JP2008183562A - Dephosphorization apparatus - Google Patents

Dephosphorization apparatus Download PDF

Info

Publication number
JP2008183562A
JP2008183562A JP2008120493A JP2008120493A JP2008183562A JP 2008183562 A JP2008183562 A JP 2008183562A JP 2008120493 A JP2008120493 A JP 2008120493A JP 2008120493 A JP2008120493 A JP 2008120493A JP 2008183562 A JP2008183562 A JP 2008183562A
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
water
reaction tower
phosphorus
map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008120493A
Other languages
Japanese (ja)
Inventor
Satoshi Ishizuka
諭 石塚
Masahide Shibata
雅秀 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008120493A priority Critical patent/JP2008183562A/en
Publication of JP2008183562A publication Critical patent/JP2008183562A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dephosphorization apparatus in which raw water is made to pass through a reaction column as an upward current and MAP particles are separated and recovered from the lower part of the reaction column and dephosphorization is performed efficiently by using inexpensive magnesium hydroxide. <P>SOLUTION: Raw water is supplied to the lower part of the reaction column 1 and the treated water is withdrawn from the upper part of the reaction column 1. A part of the treated water is circulated to the lower part of the reaction column 1 and the produced MAP particles are withdrawn from the lower part of the reaction column 1. Not only NaOH but also the magnesium hydroxide slurry prepared by adding sulfuric acid of about 0.5 equivalent to magnesium hydroxide are supplied to the reaction column 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はリン含有水中のリンをMAP(リン酸マグネシウムアンモニウム)として除去する装置に係り、特にMAP生成のためのマグネシウム源として水酸化マグネシウムを用いるようにした脱リン装置に関する。   The present invention relates to an apparatus for removing phosphorus in phosphorus-containing water as MAP (magnesium ammonium phosphate), and more particularly to a dephosphorization apparatus in which magnesium hydroxide is used as a magnesium source for MAP production.

下水、し尿、排水等の嫌気、好気処理工程で発生する汚泥脱水濾液、消化脱離液等のリン含有水からリンを除去する方法として、従来、リン含有水中にマグネシウムイオンを添加して、該水中に含有されるアンモニア成分及びリンとマグネシウムイオンとからMAPを生成させ、生成したMAP粒子を分離回収する方法が提案されている。   As a method of removing phosphorus from phosphorus-containing water such as sewage, human waste, wastewater, etc., sludge dewatered filtrate generated in the aerobic treatment process, digestion and desorption liquid, magnesium ions have been added to phosphorus-containing water, A method has been proposed in which MAP is generated from the ammonia component and phosphorus and magnesium ions contained in the water, and the generated MAP particles are separated and recovered.

このMAP生成反応を利用する従来の脱リン装置では、MAP粒子を充填した反応塔に、リン含有水を上向流で通水し、マグネシウム塩(通常は塩化マグネシウム)を添加すると共に必要に応じてアルカリ(通常はNaOH)を添加してpH8以上に調整しMAPを該MAP粒子上に析出させる。   In a conventional dephosphorization apparatus that uses this MAP production reaction, phosphorus-containing water is passed upward through a reaction column packed with MAP particles, and a magnesium salt (usually magnesium chloride) is added and as necessary. Then, alkali (usually NaOH) is added to adjust the pH to 8 or more, and MAP is precipitated on the MAP particles.

上記のようにMAPプロセスによる従来の脱リン装置にあっては、マグネシウムイオン源として塩化マグネシウムを添加しているが、この塩化マグネシウムは水酸化マグネシウムよりも高価であり、安価な水酸化マグネシウムの使用が期待されている。ところが、水酸化マグネシウムの水に対する溶解度は塩化マグネシウムに比べるとかなり低く、水酸化マグネシウムスラリーの水中にはマグネシウムイオンは数ppm程度しか存在しない(pH約10.5)。特に、MAP析出反応が進行するpH8〜9のアルカリ性の水に対する水酸化マグネシウムの溶解速度はかなり低い。このため、MAP析出反応において水酸化マグネシウムの溶解速度が律速となり、リン除去のための処理時間が著しく長いものとなる。   As described above, in the conventional dephosphorization apparatus using the MAP process, magnesium chloride is added as a magnesium ion source. However, this magnesium chloride is more expensive than magnesium hydroxide, and inexpensive magnesium hydroxide is used. Is expected. However, the solubility of magnesium hydroxide in water is considerably lower than that of magnesium chloride, and only about several ppm of magnesium ions are present in the water of the magnesium hydroxide slurry (pH about 10.5). In particular, the dissolution rate of magnesium hydroxide in alkaline water of pH 8-9 where the MAP precipitation reaction proceeds is considerably low. For this reason, the dissolution rate of magnesium hydroxide becomes rate-limiting in the MAP precipitation reaction, and the treatment time for removing phosphorus becomes extremely long.

本発明は、このような問題点を解決し、安価な水酸化マグネシウムを用いてMAP粒子を効率よく生成させることができる脱リン装置を提供することを目的とする。   An object of the present invention is to solve such problems and to provide a dephosphorization apparatus capable of efficiently generating MAP particles using inexpensive magnesium hydroxide.

求項の発明の脱リン装置は、リン含有水を反応塔下部に導入し、処理水を反応塔上部より取り出す脱リン装置において、水酸化マグネシウムとアンモニウムイオン含有水とを混合してリン含有水に添加する手段を設けたことを特徴とするものである。 dephosphorization device Motomeko one aspect of the present invention, the phosphorus-containing water is introduced into the lower reaction tower, the dephosphorization device taken out from the reaction tower top the treated water, a mixture of magnesium hydroxide and ammonium ion-containing water phosphorus Means for adding to the contained water is provided.

このようにアンモニウムイオンが水中に共存する場合水酸化マグネシウムの水に対する溶解が促進され、MAP析出反応が速くなる Thus, when the ammonium ions coexist in the water, dissolution is promoted to water of magnesium hydroxide, MAP precipitation reaction is faster.

ンモニウムイオンによって水酸化マグネシウムの溶解を促進する請求項1の脱リン装置においては、[Mg2+/PO4−P](モル比)を1〜3、特に1.2〜2.5で水酸化マグネシウムを添加するのが好ましい。アンモニウムイオンと水酸化マグネシウムの関係は[Mg2+/NH4−N](モル比)が0.75以下、特に0.5以下の条件が好ましい。 In dephosphorization device according to claim 1 for promoting the dissolution of the magnesium hydroxide by A Nmo ion is, [Mg 2+ / PO 4 -P ] (molar ratio) 1-3, in particular at 1.2 to 2.5 It is preferred to add magnesium hydroxide . Relationship ammonium ions and magnesium hydroxide [Mg 2+ / NH 4 -N] ( molar ratio) is 0.75 or less, especially 0.5 or less conditions are preferred.

このようなアンモニウムイオン含有水としては、例えば、汚泥乾燥ガスのガス処理排水(NH4−N濃度約300ppm程度)のほか、アンモニアストリッピング吸収液(NH4−N濃度約20000ppm)、イオン交換樹脂再生廃液(NH4−N濃度2000ppm)などが例示される。このアンモニウムイオン含有水に対し水酸化マグネシウムを添加し水酸化マグネシウムの溶解を促進してからこの水酸化マグネシウム分散水(水酸化マグネシウムの一部溶解水)を反応塔に導入するか、又は被処理原水に混合する。 Examples of such ammonium ion-containing water include sludge dry gas treatment wastewater (NH 4 —N concentration of about 300 ppm), ammonia stripping absorbent (NH 4 —N concentration of about 20000 ppm), ion exchange resin, and the like. Examples include reclaimed waste liquid (NH 4 —N concentration 2000 ppm). Magnesium hydroxide is added to this ammonium ion-containing water to promote dissolution of magnesium hydroxide, and then this magnesium hydroxide dispersion water (partially dissolved water of magnesium hydroxide) is introduced into the reaction tower or treated Mix in raw water.

本発明において、リン含有水としては汚泥溶融時の電気集塵排水(リン濃度約70〜80ppm)、下水またはし尿、下水又はし尿等の処理工程で発生する汚泥脱水濾液、消化脱離液などが例示される。   In the present invention, the phosphorus-containing water includes, for example, electric dust collection wastewater (phosphorus concentration of about 70 to 80 ppm) at the time of melting sludge, sewage or human waste, sewage dehydrated filtrate, digestion desorption liquid, etc. generated in processing steps such as sewage or human waste. Illustrated.

本発明の脱リン装置によれば、原水のリンをMAP粒子として除去、回収する脱リン装置において、安価な水酸化マグネシウムを用いて効率よく脱リン処理することができる。   According to the dephosphorization apparatus of the present invention, in a dephosphorization apparatus that removes and collects phosphorus in raw water as MAP particles, dephosphorization can be efficiently performed using inexpensive magnesium hydroxide.

以下に図面を参照して参考例及び本発明の実施の形態を詳細に説明する。 Reference examples and embodiments of the present invention will be described below in detail with reference to the drawings.

図1は参考例に係る脱リン装置を示す概略的な断面図である。 Figure 1 is a schematic sectional view showing a dephosphorization device according to a reference example.

反応塔1の下部に、ポンプP1を有した原水(下水、し尿の嫌気消化脱離液、生し尿等のリン含有水)の導入配管2が接続され、反応塔1の上部に処理水の取出配管3が接続されている。11は溢流堰、12はpH計である。なお、反応塔1の頂部は開放している。 An inlet pipe 2 for raw water (sewage, anaerobic digestion and desorption liquid for human waste, raw urine, etc.) having a pump P 1 is connected to the lower part of the reaction tower 1, and treated water is connected to the upper part of the reaction tower 1. An extraction pipe 3 is connected. 11 is an overflow weir and 12 is a pH meter. Note that the top of the reaction tower 1 is open.

反応塔1の下部はMAP粒子を引き抜き易いようにコーン状とされている。反応塔1の下部には水酸化マグネシウムのスラリー(混合槽4Aにおいて水酸化マグネシウムに対し当量よりも少量の酸を加えて水酸化マグネシウムを部分的に溶解させた水酸化マグネシウムスラリー)の供給管4及びNaOH等のアルカリ剤の供給管5が接続され、底部にはMAP粒子の排出管6が設けられている。6aはバルブを示す。   The lower part of the reaction tower 1 has a cone shape so that the MAP particles can be easily extracted. In the lower part of the reaction tower 1, a supply pipe 4 of magnesium hydroxide slurry (magnesium hydroxide slurry in which magnesium hydroxide is partially dissolved by adding a smaller amount of acid than the equivalent amount to magnesium hydroxide in the mixing tank 4A). A supply pipe 5 for an alkaline agent such as NaOH is connected, and a discharge pipe 6 for MAP particles is provided at the bottom. 6a indicates a valve.

反応塔1内の下部には散気管10が設けられている。なお、この散気管10を省略し、上昇水流によってMAP粒子を展開させるようにしても良い。   A diffuser tube 10 is provided in the lower part of the reaction tower 1. In addition, you may make it abbreviate | omit this air diffuser 10 and to expand | deploy MAP particle | grains by a rising water flow.

溢流堰11を溢流した水の一部を塔底部へ循環させるように配管7、ポンプP2及び配管8が設けられている。 Pipe 7 as a part of the water to overflow weir 11 and the overflow is recycled to the bottom, a pump P 2 and pipe 8 are provided.

配管7への水の取り出しは、溢流堰11に限らず、取出配管3であっても良く、また反応塔1内の液面から1m以内程度の反応塔1上部であっても良い。   The extraction of water into the pipe 7 is not limited to the overflow weir 11 but may be the extraction pipe 3 or the upper part of the reaction tower 1 within about 1 m from the liquid level in the reaction tower 1.

散気管10を設置する場合は、反応塔1の下部における円筒部とコーン部との境界部から上方10cm以内に配置するのが好ましい。配管2,4,5,8は反応塔1の下端から20cm以内の高さに接続されるのが好ましい。   When installing the diffuser tube 10, it is preferable to arrange it within 10 cm above the boundary between the cylindrical part and the cone part in the lower part of the reaction tower 1. The pipes 2, 4, 5, and 8 are preferably connected to a height within 20 cm from the lower end of the reaction tower 1.

以下に、この脱リン装置の作動について説明する。   Hereinafter, the operation of the dephosphorization apparatus will be described.

反応塔1の下部に配管2から原水が導入される。反応塔1では、MAPが析出するpH条件、即ちpH約8〜10となるように、供給管5よりNaOH等のアルカリ剤が注入される。また、供給管4より水酸化マグネシウムスラリーが注入される。   Raw water is introduced into the lower part of the reaction tower 1 from the pipe 2. In the reaction tower 1, an alkaline agent such as NaOH is injected from the supply pipe 5 so that the pH condition for precipitation of MAP, that is, the pH is about 8-10. A magnesium hydroxide slurry is injected from the supply pipe 4.

反応塔1内では、既に析出しているMAP粒子を種晶としてMAPが造粒される。即ち、原水の流入と処理水の循環及び散気管10からの曝気によりMAP粒子が流動状態となり、このMAP粒子の表面に新たなMAPが析出し、MAP粒子が粒成長する。   In the reaction tower 1, MAP is granulated by using the already precipitated MAP particles as seed crystals. That is, the MAP particles are in a fluidized state due to the inflow of the raw water, the circulation of the treated water, and aeration from the air diffuser 10, and new MAP is deposited on the surface of the MAP particles, and the MAP particles grow.

このMAPの析出プロセスにおいて、原水のリン濃度が過度に高いと、種晶の表面以外の液中でMAPの微小結晶が自己析出し、MAP粒子が粒成長しにくいという不具合があるが、この脱リン装置では、反応塔1の処理水を配管7,8及びポンプP2により循環することにより、反応塔1内のMAP析出反応部のリン濃度を低下させることができる。 In this MAP precipitation process, if the phosphorus concentration of the raw water is excessively high, MAP microcrystals are self-precipitated in a liquid other than the seed crystal surface, and MAP particles are difficult to grow. In the phosphorus device, the phosphorus concentration in the MAP precipitation reaction part in the reaction tower 1 can be lowered by circulating the treated water of the reaction tower 1 by the pipes 7 and 8 and the pump P 2 .

これにより反応塔1内のMAPの過飽和度が低下し、MAPは微小結晶として自己析出することなく、殆どが種晶のMAP粒子の表面で析出してMAP粒子の粒成長を促進する。この処理水の循環は、反応塔1内の反応部のリン濃度をリン酸塩濃度100mg/L以下、特に40〜80mg/Lとなるように行うのが好ましい。   As a result, the supersaturation degree of MAP in the reaction tower 1 is lowered, and MAP is not precipitated as microcrystals, but mostly precipitates on the surface of seed MAP particles and promotes the growth of MAP particles. The treatment water is preferably circulated so that the phosphorus concentration in the reaction section in the reaction tower 1 is a phosphate concentration of 100 mg / L or less, particularly 40 to 80 mg / L.

MAPの析出によりリン濃度が低下した処理水は、取出配管3より排出される。   The treated water whose phosphorus concentration has decreased due to the precipitation of MAP is discharged from the extraction pipe 3.

反応塔1内のMAP粒子量が所定以上になったときには、反応塔1下部の排出管6より間欠的又は連続的に取り出す。   When the amount of MAP particles in the reaction tower 1 exceeds a predetermined value, it is taken out intermittently or continuously from the discharge pipe 6 below the reaction tower 1.

なお、図示の例では、水酸化マグネシウムスラリー及びアルカリ剤のみを添加しているが、MAPの生成にアンモニア成分が不足する場合には、反応塔に更にアンモニア又はアンモニウム塩を添加する。   In the illustrated example, only the magnesium hydroxide slurry and the alkali agent are added. However, when the ammonia component is insufficient for the production of MAP, ammonia or ammonium salt is further added to the reaction tower.

図1では水酸化マグネシウムスラリーを反応塔1に添加しているが、原水供給配管2に対し水酸化マグネシウムスラリーを添加しても良い。例えばMg(OH)2スラリーに対し酸を添加し、この混合液を原水供給管2に添加しても良い。また、Mg(OH)2スラリー及び酸を原水供給管2にそれぞれ別々に添加することもできる。この場合、Mg(OH)2スラリー及び酸の原水供給管2に対する添加の順番はいずれを先にしても良く、両者を同時に原水に添加しても良い。 Although the magnesium hydroxide slurry is added to the reaction tower 1 in FIG. 1, the magnesium hydroxide slurry may be added to the raw water supply pipe 2. For example, an acid may be added to the Mg (OH) 2 slurry, and this mixed solution may be added to the raw water supply pipe 2. Further, the Mg (OH) 2 slurry and the acid can be separately added to the raw water supply pipe 2. In this case, the order of adding the Mg (OH) 2 slurry and the acid to the raw water supply pipe 2 may be first, or both may be added to the raw water at the same time.

図2は請求項の発明の実施の形態に係る脱リン装置の概略的な断面図である。 Figure 2 is a schematic cross-sectional view of dephosphorization device according to an embodiment of the invention of claim 1.

この実施の形態では混合槽4Bに対し水酸化マグネシウムとアンモニウムイオン濃度の高い排水(高NH4 +排水)が供給されている。前記の通り、アンモニウムイオンは水酸化マグネシウムの溶解を促進する作用があり、この高NH4 +排水によって水酸化マグネシウムの一部が溶解した水酸化マグネシウムスラリー含有液が供給管4を介して反応塔1に供給される。 In this embodiment, magnesium hydroxide and wastewater with high ammonium ion concentration (high NH 4 + drainage) are supplied to the mixing tank 4B. As described above, ammonium ions have an action of promoting the dissolution of magnesium hydroxide, and a magnesium hydroxide slurry-containing liquid in which a part of magnesium hydroxide is dissolved by this high NH 4 + drainage is supplied to the reaction tower via the supply pipe 4. 1 is supplied.

この図2の実施の形態のその他の構成は図1と同一であり、同一符号は同一部分を示している。   Other configurations of the embodiment of FIG. 2 are the same as those of FIG. 1, and the same reference numerals denote the same parts.

図2では水酸化マグネシウムスラリーを反応塔1に対し直接的に供給しているが、原水供給管2に対し水酸化マグネシウムスラリーを添加するようにしても良い。また、原水供給管2に対し水酸化マグネシウムスラリーと高NH4 +排水とを、別々に添加してもよい。 Although the magnesium hydroxide slurry is directly supplied to the reaction tower 1 in FIG. 2, the magnesium hydroxide slurry may be added to the raw water supply pipe 2. Further, the magnesium hydroxide slurry and the high NH 4 + drainage may be separately added to the raw water supply pipe 2.

図3は参考例に係る脱リン装置の概略的な断面図である。この実施の形態ではアンモニウムイオン濃度が高いリン含有排水に対し水酸化マグネシウムが添加され、この添加後の液が反応塔1に導入される。 FIG. 3 is a schematic cross-sectional view of a dephosphorization apparatus according to a reference example . In this embodiment, magnesium hydroxide is added to phosphorus-containing wastewater having a high ammonium ion concentration, and the liquid after this addition is introduced into the reaction tower 1.

以下に参考例、実施例及び比較例を挙げて本発明をより具体的に説明する。 The present invention will be described more specifically with reference to the following reference examples, examples and comparative examples.

参考例
図1に示す装置(ただし、散気管は設置せず。)の各部材の寸法等を次の通りとした。
Reference example 1
The dimensions and the like of each member of the apparatus shown in FIG. 1 (however, a diffuser tube is not installed) are as follows.

反応塔1
反応部 高さ 1500mm,直径 50mm,
コーン状部分 高さ 43mm
分離部 高さ 150mm,直径 70mm
通水条件は次の通りとした。
Reaction tower 1
Reaction part height 1500mm, diameter 50mm,
Cone-shaped part 43mm in height
Separation part height 150mm, diameter 70mm
The water flow conditions were as follows.

原水:次の濃度となるようにリン酸1カリウム及び塩化アンモニウムを水に溶解したも
の。
Raw water: 1 potassium phosphate and ammonium chloride dissolved in water to the following concentrations.

PO4−P 150ppm
NH4−N 600ppm
pH 7.3
原水供給量:35.7L/Hr(原水の反応塔の反応部内平均滞留時間:5分)
循環流量:82L/Hr
反応部の上向流LV:60m/Hr
マグネシウム剤:Mg(OH)2の1wt%スラリーに対し、混合槽4Aにおいて硫酸
をMg(OH)2の0.5当量だけ添加した液(スラリー)。このス
ラリーを原水PO4−P濃度に対し、Mg/Pのモル比が1.5とな
るよう添加
NaOH添加量:1%溶液を、溢流液pHが8.0となるよう添加
初期種晶 :0.5〜1mmのMAP1500g
上記条件にて3日間連続通水し、処理水中のPO4−Pの濃度を測定した結果を表1に示す。
PO 4 -P 150ppm
NH 4 —N 600 ppm
pH 7.3
Raw water supply amount: 35.7 L / Hr (average residence time in reaction section of raw water reaction tower: 5 minutes)
Circulation flow rate: 82L / Hr
Upflow LV of reaction section: 60 m / Hr
Magnesium agent: sulfuric acid in the mixing tank 4A for 1 wt% slurry of Mg (OH) 2
Liquid (slurry) in which 0.5 equivalent of Mg (OH) 2 was added. This
To raw water PO 4 -P concentration Larry, the molar ratio of Mg / P is ne 1.5
NaOH addition amount: 1% solution added, so that overflow pH becomes 8.0 Initial seed crystal: MAP 1500 g of 0.5-1 mm
Table 1 shows the results of measuring the concentration of PO 4 -P in the treated water after continuously passing water for 3 days under the above conditions.

比較例1
水酸化マグネシウム及び硫酸を全く使用せず、供給配管4から反応塔1にMgCl2の1%水溶液をMg/P(モル比)=1.5となるように供給したこと以外は参考例1と同一の脱リン装置を用い、同一条件にてこの脱リン装置の運転を行い、処理水中のPO4−P濃度を測定した。結果を表1に示す。
Comparative Example 1
Reference Example 1 except that magnesium hydroxide and sulfuric acid were not used and a 1% aqueous solution of MgCl 2 was supplied from the supply pipe 4 to the reaction tower 1 so that Mg / P (molar ratio) = 1.5. Using the same dephosphorization apparatus, this dephosphorization apparatus was operated under the same conditions, and the concentration of PO 4 -P in the treated water was measured. The results are shown in Table 1.

比較例2
参考例1において混合槽4Aへの硫酸添加を停止した。また原水流量及び循環水量を表1の通りとし、原水の反応部内の平均滞留時間を30分とした。なお、Mg(OH)2の添加量を表1の通り増大させた。
Comparative Example 2
In Reference Example 1, the addition of sulfuric acid to the mixing tank 4A was stopped. The raw water flow rate and the circulating water amount were as shown in Table 1, and the average residence time in the reaction part of the raw water was 30 minutes. The amount of Mg (OH) 2 added was increased as shown in Table 1.

その他は参考例1と同様にして脱リン装置の運転を行い、処理水中のPO4−P濃度を測定した。結果を表1に示す。 Otherwise, the dephosphorization apparatus was operated in the same manner as in Reference Example 1, and the PO 4 -P concentration in the treated water was measured. The results are shown in Table 1.

Figure 2008183562
Figure 2008183562

表1から明らかな通り、参考例1によればMgCl2を用いた比較例1と同等のリン除去を行うことができる。Mg(OH)2のみを用いる比較例2は、これらに比べリン除去性能に劣る。 As is apparent from Table 1, according to Reference Example 1, phosphorus removal equivalent to that in Comparative Example 1 using MgCl 2 can be performed. Comparative Example 2 using only Mg (OH) 2 is inferior in phosphorus removal performance compared to these.

実施例
図2に示す装置(ただし、散気管は設置せず。)の各部材の寸法等を次の通りとした。
Example 1
The dimensions and the like of each member of the apparatus shown in FIG. 2 (however, a diffuser tube is not installed) are as follows.

反応塔1
反応部 高さ 2000mm,直径 30mm,
コーン状部分 高さ 43mm
分離部 高さ 150mm,直径 70mm
通水条件は次の通りとした。
Reaction tower 1
Reaction part height 2000mm, diameter 30mm,
Cone-shaped part 43mm in height
Separation part height 150mm, diameter 70mm
The water flow conditions were as follows.

原水:次の濃度となるようにリン酸1カリウム及び塩化アンモニウムを水に溶解したも
の。
Raw water: 1 potassium phosphate and ammonium chloride dissolved in water to the following concentrations.

PO4−P 200ppm
pH 6.8
原水供給量:14.4L/Hr(原水の反応塔の反応部内平均滞留時間:6分)
循環流量:13.6L/Hr
反応部の上向流LV:60m/Hr
マグネシウム剤:塩化アンモニウムの0.19wt%水溶液(NH4−N濃度:50
0mg/L)に対し混合槽4BでMg(OH)2を1wt%の割合
で添加した液(スラリー)。混合槽4B内の平均滞留時間は5分3
0秒である。このスラリーを原水PO4−P濃度に対し、Mg/P
のモル比が2となるよう1.1L/Hrで添加
NaOH添加量:1%溶液を、溢流液pHが8.0となるよう添加
初期種晶は参考例1と同じとした。上記条件にて3日間連続通水し、処理水中のPO4−Pの濃度を測定した結果を表2に示す。
PO 4 -P 200ppm
pH 6.8
Raw water supply amount: 14.4 L / Hr (average residence time in reaction section of raw water reaction tower: 6 minutes)
Circulation flow rate: 13.6 L / Hr
Upflow LV of reaction section: 60 m / Hr
Magnesium agent: 0.19 wt% ammonium chloride aqueous solution (NH 4 —N concentration: 50
Proportion of Mg (OH) 2 of 1 wt% at 0 mg / L) relative to the mixing tank 4B
(Slurry) added in Average residence time in mixing tank 4B is 5 minutes 3
0 seconds. This slurry was mixed with Mg / P against the raw water PO 4 -P concentration.
Added at 1.1 L / Hr so that the molar ratio is 2 NaOH addition amount: 1% solution was added so that the overflow pH was 8.0 The initial seed crystals were the same as in Reference Example 1. Table 2 shows the results of measuring the concentration of PO 4 -P in the treated water by continuously passing water for 3 days under the above conditions.

比較例3
混合槽4Bに水酸化マグネシウムを全く添加せず、配管4からは実施例と同じ塩化マグネシウム2wt%水溶液を0.9L/Hrで供給した。MAP生成のためのMg源としてMgCl2の1%水溶液をMg/P(モル比)=2となるように供給した。これ以外は実施例と同一の脱リン装置を用い、同一条件にてこの脱リン装置の運転を行い、処理水中のPO4−P濃度を測定した。結果を表2に示す。
Comparative Example 3
No magnesium hydroxide was added to the mixing tank 4B, and the same magnesium chloride 2 wt% aqueous solution as in Example 1 was supplied from the pipe 4 at 0.9 L / Hr. As a Mg source for generating MAP, a 1% aqueous solution of MgCl 2 was supplied so that Mg / P (molar ratio) = 2. Other than this, the same dephosphorization apparatus as in Example 1 was used, and this dephosphorization apparatus was operated under the same conditions, and the PO 4 -P concentration in the treated water was measured. The results are shown in Table 2.

比較例4
比較例3において、塩化マグネシウム水溶液を全く添加しなかった。代りに、Mg源としてMg(OH)2の1wt%スラリーをMg/P=2となるように反応塔1の下部に供給した。また、供給配管5からのNaOHの供給を停止した。
Comparative Example 4
In Comparative Example 3, no magnesium chloride aqueous solution was added. Instead, 1 wt% slurry of Mg (OH) 2 as an Mg source was supplied to the lower part of the reaction tower 1 so that Mg / P = 2. Further, the supply of NaOH from the supply pipe 5 was stopped.

その他は実施例と同様にして脱リン装置の運転を行い、処理水中のPO4−P濃度を測定した。結果を表2に示す。 Otherwise, the dephosphorization apparatus was operated in the same manner as in Example 1, and the PO 4 -P concentration in the treated water was measured. The results are shown in Table 2.

Figure 2008183562
Figure 2008183562

表2から明らかな通り、実施例によればMgCl2を用いた比較例3と同等のリン除去を行うことができる。Mg(OH)2のみを用いる比較例4は、これらに比べリン除去性能に劣る。 As is apparent from Table 2, according to Example 1 , phosphorus removal equivalent to that of Comparative Example 3 using MgCl 2 can be performed. Comparative Example 4 using only Mg (OH) 2 is inferior in phosphorus removal performance compared to these.

参考例に係る脱リン装置を示す断面図である。It is sectional drawing which shows the dephosphorization apparatus which concerns on a reference example . 本発明の実施の形態に係る脱リン装置を示す断面図である。It is sectional drawing which shows the dephosphorization apparatus which concerns on embodiment of this invention. 参考例に係る脱リン装置を示す断面図である。It is sectional drawing which shows the dephosphorization apparatus which concerns on a reference example .

符号の説明Explanation of symbols

1 反応塔
7,8 循環用配管
10 散気管
1 Reaction tower 7, 8 Circulation pipe 10 Aeration pipe

Claims (3)

リン含有水を反応塔下部に導入し、処理水を反応塔上部より取り出す脱リン装置において、水酸化マグネシウムを添加する手段と、水酸化マグネシウムに酸を添加する手段とを設けたことを特徴とする脱リン装置。   In the dephosphorization apparatus for introducing phosphorus-containing water into the lower part of the reaction tower and taking out treated water from the upper part of the reaction tower, it is provided with means for adding magnesium hydroxide and means for adding acid to magnesium hydroxide Dephosphorization device. リン含有水を反応塔下部に導入し、処理水を反応塔上部より取り出す脱リン装置において、
水酸化マグネシウムとアンモニウムイオン含有水とを混合してリン含有水に添加する手段を設けたことを特徴とする脱リン装置。
In a dephosphorization apparatus that introduces phosphorus-containing water into the lower part of the reaction tower and removes treated water from the upper part of the reaction tower
A dephosphorization apparatus comprising means for mixing magnesium hydroxide and ammonium ion-containing water and adding the mixture to phosphorus-containing water.
リンとアンモニウムイオンとを含む原水を反応塔下部に導入し、処理水を反応塔上部より取り出す脱リン装置であって、該原水に水酸化マグネシウムを添加する手段を備えたことを特徴とする脱リン装置。   A dephosphorization apparatus for introducing raw water containing phosphorus and ammonium ions into the lower part of the reaction tower and taking out treated water from the upper part of the reaction tower, comprising a means for adding magnesium hydroxide to the raw water. Phosphorus equipment.
JP2008120493A 2008-05-02 2008-05-02 Dephosphorization apparatus Pending JP2008183562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008120493A JP2008183562A (en) 2008-05-02 2008-05-02 Dephosphorization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008120493A JP2008183562A (en) 2008-05-02 2008-05-02 Dephosphorization apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP08161898A Division JP4147609B2 (en) 1998-03-27 1998-03-27 Dephosphorization device

Publications (1)

Publication Number Publication Date
JP2008183562A true JP2008183562A (en) 2008-08-14

Family

ID=39726935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008120493A Pending JP2008183562A (en) 2008-05-02 2008-05-02 Dephosphorization apparatus

Country Status (1)

Country Link
JP (1) JP2008183562A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817581A (en) * 2010-04-08 2010-09-01 同济大学 Integrated nitrogen and phosphorus recovery device in struvite method
CN102963970A (en) * 2012-11-13 2013-03-13 同济大学 Device and process for preparing struvite crystals from nitrogen and phosphorus in sewage
ES2455740A1 (en) * 2014-02-26 2014-04-16 Universidade De Santiago De Compostela Procedure and system of struvite crystallization for the recovery of phosphates in wastewater (Machine-translation by Google Translate, not legally binding)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141293A (en) * 1990-10-01 1992-05-14 Fukuokashi Dephosphorization apparatus
JPH0985263A (en) * 1995-09-28 1997-03-31 Unitika Ltd Treatment of phosphorus in activated alumina desorbed solution
JPH1157749A (en) * 1997-08-12 1999-03-02 Nippon Arushii Kk Method of removing phosphorus, waste water treatment and dephosphorizing agent
JPH11277073A (en) * 1998-03-27 1999-10-12 Kurita Water Ind Ltd Dephosphorizing apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04141293A (en) * 1990-10-01 1992-05-14 Fukuokashi Dephosphorization apparatus
JPH0985263A (en) * 1995-09-28 1997-03-31 Unitika Ltd Treatment of phosphorus in activated alumina desorbed solution
JPH1157749A (en) * 1997-08-12 1999-03-02 Nippon Arushii Kk Method of removing phosphorus, waste water treatment and dephosphorizing agent
JPH11277073A (en) * 1998-03-27 1999-10-12 Kurita Water Ind Ltd Dephosphorizing apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013005319; 化学大事典 5 縮小版 第37頁 昭和49年 縮小版第16刷発行 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817581A (en) * 2010-04-08 2010-09-01 同济大学 Integrated nitrogen and phosphorus recovery device in struvite method
CN102963970A (en) * 2012-11-13 2013-03-13 同济大学 Device and process for preparing struvite crystals from nitrogen and phosphorus in sewage
ES2455740A1 (en) * 2014-02-26 2014-04-16 Universidade De Santiago De Compostela Procedure and system of struvite crystallization for the recovery of phosphates in wastewater (Machine-translation by Google Translate, not legally binding)
WO2015128528A1 (en) * 2014-02-26 2015-09-03 Universidade De Santiago De Compostela Method and system for the crystallisation of struvite for recovering phosphates in wastewater

Similar Documents

Publication Publication Date Title
EP1593417A1 (en) Method and apparatus for removing ion in fluid by crystallization
JP4216569B2 (en) Organic wastewater and sludge treatment method and treatment equipment
JP4519485B2 (en) Phosphorus recovery method and apparatus
JP6026865B2 (en) Sludge treatment apparatus and phosphorus production method
JP3441042B2 (en) Phosphorus removal and recovery equipment using seawater
US20060196835A1 (en) Method and apparatus for removing ions in liquid through crystallization method
JP2008183562A (en) Dephosphorization apparatus
JP4147609B2 (en) Dephosphorization device
JP2007244995A (en) Treatment equipment of digestion sludge
JP2576679B2 (en) Dephosphorization device
JPH11267665A (en) Dephosphorizing device
JP5808638B2 (en) Method and apparatus for treating wastewater containing high concentration calcium and alkali
JP4097910B2 (en) Method and apparatus for removing phosphorus
JP3681073B2 (en) Granulation dephosphorization equipment
JP2007244994A (en) Treatment method of digestion sludge and treatment equipment
JP2005074248A (en) Method and device for collecting and transferring crystal
JPH10323677A (en) Waste water treatment device
JP4439040B2 (en) Wastewater treatment equipment
JPH11300369A (en) Dephosphorizing device and dephosphorizing equipment
JP2000334474A (en) Method for removing phosphorus from waste water
JP2004321992A (en) Phosphorus resource recovery apparatus
JP3726429B2 (en) Dephosphorization device
JP5222596B2 (en) Crystallization reactor
JP4186251B2 (en) Dephosphorization device
JP4004725B2 (en) Two-stage dephosphorization method and apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A02 Decision of refusal

Effective date: 20130205

Free format text: JAPANESE INTERMEDIATE CODE: A02