JPH11267663A - Dephosphorizing device - Google Patents

Dephosphorizing device

Info

Publication number
JPH11267663A
JPH11267663A JP7231398A JP7231398A JPH11267663A JP H11267663 A JPH11267663 A JP H11267663A JP 7231398 A JP7231398 A JP 7231398A JP 7231398 A JP7231398 A JP 7231398A JP H11267663 A JPH11267663 A JP H11267663A
Authority
JP
Japan
Prior art keywords
map
particles
reaction tower
granulating
map particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7231398A
Other languages
Japanese (ja)
Inventor
Masao Tsunekawa
正雄 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP7231398A priority Critical patent/JPH11267663A/en
Publication of JPH11267663A publication Critical patent/JPH11267663A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently recover magnesium ammonium phosphate(MAP) particles with large particle sizes, in a dephosphorizing device in which raw water is upward passed through a reaction tower, and the MAP particles are separated and recovered from the bottom of the reaction tower. SOLUTION: The raw water is fed to the bottom of the reaction tower 1, treated water is taken out from the upper part of the reaction tower 1 and also one portion of the treated water is circulated to the bottom of the reaction tower 1 and produced MAP particles are taken out from the bottom of the reaction tower 1. Granulating plates 20, 21 are provided on the upper part of the reaction tower 1. The granulating plates 20, 21 have a cone shape and a large number of holes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリン含有水中のリン
をMAP(リン酸マグネシウムアンモニウム)として除
去、回収する装置に係り、特に粒径の大きいMAP粒子
を回収することができると共に、反応塔からの細かなM
AP粒子の流失を防止することができる脱リン装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for removing and recovering phosphorus in water containing phosphorus as MAP (magnesium ammonium phosphate). Fine M
The present invention relates to a dephosphorization device capable of preventing the loss of AP particles.

【0002】[0002]

【従来の技術】下水、し尿、排水等の嫌気、好気処理工
程で発生する汚泥脱水濾液、消化脱離液等のリン含有水
からリンを除去する方法として、従来、リン含有水中に
マグネシウムイオンを添加して、該水中に含有されるア
ンモニア及びリンとマグネシウムとからMAPを生成さ
せ、生成したMAP粒子を分離回収する方法が提案され
ている。
2. Description of the Related Art As a method for removing phosphorus from phosphorus-containing water such as sludge dewatered filtrate and digestion / desorbed liquid generated in anaerobic and aerobic treatment processes such as sewage, night soil, and wastewater, magnesium ion is conventionally added to phosphorus-containing water To generate MAP from ammonia and phosphorus and magnesium contained in the water, and to separate and recover the generated MAP particles.

【0003】このMAP生成反応を利用する従来の脱リ
ン装置は、MAP粒子を充填した反応塔に、リン含有水
を上向流で通水し、マグネシウム塩を添加すると共に必
要に応じてアルカリを添加してpH8以上に調整し、空
気曝気でMAP充填層を流動させ、MAP粒子を撹拌混
合して造粒する流動床型式で行われている。
[0003] In a conventional dephosphorizer utilizing this MAP generation reaction, phosphorus-containing water is passed through a reaction tower filled with MAP particles in an upward flow, magnesium salts are added, and alkali is added as necessary. It is adjusted to pH 8 or more by adding, and the MAP packed bed is fluidized by air aeration, and the MAP particles are stirred and mixed to form a fluidized bed.

【0004】MAPの析出は、MAPの無い溶液からの
析出(一次核発生)と、既に存在するMAPの表面に析
出する場合とがある。前者のMAP粒径は微細で、通常
20μm以下である。後者は、MAP粒径を増大させ
る。また、この析出するMAPがバインダの働きをし複
数個のMAP粒子を凝集させる場合もあるが、この析出
MAPがバインダとして作用しうるのは粒径が小さい
(数十μm以下)もの同士の場合のみであり、粒径が大
きくなると、流動に伴う剪断力のためMAP粒子同士は
凝集できなくなる。また、反応部のMAP粒子数が多く
なると、凝集しにくくなることも確認されている。反応
部では、これらの現象が確率的に行われているものと見
なすことができる。
[0004] The MAP may be deposited from a MAP-free solution (primary nucleation) or may be deposited on the surface of an existing MAP. The former has a fine MAP particle size, usually 20 μm or less. The latter increases the MAP particle size. In some cases, the deposited MAP acts as a binder to aggregate a plurality of MAP particles, but the deposited MAP can act as a binder only when particles having a small particle size (several tens of μm or less) are used. However, when the particle size increases, the MAP particles cannot aggregate due to the shearing force accompanying the flow. It has also been confirmed that when the number of MAP particles in the reaction section increases, aggregation becomes difficult. In the reaction section, it can be considered that these phenomena are performed stochastically.

【0005】[0005]

【発明が解決しようとする課題】上記従来の脱リン方法
装置には次のような短所がある。
The conventional dephosphorization method apparatus has the following disadvantages.

【0006】 従来の脱リン装置では、立上時の粒子
数が少ない時に、上記の析出MAPによる粒子同士の凝
集作用が起こり易く、比較的短時間(約1日)のうちに
MAP粒子は200μm程度まで成長するが、それ以後
はMAP表面への析出となるため、MAP粒径の増加は
遅々たるものとなり、1〜2mm程度に成長するのに、
1ヶ月程度要する。また、何らかの原因で粒径の小さな
MAPが反応部に増加した場合、これらの粒子は殆ど凝
集せず、粒径の増大は極めて遅いものとなり、連続運転
でMAPが蓄積されると、やがて、上部から溢流し、回
収率が低下する。生成したMAPは装置下部から引き抜
かれるが、この際、粒径の小さなものは、水切り時に濾
液の方へ移動するため、MAPの回収率が低下する。
In the conventional dephosphorization apparatus, when the number of particles at the time of startup is small, the above-mentioned precipitated MAP tends to cause agglomeration of the particles, and the MAP particles are 200 μm in a relatively short time (about one day). However, since it is deposited on the MAP surface, the increase in the MAP particle size is slow and grows to about 1 to 2 mm.
It takes about one month. If MAP having a small particle size increases in the reaction zone for some reason, these particles hardly aggregate, and the increase in particle size becomes extremely slow. Spills over, reducing the recovery rate. The generated MAP is pulled out from the lower part of the apparatus. At this time, since the particles having a small particle size move toward the filtrate at the time of draining, the recovery rate of the MAP decreases.

【0007】 従来の装置では、反応部のMAP粒子
数を適切な範囲に保つことが重要であるが、一旦、粒子
数が過多あるいは過少になった場合、小粒径のMAP粒
子を反応部中間から引き抜くか、あるいはMAP粒子を
全量引き抜いて最初から操作をやり直すしか方策がな
い。
In the conventional apparatus, it is important to keep the number of MAP particles in the reaction section in an appropriate range. However, once the number of particles becomes excessively large or small, MAP particles having a small particle diameter are interposed in the middle of the reaction section. The only way to do this is to pull out the MAP particles, or pull out the entire MAP particles and start over.

【0008】本発明は、このような問題点を解決し、大
径のMAP粒子を効率よく生成させることができる脱リ
ン装置を提供することを目的とする。
[0008] It is an object of the present invention to solve such problems and to provide a dephosphorizer capable of efficiently producing large-diameter MAP particles.

【0009】[0009]

【課題を解決するための手段】本発明の脱リン装置は、
原水を反応塔下部から導入し、処理水を反応塔上部より
取り出す脱リン装置において、該反応塔内部に造粒板を
設けたことを特徴とするものである。
The dephosphorization apparatus of the present invention comprises:
In a dephosphorizer for introducing raw water from the lower part of the reaction tower and removing treated water from the upper part of the reaction tower, a granulating plate is provided inside the reaction tower.

【0010】かかる本発明の脱リン装置においては、液
中を気泡と共に上昇してきた小MAP粒子が造粒板上で
転動し、凝集する。即ち、前述の通り、20μm以上程
度のMAP粒子は、MAPが析出する時のバインダ効果
では凝集しないが、その粒子が転がることで、他の粒子
とからみ合い、物理的に凝集する。なお、このように小
MAP粒子を凝集させることにより、反応部の粒子数を
適切なものとすることができる。これにより、脱リン装
置を安定して運転することができる。
In the dephosphorization apparatus of the present invention, the small MAP particles rising in the liquid together with the bubbles roll on the granulating plate and aggregate. That is, as described above, MAP particles having a size of about 20 μm or more do not agglomerate due to the binder effect at the time of MAP precipitation. However, when the particles roll, they are entangled with other particles and physically aggregate. In addition, by aggregating the small MAP particles in this way, the number of particles in the reaction section can be made appropriate. Thereby, the dephosphorization device can be operated stably.

【0011】また、造粒板に衝突した気泡は、そこで上
昇速度が小さくなる。このとき、気泡下部に同伴してい
たMAP粒子は、気泡と離れ、所定以上の粒径のMAP
粒子は沈降する。この結果、溢流するMAP粒子量が減
少する。また、このため、反応部上部の分離部断面積を
大きくしなくても良いことがある。
[0011] Further, the bubble colliding with the granulation plate has a lower rising speed there. At this time, the MAP particles entrained in the lower part of the bubbles are separated from the bubbles, and the MAP particles having a particle size equal to or larger than a predetermined value.
The particles settle. As a result, the amount of overflowing MAP particles decreases. For this reason, it may not be necessary to increase the cross-sectional area of the separation part in the upper part of the reaction part.

【0012】[0012]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0013】図1は本発明の実施の形態に係る脱リン装
置を示す断面図、図2は造粒板の側面図、図3は造粒板
の縦断面図である。
FIG. 1 is a sectional view showing a dephosphorizing apparatus according to an embodiment of the present invention, FIG. 2 is a side view of a granulating plate, and FIG. 3 is a longitudinal sectional view of the granulating plate.

【0014】反応塔1の下部に、ポンプP1を有した原
水(下水、し尿の嫌気消化脱離液、生し尿等のリン含有
水)の導入配管2が接続され、反応塔1の上部に処理水
の取出配管3が接続されている。11は溢流堰、12は
pH計である。なお、反応塔1の頂部は開放している。
An inlet pipe 2 for raw water (sewage, anaerobic digestion and desorbed liquid of human waste, phosphorus-containing water such as raw human waste) having a pump P 1 is connected to a lower part of the reaction tower 1, A pipe 3 for taking out treated water is connected. 11 is an overflow weir and 12 is a pH meter. The top of the reaction tower 1 is open.

【0015】反応塔1の下部はMAP粒子を引き抜き易
いようにコーン状とされている。反応塔1の下部にはM
gCl2等のマグネシウム塩溶液(マグネシウム塩を含
有するものであれば良く、海水であっても良い。)の供
給管4及びNaOH等のアルカリ剤の供給管5が接続さ
れ、底部にはMAP粒子の排出管6が設けられている。
6aはバルブを示す。
The lower portion of the reaction tower 1 is formed in a cone shape so that MAP particles can be easily extracted. In the lower part of the reaction tower 1, M
A supply pipe 4 for a magnesium salt solution such as gCl 2 (so long as it contains a magnesium salt, and may be seawater) and a supply pipe 5 for an alkaline agent such as NaOH are connected, and MAP particles are provided at the bottom. Discharge pipe 6 is provided.
6a shows a valve.

【0016】反応塔1内の下部には散気管10が設けら
れ、上部には造粒板20,21が設けられている。この
造粒板20,21よりも上側の反応塔内から一部の水を
取り出し塔底部へ循環させるように配管7、ポンプP2
及び配管8が設けられている。
A diffuser 10 is provided at a lower part in the reaction tower 1, and granulating plates 20 and 21 are provided at an upper part. A pipe 7 and a pump P 2 are provided so that a part of water is taken out of the reaction tower above the granulation plates 20 and 21 and circulated to the bottom of the tower.
And a pipe 8.

【0017】上記の造粒板20,21はそれぞれコーン
形状のものであり、多数の孔23が設けられている。上
側の造粒板20は頭部が下向きとなり、下側の造粒板2
1は尖頭部が上向きとなるように配置されている。上側
の造粒板20の頭部は切頭状とされ、開口24が設けら
れている。
Each of the granulating plates 20 and 21 has a cone shape, and has a large number of holes 23. The head of the upper granulation plate 20 faces downward, and the lower granulation plate 2
Numeral 1 is arranged such that the pointed head faces upward. The head of the upper granulation plate 20 has a truncated shape and an opening 24 is provided.

【0018】造粒板20,21同士は伸縮自在なロッド
等の連結部材22によって連結されている。上側の造粒
板20にはフランジ25が設けられている。このフラン
ジ25は、反応塔1の内周面に設けられた造粒板支持用
ブラケット(開示略)に連結される。
The granulating plates 20 and 21 are connected by a connecting member 22 such as a telescopic rod. The upper granulation plate 20 is provided with a flange 25. The flange 25 is connected to a granulation plate support bracket (not shown) provided on the inner peripheral surface of the reaction tower 1.

【0019】なお、造粒板20,21の傾斜面の角度は
水平に対し60゜以上(とくに60〜70゜)程度が好
ましい。孔23の口径は10mm以下(とくに5〜10
mm)が好ましく、その開口率は10%以下(とくに5
〜10%)が好ましい。開口24の口径は30mm以下
(とくに20〜30mm)が好ましい。連結部材22の
直径は10mm以下が好ましい。造粒板20の下端と造
粒板21の上端との間隔は10〜20mm程度が好まし
い。
The angle of the inclined surfaces of the granulating plates 20 and 21 is preferably about 60 ° or more (particularly 60 to 70 °) with respect to the horizontal. The diameter of the hole 23 is 10 mm or less (especially 5 to 10
mm) is preferable, and the aperture ratio is 10% or less (especially 5%).
-10%) is preferred. The diameter of the opening 24 is preferably 30 mm or less (particularly, 20 to 30 mm). The diameter of the connecting member 22 is preferably 10 mm or less. The distance between the lower end of the granulating plate 20 and the upper end of the granulating plate 21 is preferably about 10 to 20 mm.

【0020】配管7への水の取り出し口は反応塔1内の
液面から1m以内(とくに50〜100cm)とするの
が好ましい。造粒板20の上端とこの取り出し口とのレ
ベル差は30cm以上であることが好ましい。
The outlet of water into the pipe 7 is preferably set within 1 m (particularly 50 to 100 cm) from the liquid level in the reaction tower 1. It is preferable that the level difference between the upper end of the granulating plate 20 and the outlet is 30 cm or more.

【0021】散気管10は、反応塔1の下部における円
筒部とコーン部との境界部から上方10cm以内に配置
するのが好ましい。配管2,4,5,8は反応塔1の下
端から20cm以内の高さに接続されるのが好ましい。
The air diffuser 10 is preferably disposed within 10 cm above the boundary between the cylindrical part and the cone part in the lower part of the reaction tower 1. The pipes 2, 4, 5, 8 are preferably connected at a height within 20 cm from the lower end of the reaction tower 1.

【0022】以下に、この脱リン装置の作動において説
明する。なお、液面から配管7への水の取り出し口まで
の範囲を分離部といい、それから散気管10までの範囲
を反応部といい、それよりも下側を貯留部ということが
ある。
The operation of the dephosphorizer will be described below. Note that the range from the liquid level to the outlet for water to the pipe 7 is called a separation unit, the range from that to the diffuser 10 is called a reaction unit, and the area below it is sometimes called a storage unit.

【0023】反応塔1では、MAPが析出するpH条
件、即ちpH7.7〜9.0、好ましくはpH8.1と
なるように、供給管5よりNaOH等のアルカリ剤が注
入される。また、MAPの析出にマグネシウムが不足す
る場合には、供給管4よりMgCl2等のマグネシウム
塩溶液を注入する。
In the reaction tower 1, an alkaline agent such as NaOH is injected from the supply pipe 5 so that the pH condition for MAP precipitation, that is, pH 7.7 to 9.0, preferably pH 8.1. When magnesium is insufficient for MAP precipitation, a magnesium salt solution such as MgCl 2 is injected from the supply pipe 4.

【0024】反応塔1内では、既に析出しているMAP
粒子を種晶としてMAPが造粒される。即ち、原水の流
入と処理水の循環及び散気管10からの曝気によりMA
P粒子が流動状態となり、このMAP粒子の表面に新た
なMAPが析出し、MAP粒子が成長する。
In the reaction tower 1, MAP which has already been deposited
MAP is granulated using the particles as seed crystals. In other words, the inflow of raw water, the circulation of treated water, and the aeration from
The P particles enter a fluidized state, new MAP precipitates on the surface of the MAP particles, and the MAP particles grow.

【0025】なお、気泡の上昇に伴って小さなMAP粒
子が上昇するが、造粒板20,21を設けたことによ
り、小MAP粒子は該造粒板部分で転動造粒し、大径化
する。即ち、造粒板20,21の板面は、上昇流によ
り、上方向の力を受けている。また、造粒板付近は、
液、及び気泡上昇による乱流状態である。気泡と共に上
昇してきたMAP粒子は、気泡が造粒板20,21に当
たったり孔23を通り抜けるときに減速することにより
気泡と分離し、沈降しようとする。この際、MAP粒子
は上昇流の影響により造粒板20,21の下側面に沿っ
て沈降するようになり、このときにMAP粒子同士が衝
突し、凝集し粒成長する。
Although small MAP particles rise with the rise of bubbles, the small MAP particles are tumbled and granulated at the granulation plate portion by the provision of the granulation plates 20 and 21 to increase the diameter. I do. That is, the plate surfaces of the granulation plates 20 and 21 receive an upward force due to the upward flow. Also, near the granulation plate,
It is a turbulent state due to rising liquid and bubbles. The MAP particles that have risen together with the bubbles tend to separate from the bubbles by decelerating when the bubbles hit the granulation plates 20 and 21 or pass through the holes 23, and try to settle. At this time, the MAP particles settle down along the lower surfaces of the granulation plates 20 and 21 under the influence of the upward flow. At this time, the MAP particles collide with each other, aggregate and grow.

【0026】なお、造粒板20,21の板面は、上昇流
により、上方向の力を受けている。また、造粒板付近
は、液、及び気泡上昇による乱流状態である。このた
め、造粒板20,21を支持する部材や前記連結部材2
2が伸縮性あるいは振動性を有していると、塔内の上昇
流や気泡衝突等により造粒板20,21が細かく振動す
る。このように振動する造粒板20,21に沿って小M
AP粒子が移動するときには、静止状態の造粒板20,
21に沿って沈降する場合に比べ小MAP粒子同士の衝
突の頻度が増え、MAP粒子の粒成長が促進される。
The plate surfaces of the granulating plates 20 and 21 receive an upward force due to the upward flow. The vicinity of the granulation plate is in a turbulent state due to the rise of liquid and bubbles. For this reason, the members supporting the granulating plates 20 and 21 and the connecting members 2
If 2 has elasticity or vibration, the granulating plates 20 and 21 vibrate finely due to upward flow in the tower, collision of bubbles, or the like. Small M along the granulating plates 20 and 21 vibrating in this manner.
When the AP particles move, the stationary granulating plate 20,
The frequency of collision between the small MAP particles is increased as compared with the case where the particles are settled along 21, and the growth of the MAP particles is promoted.

【0027】このMAPの析出プロセスにおいて、原水
のリン濃度が高いと、種晶の不存在下でMAPの微小結
晶が自己析出し、大粒のMAP粒子が得られないという
不具合があるが、この脱リン装置では、反応塔1の処理
水を配管7,8及びポンプP2により循環することによ
り、反応塔1内の反応部のリン濃度を低下させることが
できる。
In the MAP precipitation process, when the phosphorus concentration of raw water is high, there is a problem that MAP microcrystals are self-precipitated in the absence of seed crystals and large MAP particles cannot be obtained. phosphorus apparatus, the treated water and the reaction column 1 by circulating through a pipe 7, 8 and the pump P 2, it is possible to lower the phosphorus concentration in the reaction part of the reaction tower 1.

【0028】これにより反応塔1内のMAPの過飽和度
が低下し、MAPは微小結晶として自己析出することな
く、種晶のMAP粒子の表面でのみ析出してMAP粒子
の大粒子化を促進する。この処理水の循環は、反応塔1
内の反応部のリン濃度をリン酸塩濃度100mg/L以
下、特に40〜80mg/Lとなるように行うのが好ま
しい。
As a result, the degree of supersaturation of the MAP in the reaction tower 1 is reduced, and the MAP does not self-precipitate as fine crystals, but precipitates only on the surface of the seed MAP particles, thereby promoting the enlargement of the MAP particles. . The circulation of the treated water is carried out by the reaction tower 1
The reaction is preferably carried out so that the concentration of phosphorus in the reaction section becomes 100 mg / L or less, particularly 40 to 80 mg / L.

【0029】また、この循環により、微細なMAP粒子
も循環され、その溢流が防止される。
Further, by this circulation, the fine MAP particles are also circulated, and their overflow is prevented.

【0030】MAPの析出によりリン濃度が低下した処
理水は、反応塔1内を上昇し、溢流堰11を越流して取
出配管3より排出される。
The treated water whose phosphorus concentration has decreased due to the precipitation of MAP rises in the reaction tower 1, overflows the overflow weir 11, and is discharged from the discharge pipe 3.

【0031】反応塔1内で成長したMAP粒子は、塔1
内で流動層を形成するようになる。このMAP粒子量が
所定以上になったときには、反応塔1下部の排出管6よ
り間欠的に取り出す。好ましくは、MAP粒子の反応塔
1内の流動界面と造粒板21と下端との距離が1m以内
になった場合にMAP粒子を排出管6から引き抜く。
The MAP particles grown in the reaction tower 1
A fluidized bed is formed inside. When the amount of the MAP particles becomes equal to or more than a predetermined value, the MAP particles are intermittently taken out from the discharge pipe 6 at the lower part of the reaction tower 1. Preferably, the MAP particles are withdrawn from the discharge pipe 6 when the distance between the flow interface of the MAP particles in the reaction tower 1 and the lower end of the granulation plate 21 is within 1 m.

【0032】なお、図示の例では、マグネシウム塩及び
アルカリ剤のみを添加しているが、MAPの生成にアン
モニアが不足する場合には、反応塔に更にアンモニアを
添加する。
In the illustrated example, only the magnesium salt and the alkali agent are added. However, if ammonia is insufficient for the generation of MAP, ammonia is further added to the reaction tower.

【0033】[0033]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0034】実施例1 図1に示す装置の各部材の寸法等を次の通りとした。Example 1 The dimensions and the like of each member of the apparatus shown in FIG. 1 were as follows.

【0035】 反応塔1 反応部 高さ 2400mm, 直径 150mm 分離部 高さ 500mm,最大径 300mm 造粒板20,21 造粒板20の上端と循環水取り出し口とのレベル差 300mm 造粒板20,21の最大直径 120mm 斜面の水平に対する角度 60° 孔23の直径 10mm 孔23の開口率 10% 開口24の直径 30mm 造粒板20の下端と造粒板21の上端との間隔 20mm 通水条件は次の通りとした。Reaction tower 1 Reaction section height 2400 mm, diameter 150 mm Separation section height 500 mm, maximum diameter 300 mm Granulating plates 20, 21 Level difference between upper end of granulating plate 20 and circulating water outlet 300 mm Granulating plate 20 Maximum diameter of 21 120mm Angle of slope to horizontal 60 ° Diameter of hole 23 10mm Opening ratio of hole 23 10% Diameter of opening 24 30mm Distance between lower end of granulating plate 20 and upper end of granulating plate 20 20mm It was as follows.

【0036】原水:次の濃度となるようにリン酸二水素
カリウム、塩化アンモニウムを純水に溶解したもの。
Raw water: A solution obtained by dissolving potassium dihydrogen phosphate and ammonium chloride in pure water so as to have the following concentrations.

【0037】 PO4−P 100ppm NH4−N 1000ppm pH 7.3 原水供給量:180L/Hr(空塔速度10m/Hr) 循環流量:空塔速度に換算して30m/Hr 空気散気量:0.4Nm3/Hr MgCl2添加量:1%溶液を、原水PO4−P濃度に対
し、モル比で1.2となるよう添加 NaOH添加量:1%溶液を、溢流液pHが8.3とな
るよう添加 温度:20℃ 上記条件にて通水し、処理水中のPO4−P及びT−P
(全リン)の濃度を測定した。2週間後、反応塔1の底
部の配管6からMAP粒子を引き抜き、粒径分布を測定
した。これらの測定結果を図4に示す。
PO 4 -P 100 ppm NH 4 -N 1000 ppm pH 7.3 Raw water supply: 180 L / Hr (superficial velocity 10 m / Hr) Circulating flow rate: 30 m / Hr in terms of superficial superficial velocity 0.4 Nm 3 / Hr MgCl 2 added amount: 1% solution was added to make a molar ratio of 1.2 with respect to the raw water PO 4 -P concentration. NaOH added amount: 1% solution, and the overflow solution pH was 8 Temperature: 20 ° C Water is passed under the above conditions, and PO 4 -P and TP in the treated water are added.
The concentration of (total phosphorus) was measured. Two weeks later, the MAP particles were withdrawn from the pipe 6 at the bottom of the reaction tower 1, and the particle size distribution was measured. FIG. 4 shows the measurement results.

【0038】比較例1 造粒板20,21を設けなかったこと以外は実施例1と
同一の脱リン装置を用い、同一条件にてこの脱リン装置
の運転を行い、PO4−P,T−P及び引き抜いたMA
P粒子の粒径分布結果を測定し、図3に示した。
Comparative Example 1 Using the same dephosphorizer as in Example 1 except that the granulating plates 20 and 21 were not provided, the dephosphorizer was operated under the same conditions, and PO 4 -P, T -P and MA pulled out
The particle size distribution results of the P particles were measured and are shown in FIG.

【0039】[考察] 図4(a),(b)にみられる通り、PO4−Pは
実施例1及び比較例1のいずれにおいても4〜5ppm
程度と同程度である。ところが、T−Pは実施例1では
6〜8ppmと低いのに対し、比較例1では12〜15
ppmとかなり高い。T−P値からPO4−P値を差し
引いた値が溢流したMAP粒子量に相当するから、溢流
MAP粒子量は 実施例1の場合 2〜 3ppm 比較例1の場合 8〜10ppm と両者の間に著しい差がある。即ち、造粒板20,21
を設けた実施例1ではMAP粒子の溢出がきわめて少な
い。
[Discussion] As shown in FIGS. 4A and 4B, PO 4 -P was 4 to 5 ppm in both Example 1 and Comparative Example 1.
About the same degree. However, while TP was as low as 6 to 8 ppm in Example 1, it was 12 to 15 ppm in Comparative Example 1.
It is considerably high at ppm. Since the value obtained by subtracting the PO 4 -P value from the TP value corresponds to the amount of the overflowed MAP particles, the amount of the overflowed MAP particles is 2 to 3 ppm in Example 1 and 8 to 10 ppm in Comparative Example 1. There is a significant difference between That is, the granulating plates 20 and 21
In Example 1, where the MAP particles were provided, the overflow of the MAP particles was extremely small.

【0040】 また、原水中のPO4−P値から処理
水中のT−P値を差し引いた値が反応塔1内に残留する
MAP粒子量であるから、実施例1は比較例1に比べ反
応塔内におけるMAP粒子生成量が格段に多いことが明
らかである。
Further, since the value obtained by subtracting the TP value in the treated water from the PO 4 -P value in the raw water is the amount of MAP particles remaining in the reaction tower 1, Example 1 is more reactive than Comparative Example 1. It is clear that the amount of MAP particles produced in the column is much higher.

【0041】 図4(c),(d)にみられる通り、
実施例1では比較例1に比べ、生成したMAP粒子径が
著しく大きく、造粒板の造粒効果が顕著であることが明
らかである。
As seen in FIGS. 4C and 4D,
In Example 1, the size of the generated MAP particles was significantly larger than that in Comparative Example 1, and it is clear that the granulating effect of the granulated plate was remarkable.

【0042】[0042]

【発明の効果】以上詳述した通り、本発明の脱リン装置
によれば、原水のリンをMAP粒子として除去、回収す
る脱リン装置において、大径のMAP粒子を形成するこ
とができる。
As described in detail above, according to the dephosphorization apparatus of the present invention, large-diameter MAP particles can be formed in a dephosphorization apparatus for removing and recovering phosphorus in raw water as MAP particles.

【0043】本発明によれば、さらに次の効果が奏され
る。
According to the present invention, the following effects are further obtained.

【0044】 従来の装置では、粒径の小さいMAP
粒子が増加して、流動界面が不明瞭となりMAP粒子引
抜きの判断が得にくい状況が多々あったが、この発明装
置では、安定した流動界面が形成されMAP引抜きを、
流動界面高さから操作できる。
In a conventional apparatus, a MAP having a small particle size is used.
In many cases, the number of particles increased, the flow interface became unclear, and it was difficult to determine the MAP particle extraction. However, in the present apparatus, a stable flow interface was formed and MAP extraction was performed.
Can be operated from the flow interface height.

【0045】 従来の装置では、粒径の小さい粒子が
過剰に生成されると、MAP粒子の粒径増大が、極めて
遅くなり大きくなるまで運転を継続する間に、数百pp
mのMAP粒子が溢流したり、底部からMAP粒子を引
き抜いた場合、小粒径のMAPが相当量混入し、水切り
の段階で濾液側に流出し、回収率を低減させる事態があ
ったがその事態を、運転を継続したまま回復することは
困難であった。そのような状態にあっても、この発明の
ように造粒板を挿入すると、数日を要するが、小粒子の
凝集が起こり、着実に回復する働きを示す。
In the conventional apparatus, when the particles having a small particle size are excessively generated, the increase in the particle size of the MAP particles becomes extremely slow and several hundred pp while the operation is continued until the particle size increases.
When the MAP particles overflowed or were drawn out from the bottom, a considerable amount of MAP having a small particle size was mixed in, and the MAP particles flowed out to the filtrate side at the stage of draining, and the recovery rate was reduced. It was difficult to recover from the situation while driving. Even in such a state, when a granulating plate is inserted as in the present invention, it takes several days, but aggregation of small particles occurs, and a function of steadily recovering is shown.

【0046】 MAP回収率は、反応塔から取り出し
た水切り前の段階で比較しても本発明装置の場合、従来
装置よりも十分に高いが、本発明ではMAP粒子径が大
きく水切り時の細かいMAP粒子の流出が少ないので、
水切り後のMAP回収率が従来例に比べ著しく高いもの
となる。
The MAP recovery is sufficiently higher in the case of the apparatus of the present invention than in the conventional apparatus even when compared at the stage before drainage taken out of the reaction tower. However, in the present invention, the MAP particle diameter is large, and the fine MAP at the time of drainage is fine. Because there is little outflow of particles,
The MAP recovery after draining is significantly higher than in the conventional example.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る脱リン装置を示す断
面図である。
FIG. 1 is a cross-sectional view showing a dephosphorization apparatus according to an embodiment of the present invention.

【図2】造粒板の側面図である。FIG. 2 is a side view of a granulation plate.

【図3】造粒板の断面図である。FIG. 3 is a sectional view of a granulation plate.

【図4】実施例及び比較例の測定結果を示すグラフであ
る。
FIG. 4 is a graph showing measurement results of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 反応塔 7,8 循環用配管 10 散気管 20,21 造粒板 22 連結部材 23 孔 DESCRIPTION OF SYMBOLS 1 Reaction tower 7, 8 Circulation piping 10 Aerator tube 20, 21 Granulating plate 22 Connecting member 23 hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 原水を反応塔下部から導入し、処理水を
反応塔上部より取り出す脱リン装置において、該反応塔
内部に造粒板を設けたことを特徴とする脱リン装置。
1. A dephosphorization device for introducing raw water from a lower portion of a reaction tower and removing treated water from an upper portion of the reaction tower, wherein a granulating plate is provided inside the reaction tower.
JP7231398A 1998-03-20 1998-03-20 Dephosphorizing device Pending JPH11267663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7231398A JPH11267663A (en) 1998-03-20 1998-03-20 Dephosphorizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7231398A JPH11267663A (en) 1998-03-20 1998-03-20 Dephosphorizing device

Publications (1)

Publication Number Publication Date
JPH11267663A true JPH11267663A (en) 1999-10-05

Family

ID=13485673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7231398A Pending JPH11267663A (en) 1998-03-20 1998-03-20 Dephosphorizing device

Country Status (1)

Country Link
JP (1) JPH11267663A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095726A (en) * 2003-09-22 2005-04-14 Mitsubishi Materials Corp Reacting/crystallizing method and apparatus therefor
JP2006159176A (en) * 2004-11-15 2006-06-22 Matsushita Electric Ind Co Ltd Method and device for treating fluorine-containing water
JP2009220049A (en) * 2008-03-18 2009-10-01 Hiroshima Univ Method and apparatus for capturing phosphorus in water
WO2019044124A1 (en) 2017-09-04 2019-03-07 大樹 梶田 Multiple-viewpoint video image viewing system and camera system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095726A (en) * 2003-09-22 2005-04-14 Mitsubishi Materials Corp Reacting/crystallizing method and apparatus therefor
JP2006159176A (en) * 2004-11-15 2006-06-22 Matsushita Electric Ind Co Ltd Method and device for treating fluorine-containing water
JP4591170B2 (en) * 2004-11-15 2010-12-01 パナソニック株式会社 Fluorine-containing water treatment equipment
JP2009220049A (en) * 2008-03-18 2009-10-01 Hiroshima Univ Method and apparatus for capturing phosphorus in water
WO2019044124A1 (en) 2017-09-04 2019-03-07 大樹 梶田 Multiple-viewpoint video image viewing system and camera system

Similar Documents

Publication Publication Date Title
EP1593417A1 (en) Method and apparatus for removing ion in fluid by crystallization
JP4216569B2 (en) Organic wastewater and sludge treatment method and treatment equipment
JP4519485B2 (en) Phosphorus recovery method and apparatus
JP3441042B2 (en) Phosphorus removal and recovery equipment using seawater
US20060196835A1 (en) Method and apparatus for removing ions in liquid through crystallization method
JPH11267665A (en) Dephosphorizing device
JP2576679B2 (en) Dephosphorization device
JPH11267663A (en) Dephosphorizing device
JPH1110194A (en) Wastewater treatment device
JP4147609B2 (en) Dephosphorization device
JP4028189B2 (en) Method and apparatus for removing phosphorus
JPH11300369A (en) Dephosphorizing device and dephosphorizing equipment
JP2008183562A (en) Dephosphorization apparatus
JPH10323677A (en) Waste water treatment device
JPH08155469A (en) Apparatus for granulating and removing phosphorus compound
JP2007244994A (en) Treatment method of digestion sludge and treatment equipment
JP2000334474A (en) Method for removing phosphorus from waste water
JP3726429B2 (en) Dephosphorization device
JP4025037B2 (en) Dephosphorization method and apparatus
JP4053273B2 (en) Reaction crystallization method and apparatus
JP2004321992A (en) Phosphorus resource recovery apparatus
JP4004725B2 (en) Two-stage dephosphorization method and apparatus
JP2000061473A (en) Method of removing phosphorus in sewage water
JP2000301166A (en) Waste water treatment apparatus
JP2000225395A (en) Dephosphorization apparatus