosphorization test actually performed on the conventional method and the method of the present invention will be reported. 4 to 6, the same parts as those in the crystallization dephosphorization apparatus 10 in FIG.
In the graph of FIG. 7, in Comparative Example 1, the water to be treated containing phosphorus and the circulating water are mixed in one pressure chamber 13, and the slaked lime aqueous solution is supplied to the lower part of the fluidized bed 14 through the external pipe 40a. An analysis and dephosphorization apparatus 10A (FIG. 4) was employed. In Test Example 1, the pressure chamber 13 is vertically divided into a lower pressure chamber for water to be treated 19 and an upper pressure chamber for circulating water 20, and a circulating water supply pipe 41 a provided on the peripheral wall of the reaction tank 11. A crystallization dephosphorization apparatus 10B (FIG. 5) in which a slaked lime aqueous solution was mixed in the middle through the pipe 40b was adopted. In Test Example 2, the pressure chamber 13 is similarly divided into a lower pressure chamber 19 for water to be treated and an upper pressure chamber 20 for circulating water, and an aqueous solution of slaked lime is supplied to the lower part of the fluidized bed 14 through a pipe 40a from the outside. A crystallization dephosphorization apparatus 10C (FIG. 6) was employed.
As for the experimental conditions, in both Comparative Example 1 and Test Examples 1 and 2, the phosphorus concentration of the treated water (phosphate ion phosphorus concentration) is 4.7 mg / liter, the circulating water flow rate / treated water flow rate ratio is 10, and the fluidized bed 14 Control pH is 9.8, superficial velocity is 10 / hr.

図7のグラフから明らかなように、同じ循環水流量/被処理水流量比であっても、試験例1,2は比較例1に比べて凝集物の発生量が少ない。よって、種結晶の存在下で、リンを含有する被処理水と循環水とを混合させれば、凝集物の発生が抑制されることが分かった。   As is clear from the graph of FIG. 7, even in the same circulating water flow rate / treated water flow rate ratio, Test Examples 1 and 2 generate less aggregates than Comparative Example 1. Therefore, it was found that if the treated water containing phosphorus and the circulating water are mixed in the presence of seed crystals, the generation of aggregates is suppressed.

この発明の実施例1に係る反応晶析処理装置の概略構成図である。It is a schematic block diagram of the reaction crystallization processing apparatus which concerns on Example 1 of this invention. この発明の実施例1に係る反応晶析処理装置の要部拡大断面図である。It is a principal part expanded sectional view of the reaction crystallization processing apparatus which concerns on Example 1 of this invention. この発明の実施例1に係る反応晶析処理装置に組み込まれた連結管の要部平面図である。It is a principal part top view of the connection pipe integrated in the reaction crystallization processing apparatus which concerns on Example 1 of this invention. 従来手段に係る晶析脱リン装置の概略構成図である。It is a schematic block diagram of the crystallization dephosphorization apparatus which concerns on a conventional means. この発明の他の実施例に係る晶析脱リン装置の概略構成図である。It is a schematic block diagram of the crystallization dephosphorization apparatus which concerns on the other Example of this invention. この発明の別の実施例に係る晶析脱リン装置の概略構成図である。It is a schematic block diagram of the crystallization dephosphorization apparatus which concerns on another Example of this invention. この発明法と従来法とにより得られた処理水中のリン成分を示すグラフである。It is a graph which shows the phosphorus component in the treated water obtained by this invention method and the conventional method.

符号の説明Explanation of symbols

10 晶析脱リン装置(反応晶析処理装置)、
11 反応槽、
12 ディストリビュータ(吹出口)、
13 圧力室、
14 流動床、
15 被処理水供給手段、
16 循環水供給手段、
18 消石灰水溶液供給手段、
19 被処理水用圧力室、
20 循環水用圧力室、
21 内筒(循環水供給流路)、
24 被処理水供給管(被処理水供給流路)。
10 Crystallization dephosphorization device (reaction crystallization treatment device),
11 reaction tank,
12 Distributor (air outlet),
13 Pressure chamber,
14 fluidized bed,
15 treated water supply means,
16 Circulating water supply means,
18 Slaked lime aqueous solution supply means,
19 Pressure chamber for water to be treated
20 Pressure chamber for circulating water,
21 inner cylinder (circulation water supply flow path),
24 treated water supply pipe (treated water supply flow path).

Claims (5)

種結晶が存在する流動床に被処理水を導入し、前記流動床で被処理水と種結晶とを接触させることにより、前記種結晶の表面に被処理水中の目的成分を化合物として晶析して処理水を得るとともに、該処理水の一部を循環水として前記流動床に導入する反応晶析処理方法において、
前記被処理水と循環水とを、前記流動床に導入する直前に初めて接触・混合させるか、または、個別に流動床に導入させる反応晶析処理方法。
By introducing the water to be treated into the fluidized bed in which the seed crystals are present and bringing the water to be treated and the seed crystals into contact with each other in the fluidized bed, the target component in the water to be treated is crystallized as a compound on the surface of the seed crystals. In the reactive crystallization treatment method, a part of the treated water is introduced into the fluidized bed as circulating water.
A reaction crystallization treatment method in which the water to be treated and the circulating water are contacted and mixed for the first time immediately before being introduced into the fluidized bed, or individually introduced into the fluidized bed.
前記流動床には薬液が添加され、
該薬液は、前記被処理水と循環水とが流動床に導入される直前に、または流動床中で、前記被処理水と循環水とに接触・混合される請求項1に記載の反応晶析処理方法。
A chemical is added to the fluidized bed,
The reaction crystal according to claim 1, wherein the chemical solution is brought into contact with and mixed with the water to be treated and the circulating water immediately before the treated water and the circulating water are introduced into the fluidized bed or in the fluidized bed. Analysis method.
反応槽の下部に形成された圧力室から、該圧力室の上壁に形成された複数の吹出口を通して、前記反応槽の圧力室より上方に形成され、種結晶が存在する流動床にリンを含有した被処理水を導入し、前記流動床で被処理水中のリンと種結晶とを接触させて種結晶の表面にこの被処理水中のリンを晶析することで処理水を得るとともに、該処理水の一部を循環水として、前記圧力室から各吹出口を通して流動床に導入する反応晶析処理方法において、
前記圧力室を、前記被処理水が導入される被処理水用圧力室と、前記循環水が導入される循環水用圧力室とに区画し、
前記被処理水は、前記吹出口を通して被処理水用圧力室から流動床に導入する一方、前記循環水は、前記被処理水用の吹出口とは異なる吹出口を通して循環水用圧力室から流動床に導入する反応晶析処理方法。
From the pressure chamber formed in the lower part of the reaction tank, through a plurality of outlets formed in the upper wall of the pressure chamber, phosphorus is added to the fluidized bed formed above the pressure chamber of the reaction tank and containing seed crystals. The treated water contained is introduced, phosphorus in the treated water is brought into contact with the seed crystal in the fluidized bed, and the treated water is crystallized on the surface of the seed crystal to obtain treated water, In the reaction crystallization treatment method in which a part of the treated water is introduced into the fluidized bed through the outlets from the pressure chamber as circulating water,
The pressure chamber is divided into a pressure chamber for treated water into which the treated water is introduced and a pressure chamber for circulating water into which the circulating water is introduced,
The treated water is introduced into the fluidized bed from the treated water pressure chamber through the blowout port, while the circulating water flows from the circulating water pressure chamber through a different blowout port from the treated water blowout port. A reactive crystallization treatment method introduced into the floor.
リンを含有する被処理水が貯留される反応槽と、
該反応槽の下部内に形成され、複数の吹出口が上壁に形成された圧力室と、
前記反応槽内の圧力室より上方に形成され、種結晶が存在する流動床と、
前記圧力室に被処理水を供給する被処理水供給手段と、
前記被処理水に含まれるリンと種結晶とを接触させ、前記被処理水中のリンを種結晶の表面に晶析することで除去して得られた処理水の一部を、前記各吹出口を通して、前記圧力室に循環水として供給する循環水供給手段とを備えた反応晶析処理装置において、
前記圧力室を、前記被処理水が供給される被処理水用圧力室と、前記循環水が供給される循環水用圧力室とに区画し、
前記吹出口は、前記被処理水用圧力室と流動床とを連通する吹出口と、前記循環水用圧力室と流動床とを連通する吹出口とを有し、
前記被処理水供給手段は、前記被処理水を被処理水用圧力室に供給する被処理水供給流路を有し、
前記循環水供給手段は、前記循環水を循環水用圧力室に供給する循環水供給流路を有している反応晶析処理装置。
A reaction tank in which treated water containing phosphorus is stored;
A pressure chamber formed in the lower part of the reaction vessel and having a plurality of outlets formed in the upper wall;
A fluidized bed formed above the pressure chamber in the reaction vessel and containing seed crystals;
A treated water supply means for supplying treated water to the pressure chamber;
A part of the treated water obtained by bringing phosphorus contained in the treated water into contact with a seed crystal and removing phosphorus in the treated water by crystallization on the surface of the seed crystal, In the reaction crystallization treatment apparatus provided with circulating water supply means for supplying the pressure chamber as circulating water through,
The pressure chamber is divided into a pressure chamber for treated water to which the treated water is supplied and a pressure chamber for circulating water to which the circulating water is supplied,
The outlet has an outlet that communicates the pressure chamber for water to be treated and a fluidized bed, and an outlet that communicates the pressure chamber for circulating water and a fluidized bed,
The treated water supply means has a treated water supply flow path for supplying the treated water to a pressure chamber for treated water,
The said circulating water supply means is a reaction crystallization processing apparatus which has the circulating water supply flow path which supplies the said circulating water to the pressure chamber for circulating water.
前記被処理水供給流路の下流側の端部は、前記反応槽の周壁の一部から被処理水用圧力室に連通され、
前記循環水供給流路の下流側の端部は、前記反応槽内を通って循環水用圧力室に連通された請求項4に記載の反応晶析処理装置。
The downstream end of the treated water supply flow path is communicated with a treated water pressure chamber from a part of the peripheral wall of the reaction tank,
The reaction crystallization treatment apparatus according to claim 4, wherein an end portion on the downstream side of the circulating water supply flow path is communicated with the circulating water pressure chamber through the reaction tank.
JP2003330451A 2003-09-22 2003-09-22 Reaction crystallization treatment method and apparatus Expired - Fee Related JP4562366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330451A JP4562366B2 (en) 2003-09-22 2003-09-22 Reaction crystallization treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330451A JP4562366B2 (en) 2003-09-22 2003-09-22 Reaction crystallization treatment method and apparatus

Publications (2)

Publication Number Publication Date
JP2005095726A true JP2005095726A (en) 2005-04-14
JP4562366B2 JP4562366B2 (en) 2010-10-13

Family

ID=34459413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330451A Expired - Fee Related JP4562366B2 (en) 2003-09-22 2003-09-22 Reaction crystallization treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP4562366B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005334735A (en) * 2004-05-25 2005-12-08 Mitsubishi Materials Corp Reactive crystallization treatment apparatus
JP2006122896A (en) * 2004-09-28 2006-05-18 Mitsubishi Materials Corp Method of treatment with reactional crystallization and apparatus therefor
JP2008119632A (en) * 2006-11-14 2008-05-29 Ngk Insulators Ltd Upward flow type manganese contact column
CN102701299A (en) * 2012-06-20 2012-10-03 江苏海洲水务工程有限公司 Treatment equipment for wastewater with high ammonia and nitrogen contents
CN110627177A (en) * 2019-09-26 2019-12-31 北京朗新明环保科技有限公司 Fluorine removal method for fluorine-containing wastewater and fluidized bed crystallization separator for fluorine removal
JP2020069467A (en) * 2018-10-31 2020-05-07 國立成功大學National Cheng Kung University Treatment method for wastewater containing boron of high concentration

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110167A (en) * 1997-06-19 1999-01-19 Kurita Water Ind Ltd Dephosphorization device
JPH11267663A (en) * 1998-03-20 1999-10-05 Kurita Water Ind Ltd Dephosphorizing device
JPH11267665A (en) * 1998-03-20 1999-10-05 Kurita Water Ind Ltd Dephosphorizing device
JPH11277071A (en) * 1998-03-27 1999-10-12 Kurita Water Ind Ltd Removal of phosphorus
JP2000024692A (en) * 1998-07-08 2000-01-25 Nishihara Environ Sanit Res Corp Device for treating sulfate ion-containing waste water
JP2001198582A (en) * 2000-01-19 2001-07-24 Kurita Water Ind Ltd Dephosphorizing device
JP2002292204A (en) * 2001-03-30 2002-10-08 Japan Organo Co Ltd Crystallization reaction apparatus provided with means for controlling amount of raw water to be supplied and crystallization method to use the same
JP2002292202A (en) * 2001-03-30 2002-10-08 Japan Organo Co Ltd Crystallization reaction apparatus provided with means for recovering crystallization-reactive component
JP2002301480A (en) * 2001-04-10 2002-10-15 Kurita Water Ind Ltd Crystallization dephosphorization method
JP2002306903A (en) * 2001-04-12 2002-10-22 Kurita Water Ind Ltd Crystallization dephosphorizing apparatus
JP2003190967A (en) * 2001-12-25 2003-07-08 Kurita Water Ind Ltd Crystallization and dephosphorization method and apparatus
JP2003190706A (en) * 2001-12-21 2003-07-08 Japan Organo Co Ltd Crystallization treatment method
JP2003225502A (en) * 2002-02-06 2003-08-12 Japan Organo Co Ltd Crystallization treatment method using calcium hydroxide

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110167A (en) * 1997-06-19 1999-01-19 Kurita Water Ind Ltd Dephosphorization device
JPH11267663A (en) * 1998-03-20 1999-10-05 Kurita Water Ind Ltd Dephosphorizing device
JPH11267665A (en) * 1998-03-20 1999-10-05 Kurita Water Ind Ltd Dephosphorizing device
JPH11277071A (en) * 1998-03-27 1999-10-12 Kurita Water Ind Ltd Removal of phosphorus
JP2000024692A (en) * 1998-07-08 2000-01-25 Nishihara Environ Sanit Res Corp Device for treating sulfate ion-containing waste water
JP2001198582A (en) * 2000-01-19 2001-07-24 Kurita Water Ind Ltd Dephosphorizing device
JP2002292204A (en) * 2001-03-30 2002-10-08 Japan Organo Co Ltd Crystallization reaction apparatus provided with means for controlling amount of raw water to be supplied and crystallization method to use the same
JP2002292202A (en) * 2001-03-30 2002-10-08 Japan Organo Co Ltd Crystallization reaction apparatus provided with means for recovering crystallization-reactive component
JP2002301480A (en) * 2001-04-10 2002-10-15 Kurita Water Ind Ltd Crystallization dephosphorization method
JP2002306903A (en) * 2001-04-12 2002-10-22 Kurita Water Ind Ltd Crystallization dephosphorizing apparatus
JP2003190706A (en) * 2001-12-21 2003-07-08 Japan Organo Co Ltd Crystallization treatment method
JP2003190967A (en) * 2001-12-25 2003-07-08 Kurita Water Ind Ltd Crystallization and dephosphorization method and apparatus
JP2003225502A (en) * 2002-02-06 2003-08-12 Japan Organo Co Ltd Crystallization treatment method using calcium hydroxide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005334735A (en) * 2004-05-25 2005-12-08 Mitsubishi Materials Corp Reactive crystallization treatment apparatus
JP4696473B2 (en) * 2004-05-25 2011-06-08 三菱マテリアル株式会社 Reaction crystallizer
JP2006122896A (en) * 2004-09-28 2006-05-18 Mitsubishi Materials Corp Method of treatment with reactional crystallization and apparatus therefor
JP2008119632A (en) * 2006-11-14 2008-05-29 Ngk Insulators Ltd Upward flow type manganese contact column
JP4599335B2 (en) * 2006-11-14 2010-12-15 メタウォーター株式会社 Upflow type manganese contact tower
CN102701299A (en) * 2012-06-20 2012-10-03 江苏海洲水务工程有限公司 Treatment equipment for wastewater with high ammonia and nitrogen contents
JP2020069467A (en) * 2018-10-31 2020-05-07 國立成功大學National Cheng Kung University Treatment method for wastewater containing boron of high concentration
CN110627177A (en) * 2019-09-26 2019-12-31 北京朗新明环保科技有限公司 Fluorine removal method for fluorine-containing wastewater and fluidized bed crystallization separator for fluorine removal

Also Published As

Publication number Publication date
JP4562366B2 (en) 2010-10-13

Similar Documents

Publication Publication Date Title
JP4892212B2 (en) Reaction crystallizer
US20050031508A1 (en) Apparatus for manufacturing chlorine dioxide
JP2003225546A (en) Fine foam generation apparatus
US5837213A (en) Process for the desulfurization of sulfurous acid gas-containing waste gas
JPH1080693A (en) Treatment of waste water and waste water treating device
JP4562366B2 (en) Reaction crystallization treatment method and apparatus
CN100410246C (en) Hydrolysis process of synthesizing potassium acetylsulfamilate and special device for the same
JP4080046B2 (en) Anaerobic treatment method and apparatus
KR100784499B1 (en) Organic wastewater fermenting device
JPS60179190A (en) Dephosphorizing apparatus
JP2007253046A (en) Desulfurization equipment of sulfide-containing gas
WO2018221079A1 (en) Gas descending pipe, installation member, and desulfurization device
JP5017814B2 (en) Crystallization method
JPH0957081A (en) Device for supplying and dissolving powder chemical
JP4696473B2 (en) Reaction crystallizer
JP4774619B2 (en) Crystallization dephosphorization equipment
JPH06315696A (en) Defoaming device for activated sludge tank
CN111634990A (en) Device for removing carbonate and bicarbonate radical in cobaltic wastewater
KR101638317B1 (en) Injecter apparatus of suppling an oxygen
KR20080020080A (en) Equipment for treating culture fluid and nutri-culture equipment using the same
JP2007275735A (en) Purification system
CN220376455U (en) Pellet reactor device for inducing crystallization
JP2005177679A (en) Dephosphorization method
JPH11244871A (en) Treatment of manganese-containing water and device therefor
KR20150141400A (en) Wastewater disinfection and dissolved oxygen device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4562366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees