JP2007244995A - Treatment equipment of digestion sludge - Google Patents

Treatment equipment of digestion sludge Download PDF

Info

Publication number
JP2007244995A
JP2007244995A JP2006071899A JP2006071899A JP2007244995A JP 2007244995 A JP2007244995 A JP 2007244995A JP 2006071899 A JP2006071899 A JP 2006071899A JP 2006071899 A JP2006071899 A JP 2006071899A JP 2007244995 A JP2007244995 A JP 2007244995A
Authority
JP
Japan
Prior art keywords
map
sludge
pipe
reaction tower
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006071899A
Other languages
Japanese (ja)
Inventor
Takeshi Nakamura
中村  剛
Yuka Tamaki
由佳 玉木
Tomohiro Matsushita
知広 松下
Akira Nakabayashi
昭 中林
Aoi Shukunobe
葵 宿野部
Masushi Iga
益司 伊賀
Takaaki Nakamura
貴昭 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukishima Kikai Co Ltd
Unitika Ltd
Osaka City
Original Assignee
Tsukishima Kikai Co Ltd
Unitika Ltd
Osaka City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukishima Kikai Co Ltd, Unitika Ltd, Osaka City filed Critical Tsukishima Kikai Co Ltd
Priority to JP2006071899A priority Critical patent/JP2007244995A/en
Publication of JP2007244995A publication Critical patent/JP2007244995A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide treatment equipment of digestion sludge capable of preventing scale deposition in a sludge-feeding pipe for feeding digestion sludge to a sludge treatment installation such as sludge fusion equipment by efficiently recovering soluble phosphate ions of high concentration, serving as a factor component for causing scaling, from the digestion sludge in a short time as solid particles of ammonium magnesium phosphate (MAP). <P>SOLUTION: The treatment equipment of digestion sludge comprises: a MAP reaction tower 3 provided with a digestion sludge injection pipe 4 for injecting the digestion sludge, a magnesium compound injection pipe 5, a gas blow pipe 6 for aeration, a MAP draw pipe 7 for drawing out the digestion sludge containing MAP particles and a treated sludge pipe 8 for discharging the treated digestion sludge; a MAP recovery device 9 which is connected to the treated sludge pipe 8, recovers fine MAP particles included in treated sludge and returns the recovered fine MAP particles to the MAP reaction tower 3; a liquid cyclone which is connected to the MAP draw pipe 7 of the MAP reaction tower 3 and concentrates the digestion sludge; and a screen which separates and removes the MAP particles from condensate fed from the liquid cyclone. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、嫌気性消化汚泥から溶解性リン酸態リンを除去し、リン酸マグネシウムアンモニウムの固体粒子として回収し、消化汚泥を汚泥溶融設備などの汚泥処理施設へ送る送泥管内のスケール付着を防止できるようにした消化汚泥の処理装置に関するものである。   The present invention removes soluble phosphate phosphorus from anaerobic digested sludge, recovers it as solid magnesium ammonium phosphate particles, and attaches the digested sludge to a sludge treatment facility such as a sludge melting facility. The present invention relates to an apparatus for treating digested sludge that can be prevented.

従来、下水処理施設より発生した汚泥を汚泥溶融設備などの汚泥処理施設に送泥する際に、汚泥中に含有されるリン酸イオン(PO 3−)、マグネシウムイオン(Mg2+)、アンモニウムイオン(NH )が配管中において、リン酸マグネシウムアンモニウム(MgNHPO・6HO;以下MAPという。)を生成したり、リン酸イオン(PO 3−)、カルシウムイオン(Ca2+)が反応してリン酸カルシウム化合物を生成し、配管内壁に析出することによりスケールを形成し、送泥管の口径を徐々に小さくし、最悪の場合にはやがてその送泥管の閉塞を招くといったおそれがあった。 Conventionally, when sludge generated from a sewage treatment facility is sent to a sludge treatment facility such as a sludge melting facility, phosphate ions (PO 4 3− ), magnesium ions (Mg 2+ ), ammonium ions contained in the sludge (NH 4 + ) produces magnesium ammonium phosphate (MgNH 4 PO 4 .6H 2 O; hereinafter referred to as MAP) in the pipe, phosphate ion (PO 4 3− ), calcium ion (Ca 2+ ). Reacts to form calcium phosphate compounds and precipitates on the inner wall of the pipe to form a scale, gradually reducing the diameter of the mud pipe, and in the worst case, the mud pipe may eventually be blocked. there were.

嫌気性消化槽により汚泥の減容を行なった後に、送泥する場合には、MAPを形成する各イオンの濃度が高く、上記の傾向が大きくなる。特に近年の下水処理施設の高度処理化に伴い、生物学的脱リン法を適用された汚泥は嫌気性消化により吐き出すリン酸イオン濃度が高くなり、送泥管の閉塞が加速されるおそれがあった。   When the mud is sent after the volume of sludge is reduced by the anaerobic digester, the concentration of each ion forming MAP is high, and the above tendency increases. In particular, along with the advanced treatment of sewage treatment facilities in recent years, sludge to which biological dephosphorization is applied has a high phosphate ion concentration discharged by anaerobic digestion, and there is a possibility that clogging of the mud pipe may be accelerated. It was.

送泥管の閉塞障害を防ぐ方法として、従来では鉄系やアルミ系の無機凝集剤を多量に添加し、消化汚泥中のリン酸イオン濃度をMAP生成の飽和濃度以下に減少させ、MAP生成反応を抑制する方法が採用されてきたが、この方法であると多量の凝集剤を必要とし、また、多量の金属塩の混入により、後段の汚泥処理施設、特に汚泥溶融設備での耐火材への影響が懸念されていた。   As a method to prevent clogging of the mud pipe, conventionally, a large amount of iron or aluminum inorganic flocculant is added, and the phosphate ion concentration in the digested sludge is reduced below the saturation concentration of MAP production, and MAP production reaction However, this method requires a large amount of flocculant, and the addition of a large amount of metal salt can lead to the use of refractory materials in the subsequent sludge treatment facility, particularly the sludge melting facility. The impact was a concern.

このような問題を解決する方法として、汚泥を輸送するための管路の上流にエアレーション装置を備え、このエアレーション装置で予め汚泥を曝気して脱炭酸によりpHを上昇させ、MAPの発生要因成分を取り除く方法(例えば、特許文献1参照)が知られている。しかしながら、ここに記載されている方法では、通常、消化汚泥中にはマグネシウムイオンモル数以上のリン酸イオンモル数が含有され、MAP反応はマグネシウムイオンとリン酸イオンの当量反応であることより、リン酸イオンが相当量残留することが予想され、かつ、MAPの回収を行なわないため、配管中で再溶解し、MAPを生成するおそれがあった。   As a method for solving such a problem, an aeration apparatus is provided upstream of a pipeline for transporting sludge, the sludge is aerated in advance with this aeration apparatus, the pH is increased by decarboxylation, and components that cause MAP are generated. A removal method (for example, see Patent Document 1) is known. However, in the method described here, usually, the digested sludge contains moles of phosphate ions greater than the number of moles of magnesium ions, and the MAP reaction is an equivalent reaction of magnesium ions and phosphate ions. A considerable amount of acid ions are expected to remain, and since MAP is not collected, there is a possibility that MAP is re-dissolved in the piping and MAP is generated.

上記方法において生成したMAP粒子を遠心分離器により分離する方法(例えば、特許文献2参照)が知られている。しかしながら、この方法においても前記同様、消化汚泥に予め含有されるマグネシウムイオンをMAP反応に利用する方法であることより、リン酸イオンが相当量残留することが予想される。かつ、送泥前にMAP粒子を分離する方法についての記述はあるが、遠心分離濃縮物であることより当然、消化汚泥が多量に混入された状態であることが予想され、さらにMAP粒子の純度を高めるための分離方法についての記述はない。   A method of separating MAP particles generated in the above method with a centrifuge (for example, see Patent Document 2) is known. However, in this method as well, as described above, it is expected that a considerable amount of phosphate ions will remain because the magnesium ions previously contained in the digested sludge are used in the MAP reaction. In addition, although there is a description of a method for separating MAP particles before sending the mud, it is naturally expected that the digested sludge is mixed in a large amount from the centrifugal concentrate, and the purity of the MAP particles is further increased. There is no description of the separation method for improving

さらに、消化槽にマグネシウム源を添加し、生成したMAPの結晶を分離する処理方法及び処理装置(例えば、特許文献3参照)が知られている。しかしながら、ここに記載されている方法及び装置では、消化槽内に直接マグネシウム源を添加することにより、消化槽内でMAP反応が起こり、消化槽内でのMAPのスケーリングが助長されるおそれがある。一旦、消化槽内でのスケーリングによる障害が発生すると、処理施設全体の運転が停止するという大きな問題があった。   Furthermore, a processing method and a processing apparatus (see, for example, Patent Document 3) are known in which a magnesium source is added to a digester and the generated MAP crystals are separated. However, in the method and apparatus described herein, adding a magnesium source directly into the digester may cause a MAP reaction in the digester and facilitate scaling of the MAP in the digester. . Once a failure due to scaling in the digester occurred, there was a major problem that the operation of the entire treatment facility was stopped.

さらに、消化槽とその後段のマグネシウム源の添加が可能なMAP熟成槽より構成される処理方法並びに処理装置(例えば、特許文献4参照)が知られている。しかしながら、ここに記載されている方法並びに装置では、微細なMAPを含む液を消化槽に返送する方法及び装置であることにより、消化槽内でのMAPの堆積またはスケーリングの原因となるおそれがあった。   Furthermore, a processing method and a processing apparatus (for example, refer to Patent Document 4) including a digestion tank and a MAP ripening tank capable of adding a magnesium source at a subsequent stage are known. However, since the method and apparatus described here are a method and apparatus for returning a liquid containing fine MAP to the digester, there is a risk of causing MAP accumulation or scaling in the digester. It was.

一方、従来よりアンモニウムイオン及びリン酸イオンを含む廃水に、マグネシウム化合物を添加し、通気によって廃水を撹拌し、MAPの固体粒子を生成させる方法及び装置(例えば、特許文献5参照)が知られている。   On the other hand, conventionally, a method and an apparatus (for example, refer to Patent Document 5) are known in which a magnesium compound is added to wastewater containing ammonium ions and phosphate ions, and the wastewater is stirred by aeration to generate MAP solid particles. Yes.

さらに、液体サイクロンにより微細なMAP粒子を回収する装置(例えば、特許文献6参照)、生成したMAPの固体粒子をスクリーンにより効率よく回収する装置(例えば、特許文献7参照)が知られている。しかしながら、これらに記載されている装置は、消化汚泥脱水ろ液やし尿脱離液などの汚泥濃度が数千mg/L以下の廃水を対象としており、汚泥濃度が数万mg/L程度の汚泥を対象としたものではなく、汚泥高濃度におけるMAPの回収や分離についての知見は無かった。
特開2000−271595号公報 特開2001−162300号公報 特開2004−941号公報 特開2004−160300号公報 特許第2578136号公報 特許第3681073号公報 特開平9−117774号公報
Furthermore, an apparatus that collects fine MAP particles with a liquid cyclone (for example, see Patent Document 6) and an apparatus that efficiently collects generated MAP solid particles with a screen (for example, see Patent Document 7) are known. However, the devices described in these documents are intended for wastewater having a sludge concentration of several thousand mg / L or less, such as digested sludge dehydrated filtrate and human urine effluent, and sludge having a sludge concentration of about tens of thousands mg / L. There was no knowledge about the collection and separation of MAP at high sludge concentration.
JP 2000-271595 A JP 2001-162300 A Japanese Patent Laid-Open No. 2004-941 JP 2004-160300 A Japanese Patent No. 2578136 Japanese Patent No. 3681073 JP-A-9-117774

本発明は、消化汚泥から、スケーリングの発生要因成分である高濃度の溶解性のリン酸イオンを効率よく短時間でMAPの固体粒子として回収することにより、消化汚泥を汚泥溶融設備などの汚泥処理施設へ送る送泥管内のスケール付着を防止できる技術を提供しようとするものである。   The present invention recovers digested sludge from sludge treatment equipment such as sludge melting equipment by efficiently recovering high-concentration soluble phosphate ions, which are components that cause scaling, as solid particles of MAP in a short time. It is intended to provide a technology that can prevent the scale from adhering to the mud pipe sent to the facility.

本発明者は、このような課題を解決するために鋭意検討の結果、特定の装置より構成される消化汚泥の処理装置により、消化汚泥中に含まれるリン酸イオンを短時間で効率よく除去でき、汚泥混入の少ないMAPの固体粒子として、回収できるという事実を見出し、本発明に到達した。   As a result of intensive studies to solve such problems, the present inventor can efficiently remove phosphate ions contained in the digested sludge in a short time by using the digested sludge treatment apparatus constituted by a specific apparatus. The present inventors have found the fact that they can be recovered as MAP solid particles with little sludge contamination, and have reached the present invention.

すなわち、本発明は、消化汚泥を注入するための消化汚泥注入管、マグネシウム化合物注入管、曝気用の気体吹き込み管、リン酸マグネシウムアンモニウム粒子を含んだ消化汚泥を引き抜くための引抜管及び処理された消化汚泥を排出するための処理汚泥管を備える反応塔と、この処理汚泥管に接続しており、処理汚泥に含まれる微細なリン酸マグネシウムアンモニウム粒子を回収して前記反応塔に戻すための回収装置と、前記反応塔の引抜管に接続しており、リン酸マグネシウムアンモニウム粒子を含む消化汚泥を濃縮するための液体サイクロンと、この液体サイクロンからの濃縮液からリン酸マグネシウムアンモニウム粒子を分離・除去するスクリーンとからなることを特徴とする消化汚泥の処理装置を要旨とするものである。   That is, the present invention is a digested sludge injection tube for injecting digested sludge, a magnesium compound injection tube, a gas blowing tube for aeration, a extraction tube for extracting digested sludge containing magnesium ammonium phosphate particles, and a treatment A reaction tower equipped with a treated sludge pipe for discharging digested sludge, and a collection connected to the treated sludge pipe for collecting fine magnesium ammonium phosphate particles contained in the treated sludge and returning them to the reaction tower Connected to the apparatus and the extraction tube of the reaction tower, liquid cyclone for concentrating digested sludge containing magnesium ammonium phosphate particles, and separation and removal of magnesium ammonium phosphate particles from the concentrated solution from this liquid cyclone A digested sludge treatment apparatus characterized by comprising a screen that performs the above process.

以上のように本発明によれば、消化汚泥からMAPなどのスケーリングの発生要因成分である高濃度のリン酸イオンを効率よく短時間でMAPの固体粒子として回収できることから、消化汚泥を汚泥溶融設備などの汚泥処理施設へ送る送泥管内のスケール付着を防止できる。さらに、枯渇資源とされるリン資源を回収することができ、肥効を持続する緩効性の化成肥料として有効利用できる。   As described above, according to the present invention, high-concentration phosphate ions, which are scaling factors such as MAP, can be efficiently and quickly recovered from the digested sludge as MAP solid particles. It is possible to prevent the scale from adhering to the sludge pipe sent to the sludge treatment facility. Furthermore, phosphorus resources that are depleted resources can be recovered, and can be effectively used as a slow-acting chemical fertilizer that maintains the fertilization effect.

以下、本発明の実施の形態を、図面を用いて具体的に説明する。
本発明において対象となる消化汚泥は、リン酸イオン、アンモニウムイオンを含有するものであり、特に高濃度のリン酸イオンが含まれるものが好適である。このような消化汚泥の代表例としては、下水処理施設より発生する最初沈殿池汚泥(生汚泥)及び/又は、最終沈殿池汚泥(余剰汚泥)を減容化及び安定化するために適用される嫌気性消化槽より引き抜かれる消化汚泥(嫌気性消化汚泥)が挙げられる。
Embodiments of the present invention will be specifically described below with reference to the drawings.
The digested sludge to be used in the present invention contains phosphate ions and ammonium ions, and those containing a high concentration of phosphate ions are particularly suitable. A typical example of such digested sludge is applied to reduce and stabilize the initial sedimentation basin sludge (raw sludge) and / or final sedimentation basin sludge (excess sludge) generated from a sewage treatment facility. Examples include digested sludge (anaerobic digested sludge) extracted from an anaerobic digester.

次に、本発明の消化汚泥の処理装置について、図1のフローシートにより説明する。
嫌気性消化槽1より引き抜かれた消化汚泥を、本発明の処理装置2に供給する。処理装置2は、MAPを生成するためのMAP反応塔3を有し、このMAP反応塔3には、消化汚泥を注入するための消化汚泥注入管4、マグネシウム化合物を供給するためのマグネシウム化合物注入管5、曝気するための気体吹き込み管6、MAPの固体粒子と消化汚泥を引き抜くためのMAP引抜管7、及び処理汚泥管8を備えている。さらに、MAP反応塔3より流出した微細なMAPの固体粒子を回収するためのMAP回収装置9を有し、このMAP回収装置9により回収された微細なMAPの固体粒子はMAP反応塔3に回収MAP返送管10により返送される。さらに、MAP反応塔3よりMAP引抜管7を介して引き抜かれたMAPの固体粒子と消化汚泥の混合物より、MAPの固体粒子を分離するための分離装置11を有し、この分離装置11より分離された消化汚泥と微細なMAPの固体粒子は分離汚泥返送管12を介してMAP反応塔3に返送される。本発明においては、分離装置11が、混合物を濃縮するための液体サイクロンと、濃縮された混合物からMAPを分離するためのスクリーンからなることを特徴としている。なお、図1において、13は前記MAP回収装置9と汚泥処理の次工程14との間を繋ぐ液体サイクロン処理汚泥管、15は前記分離装置11より除去された分離MAP粒子である。
Next, the digested sludge treatment apparatus of the present invention will be described with reference to the flow sheet of FIG.
Digested sludge extracted from the anaerobic digester 1 is supplied to the treatment apparatus 2 of the present invention. The processing apparatus 2 has a MAP reaction tower 3 for generating MAP. In the MAP reaction tower 3, a digested sludge injection pipe 4 for injecting digested sludge, and a magnesium compound injection for supplying a magnesium compound are provided. A pipe 5, a gas blowing pipe 6 for aeration, a MAP extraction pipe 7 for extracting MAP solid particles and digested sludge, and a treated sludge pipe 8 are provided. Furthermore, it has a MAP recovery device 9 for recovering fine MAP solid particles flowing out from the MAP reaction tower 3, and the fine MAP solid particles recovered by the MAP recovery device 9 are recovered in the MAP reaction tower 3. It is returned by the MAP return pipe 10. Further, a separation device 11 for separating the MAP solid particles from the mixture of the MAP solid particles and the digested sludge drawn from the MAP reaction tower 3 through the MAP drawing tube 7 is provided. The digested sludge and fine MAP solid particles are returned to the MAP reaction tower 3 via the separated sludge return pipe 12. In the present invention, the separation device 11 includes a liquid cyclone for concentrating the mixture and a screen for separating MAP from the concentrated mixture. In FIG. 1, reference numeral 13 denotes a hydrocyclone-treated sludge pipe connecting the MAP recovery device 9 and the next sludge treatment step 14, and 15 denotes separated MAP particles removed from the separation device 11.

次に、処理装置2を構成するMAP反応塔3、MAP回収装置9、分離装置11について詳細を説明する。
MAP反応塔3では、消化汚泥中に多量に含まれているリン酸イオンとアンモニウムイオンにリン酸イオンの当量より不足しているマグネシウム化合物を添加することにより、(1)式の反応式によりMAPを生成させ、固体粒子に成長させる。
PO 3−+NH +Mg2++6HO→MgNHPO・6HO↓(MAP)…(1)
(1)式の反応はpHが高くなるほど、化学平衡反応は右側に移動し、消化汚泥中のリン酸態リン濃度は低下するので、苛性ソーダなどのアルカリ剤によりMAP反応塔3内のpH調整を行なってもよいが、通常、曝気により消化汚泥中の炭酸が追い出され、その結果pHが上昇するため、必ずしもpH調整を必要とはしない。(1)式の最適なpHは、通常は7.0〜9.5の範囲となるようにすることが好ましく、さらに7.5〜9.0の範囲が好ましく、8.0〜8.5の範囲が最も好ましい。
Next, details of the MAP reaction tower 3, the MAP recovery device 9, and the separation device 11 constituting the processing device 2 will be described.
In the MAP reaction tower 3, by adding a magnesium compound that is deficient in an amount equivalent to phosphate ions to phosphate ions and ammonium ions contained in a large amount in the digested sludge, the MAP reaction formula (1) is used to express MAP. To grow into solid particles.
PO 4 3− + NH 4 + + Mg 2+ + 6H 2 O → MgNH 4 PO 4 .6H 2 O ↓ (MAP) (1)
In the reaction of formula (1), the higher the pH, the more the chemical equilibrium reaction moves to the right side, and the phosphorous phosphorus concentration in the digested sludge decreases, so the pH in the MAP reaction tower 3 can be adjusted with an alkaline agent such as caustic soda. Although it may be performed, usually, carbonation in the digested sludge is expelled by aeration, and as a result the pH rises, so pH adjustment is not necessarily required. The optimum pH of the formula (1) is usually preferably in the range of 7.0 to 9.5, more preferably in the range of 7.5 to 9.0, and 8.0 to 8.5. The range of is most preferable.

添加するマグネシウム化合物としては、塩化マグネシウムや水酸化マグネシウムなどのマグネシウムを含有する化合物であれば特に限定されないが、それ自身がアルカリ剤であり、安価な水酸化マグネシウムの使用が好ましい。添加率としては、消化汚泥中に含有されているマグネシウムイオン濃度によるが、通常は、消化汚泥中の溶解性リン酸態リンのモル数に対して、マグネシウムのモル数が0.8〜2.5倍となるようにマグネシウム化合物を添加することが好ましく、さらに0.9〜2.0倍の範囲が好ましく、1.0〜1.5倍の範囲が最も好ましい。   The magnesium compound to be added is not particularly limited as long as it is a compound containing magnesium such as magnesium chloride and magnesium hydroxide, but it is an alkali agent itself, and inexpensive magnesium hydroxide is preferably used. The rate of addition depends on the concentration of magnesium ions contained in the digested sludge, but usually, the number of moles of magnesium is 0.8-2 with respect to the number of soluble phosphate phosphorus in the digested sludge. It is preferable to add the magnesium compound so as to be 5 times, more preferably 0.9 to 2.0 times, and most preferably 1.0 to 1.5 times.

MAP反応塔3では、(1)式の化学反応を進行させるためにMAP反応塔3内を撹拌混合する必要がある。撹拌方法としては撹拌羽根の回転による機械的撹拌方法や、MAP反応塔3内のポンプによる循環混合方法など、特に限定されるものではないが、前記の通り、脱炭酸効果や反応効率を考慮すると空気撹拌式縦形二重円筒型反応塔が最も適する。   In the MAP reaction tower 3, the inside of the MAP reaction tower 3 needs to be stirred and mixed in order to advance the chemical reaction of the formula (1). The stirring method is not particularly limited, such as a mechanical stirring method by rotation of a stirring blade or a circulating mixing method by a pump in the MAP reaction tower 3, but as described above, considering the decarboxylation effect and reaction efficiency. An air stirred vertical double cylindrical reactor is most suitable.

次に、空気撹拌式縦形二重円筒型反応塔について、図2に基づき説明する。
MAP反応塔3は、MAP反応塔直胴部16と、その下部に位置するMAP反応塔円錐部17と、MAP反応塔直胴部16の上部に位置しMAP反応塔直胴部16より広径のMAP反応塔沈殿部18とから構成され、MAP反応塔沈殿部18の内部には、傾斜部分とMAP反応塔直胴部16との交点でスリットを形成するように、MAP反応塔円筒体19が設けられており、さらに、内部にMAP反応塔第2円筒体20が立設されている。
Next, an air stirring type vertical double cylindrical reactor will be described with reference to FIG.
The MAP reaction tower 3 includes a MAP reaction tower straight body section 16, a MAP reaction tower cone section 17 positioned below the MAP reaction tower straight section 16, and a diameter larger than the MAP reaction tower straight body section 16 located above the MAP reaction tower straight body section 16. The MAP reaction column cylindrical body 19 is formed so that a slit is formed in the MAP reaction column precipitation unit 18 at the intersection of the inclined portion and the MAP reaction column straight body 16. Further, the MAP reaction tower second cylindrical body 20 is erected inside.

MAP反応塔沈殿部18の傾斜部分及びMAP反応塔円錐部17の傾斜角としては、特に限定されるものではないが、固体粒子のスムーズな滑りを考慮すると、傾斜角45度以上が好ましく、さらに好ましくは60度以上が好ましい。   The inclination angle of the MAP reaction tower sedimentation section 18 and the inclination angle of the MAP reaction tower cone section 17 are not particularly limited, but in consideration of smooth sliding of solid particles, an inclination angle of 45 degrees or more is preferable. 60 degrees or more is preferable.

また、MAP反応塔第2円筒体20の直径とMAP反応塔直胴部16の直径の比率(第2円筒体直径/MAP反応塔直胴部直径)としては、通常は0.2〜0.8の範囲となるように設計することが好ましく、さらに0.3〜0.7の範囲が好ましく、0.4〜0.6の範囲が最も好ましい。   The ratio of the diameter of the MAP reaction tower second cylinder 20 to the diameter of the MAP reaction tower straight body 16 (second cylinder diameter / MAP reaction tower straight body diameter) is usually 0.2 to 0. 0. It is preferably designed to be in the range of 8, more preferably in the range of 0.3 to 0.7, and most preferably in the range of 0.4 to 0.6.

MAP反応塔3高さ(MAP反応塔直胴部16の高さ+MAP反応塔沈殿部18の高さ)とMAP反応塔直胴部16の直径との比率(MAP反応塔高さ/MAP反応塔直胴部直径)としては、通常は2〜7の範囲となるように設計することが好ましく、さらに2.5〜6の範囲が好ましく、3〜5の範囲が最も好ましい。   The ratio of the height of the MAP reaction tower 3 (the height of the MAP reaction tower straight body section 16 + the height of the MAP reaction tower sedimentation section 18) and the diameter of the MAP reaction tower straight body section 16 (MAP reaction tower height / MAP reaction tower) The diameter of the straight body part) is usually preferably designed to be in the range of 2-7, more preferably in the range of 2.5-6, and most preferably in the range of 3-5.

本発明においては、消化汚泥を、消化汚泥注入管4によってMAP反応塔第2円筒体20の内部に供給する。消化汚泥供給量としては、MAP反応塔反応部容積(MAP反応塔直胴部16により形成される部分の容積+MAP反応塔円筒体19により形成される部分の容積)での汚泥滞留時間を通常は5〜90分の範囲に設定するのが好ましく、さらに10〜60分の範囲が好ましく、15〜40分の範囲が最も好ましい。   In the present invention, the digested sludge is supplied to the inside of the second cylindrical body 20 of the MAP reaction tower through the digested sludge injection pipe 4. As the digested sludge supply amount, the sludge residence time in the MAP reaction tower reaction part volume (volume of the part formed by the MAP reaction tower straight body part 16 + volume of the part formed by the MAP reaction tower cylindrical body 19) is usually It is preferably set in the range of 5 to 90 minutes, more preferably in the range of 10 to 60 minutes, and most preferably in the range of 15 to 40 minutes.

MAP反応塔沈殿部18の内側とMAP反応塔円筒体19の外側で形成される固体粒子の重力沈降部分の水面積負荷は消化汚泥注入量に対して通常は5〜60m/m/日の範囲、好ましくは6〜50m/m/日の範囲、さらに好ましくは8〜40m/m/日の範囲とする。 The water area load of the gravity sedimentation portion of the solid particles formed inside the MAP reaction tower sedimentation section 18 and outside the MAP reaction tower cylinder 19 is usually 5 to 60 m 3 / m 2 / day with respect to the digested sludge injection amount. , Preferably 6 to 50 m 3 / m 2 / day, and more preferably 8 to 40 m 3 / m 2 / day.

曝気用気体は、気体吹き込み管6からMAP反応塔3内に吹き込む。曝気用気体としては、炭酸ガスの含有量が少ない気体であれば特に限定されないが、通常は空気を使用する。気体吹き込み管6より供給される風量は、MAP反応塔直胴部16の断面積に対して、通常は5〜100m/m/時の範囲、好ましくは8〜70m/m/時の範囲、さらに好ましくは10〜50m/m/時の範囲とする。 The aeration gas is blown into the MAP reaction tower 3 from the gas blowing pipe 6. The aeration gas is not particularly limited as long as it has a low carbon dioxide content, but air is usually used. The amount of air supplied from the gas blowing pipe 6 is usually in the range of 5 to 100 m 3 / m 2 / hour, preferably 8 to 70 m 3 / m 2 / hour, with respect to the cross-sectional area of the MAP reaction tower straight body portion 16. More preferably, the range is 10 to 50 m 3 / m 2 / hour.

MAP反応塔3の内部において、MAPの結晶が生成、成長し固体粒子が形成される。MAPの固体粒子はMAP反応塔沈殿部18により沈降分離され、沈降分離したMAPはMAP反応塔沈殿部18の傾斜部分とMAP反応塔直胴部16との交点とMAP反応塔円筒体19との間で形成されたスリットよりMAP反応塔3内部に滑り込む。   In the MAP reaction tower 3, MAP crystals are generated and grown to form solid particles. The MAP solid particles are settled and separated by the MAP reaction tower sedimentation section 18, and the separated and separated MAP is formed by the intersection of the inclined portion of the MAP reaction tower sedimentation section 18 and the MAP reaction tower straight body section 16 and the MAP reaction tower cylinder 19. Slide into the MAP reaction tower 3 through the slit formed between them.

一方、沈降しなかったMAPとリン酸態リン濃度が低下した消化汚泥は、MAP反応塔沈殿部18の外側に取り巻く流出トラフに設置されたVノッチを越流し、処理汚泥管8よりMAP回収装置9へ供給される。   On the other hand, MAP that did not settle and digested sludge with reduced phosphoric phosphorus concentration overflow the V-notch installed in the outflow trough surrounding the outside of the MAP reaction tower sedimentation section 18, and the MAP recovery device from the treated sludge pipe 8 9 is supplied.

MAP反応塔3の内部に蓄積したMAP粒子と消化汚泥は、3日〜2週間の間隔でMAP反応塔円錐部17の底部に気体吹き込み管6を介して接続したMAP引抜弁21を開け、MAP引抜管7より分離装置11へ供給される。   The MAP particles and digested sludge accumulated inside the MAP reaction tower 3 open the MAP extraction valve 21 connected to the bottom of the MAP reaction tower cone 17 via the gas blowing pipe 6 at intervals of 3 days to 2 weeks, It is supplied from the drawing tube 7 to the separation device 11.

MAP反応塔3の内部にMAPの種結晶を充填しておいてもよく、その場合は数日の間に粒径の大きなMAP粒子を得ることができる。
MAP回収装置9は、消化汚泥と微細なMAP粒子の混合物からMAP粒子を回収するものであり、スクリーンによる分離方法や遠心分離方法など、特に限定されるものではないが、消化汚泥とMAP粒子(真比重1.72)の比重差を利用した液体サイクロンが最も適する。
The MAP reaction tower 3 may be filled with MAP seed crystals, and in that case, MAP particles having a large particle size can be obtained within a few days.
The MAP recovery device 9 recovers MAP particles from a mixture of digested sludge and fine MAP particles, and is not particularly limited, such as a screen separation method or a centrifugal separation method, but digested sludge and MAP particles ( A hydrocyclone utilizing a specific gravity difference of true specific gravity 1.72) is most suitable.

処理汚泥管8を液体サイクロン中継槽22に接続して、一旦貯留し、液体サイクロン原汚泥供給ポンプ23により、液体サイクロン24Aの直胴部切線方向に供給する。液体サイクロン24Aの上流側の圧力が十分に高い場合は、液体サイクロン中継槽22や液体サイクロン原汚泥供給ポンプ23は不要となるが、通常、十分な供給速度を得るためには、液体サイクロン24Aでの圧損を考慮するとポンプによる圧送が必要となる。   The treated sludge pipe 8 is connected to the hydrocyclone relay tank 22, temporarily stored, and supplied by the hydrocyclone raw sludge supply pump 23 in the direction of the straight body portion of the hydrocyclone 24A. When the pressure on the upstream side of the hydrocyclone 24A is sufficiently high, the hydrocyclone relay tank 22 and the liquid cyclone raw sludge supply pump 23 are not necessary, but in order to obtain a sufficient supply speed, the hydrocyclone 24A is usually used. Considering the pressure loss, pumping by a pump is required.

液体サイクロン24Aへの供給量は、液体サイクロン入口流速が、通常は1〜20m/secの範囲、好ましくは2〜10m/sec、さらに好ましくは3〜8m/secの範囲とする。液体サイクロン24Aに供給された消化汚泥と微細なMAP粒子の混合物は、液体サイクロン24Aの直胴部周壁に沿う回転流となって速度勾配に伴う剪断力が与えられ、液体サイクロン24Aの下部の円錐部へ進み、比重の大きなMAP粒子は最底部に達し、回収MAP返送ポンプ25により、回収MAP返送管26を経てMAP反応塔3へ返送される。返送量は液体サイクロン24Aへの供給量に対して、通常は1〜30%の範囲、好ましくは2〜20%、さらに好ましくは3〜10%の範囲とする。一方、MAP粒子の大部分を回収された消化汚泥は、液体サイクロン24Aの中央付近を渦流状態となって上昇し、液体サイクロン24Aの上部に接続した液体サイクロン処理汚泥管13より汚泥処理の次工程14に移送される。   The supply amount to the liquid cyclone 24A is such that the liquid cyclone inlet flow velocity is usually in the range of 1 to 20 m / sec, preferably 2 to 10 m / sec, more preferably 3 to 8 m / sec. The mixture of digested sludge and fine MAP particles supplied to the hydrocyclone 24A becomes a rotational flow along the peripheral wall of the straight body portion of the hydrocyclone 24A and is given a shearing force accompanying a velocity gradient, and the cone at the bottom of the hydrocyclone 24A. The MAP particles having a large specific gravity reach the bottom and are returned to the MAP reaction tower 3 by the recovery MAP return pump 25 via the recovery MAP return pipe 26. The return amount is usually in the range of 1 to 30%, preferably 2 to 20%, more preferably 3 to 10% with respect to the supply amount to the hydrocyclone 24A. On the other hand, the digested sludge from which most of the MAP particles have been recovered rises in a vortex state near the center of the liquid cyclone 24A, and the next process of sludge treatment from the liquid cyclone-treated sludge pipe 13 connected to the upper part of the liquid cyclone 24A. 14 is transferred.

分離装置11は、MAP反応塔3内部より引き抜かれた消化汚泥とMAP粒子の混合物からMAP粒子を分離するものであり、比重差を利用した重力沈降法や遠心分離方法などがあるが、規定の目幅のスクリーンにより分離する方法が最も適する。   Separation apparatus 11 separates MAP particles from a mixture of digested sludge and MAP particles extracted from the inside of MAP reaction tower 3, and includes a gravity sedimentation method and a centrifugal separation method using a specific gravity difference. The method of separating with a screen having a mesh width is most suitable.

MAP反応塔3内部に蓄積したMAP粒子と消化汚泥は、MAP引抜管7に接続したMAP引抜ポンプ27によりMAP分離機28へ供給される。MAP分離機28はスクリーンにより構成され、規定の目幅は、通常は0.1〜2mmの範囲、好ましくは0.15〜1.5mm、さらに好ましくは0.2〜1.0mmの範囲とする。スクリーンは断面が台形状であるウェッジワイヤーより構成されるものが目詰まりの防止に効果的であり、さらにスクリーンは平板状、円筒状の何れでもよいが、前記スクリーンを円筒体にし、円筒体内部より被分離混合物を供給し、円筒体を1分間に10〜60回転程度に回転させ、洗浄水により洗浄するいわゆるトロンメル形状のものが最も適する。   The MAP particles and the digested sludge accumulated in the MAP reaction tower 3 are supplied to the MAP separator 28 by the MAP extraction pump 27 connected to the MAP extraction pipe 7. The MAP separator 28 is composed of a screen, and the specified mesh width is usually in the range of 0.1 to 2 mm, preferably 0.15 to 1.5 mm, more preferably 0.2 to 1.0 mm. . A screen composed of a wedge wire having a trapezoidal cross section is effective in preventing clogging, and the screen may be either flat or cylindrical. A so-called trommel-shaped one in which the mixture to be separated is further supplied, the cylindrical body is rotated about 10 to 60 revolutions per minute, and washed with washing water is most suitable.

分離装置11により分離された分離MAP粒子15はMAP分離機28の一端より排出される。一方、スクリーンを通過した消化汚泥と微細なMAP粒子は、分離汚泥移送ポンプ29によりMAP反応塔3へ返送される。   The separated MAP particles 15 separated by the separation device 11 are discharged from one end of the MAP separator 28. On the other hand, the digested sludge and fine MAP particles that have passed through the screen are returned to the MAP reaction tower 3 by the separated sludge transfer pump 29.

分離装置11として、予め濃縮した後にMAP分離機28へ供給することにより、分離MAP粒子15中に比重の比較的小さな夾雑物の混入を防ぐことができ、洗浄水量を少なくできるなど、効率的な分離が可能となる。濃縮する方法としては、重力沈降による方法や遠心分離による方法などがあるが、前記液体サイクロン24Aと同様の液体サイクロン24Bにより濃縮し、濃縮MAP供給ポンプ30によりMAP分離機28へ供給する方法が最も適する。   By supplying the MAP separator 28 after concentrating in advance as the separator 11, it is possible to prevent contamination with relatively small specific gravity in the separated MAP particles 15, and to reduce the amount of washing water. Separation is possible. As a method of concentration, there are a gravity sedimentation method, a centrifugal separation method, and the like, but the method of concentrating with the liquid cyclone 24B similar to the liquid cyclone 24A and supplying to the MAP separator 28 with the concentrated MAP supply pump 30 is the most. Suitable.

MAP引抜管7をMAP引抜ポンプ27に接続し、液体サイクロン24Bの直胴部切線方向に供給する。液体サイクロン24Bへの供給量は、液体サイクロン入口流速が、通常は1〜20m/secの範囲、好ましくは2〜10m/sec、さらに好ましくは3〜8m/secの範囲とする。液体サイクロン24Bに供給された消化汚泥とMAP粒子の混合物は、液体サイクロン24Bの直胴部周壁に沿う回転流となって速度勾配に伴う剪断力が与えられ、液体サイクロン24Bの下部の円錐部へ進み、比重の大きなMAP粒子は最底部に達し、濃縮MAP供給ポンプ30により、MAP分離機28へ供給される。供給量は液体サイクロン24Bへの供給量に対して、通常は1〜30%の範囲、好ましくは2〜20%、さらに好ましくは3〜10%の範囲とする。一方、MAP粒子の大部分を回収された消化汚泥は、サイクロン中央付近を渦流状態となって上昇し、液体サイクロン24B上部に接続した消化汚泥返送管31よりMAP反応塔3に返送される。   The MAP extraction pipe 7 is connected to the MAP extraction pump 27 and supplied in the direction of the straight barrel section of the hydrocyclone 24B. The supply amount to the hydrocyclone 24B is such that the liquid cyclone inlet flow velocity is usually in the range of 1 to 20 m / sec, preferably 2 to 10 m / sec, more preferably 3 to 8 m / sec. The mixture of digested sludge and MAP particles supplied to the hydrocyclone 24B becomes a rotational flow along the peripheral wall of the straight cylinder portion of the hydrocyclone 24B, and is given a shearing force accompanying a velocity gradient, to the lower cone of the hydrocyclone 24B. The MAP particles having a large specific gravity reach the bottom and are supplied to the MAP separator 28 by the concentrated MAP supply pump 30. The supply amount is usually in the range of 1 to 30%, preferably 2 to 20%, more preferably 3 to 10% with respect to the supply amount to the hydrocyclone 24B. On the other hand, the digested sludge from which most of the MAP particles have been recovered rises in a vortex state near the center of the cyclone and is returned to the MAP reaction tower 3 from the digested sludge return pipe 31 connected to the upper part of the liquid cyclone 24B.

MAP分離機28は前記記載のスクリーンを使用し、スクリーンを通過した消化汚泥と微細なMAP粒子は、分離汚泥移送ポンプ29によりMAP反応塔3へ返送される。
以上の装置により、消化槽にマグネシウム源を添加することなく、消化槽でのスケーリング障害を防止し、かつ、消化汚泥中のリン酸イオンを十分に除去すると同時に、緩効性化成肥料として有効利用可能な形態のMAP固体粒子として回収することができる。
The MAP separator 28 uses the screen described above, and the digested sludge and fine MAP particles that have passed through the screen are returned to the MAP reaction tower 3 by the separated sludge transfer pump 29.
With the above equipment, without adding a magnesium source to the digestion tank, scaling failure in the digestion tank is prevented, and phosphate ions in the digested sludge are removed sufficiently, and at the same time, it is effectively used as a slow-release chemical fertilizer It can be recovered as a possible form of MAP solid particles.

次に、本発明を実施例によって具体的に説明する。
実施例1
MAP反応塔の直胴部の直径300mm、沈殿部の直径600mm、直胴部と沈殿部及び下部円錐部を合わせた全高1510mm、全容積160リットルであり、MAP反応塔内部には直胴部と沈殿部傾斜部分との交点にスリットを形成するように円筒体を設置し、さらに該スリットより上部に上端が位置するように直径155mmの第2円筒体を設置したMAP反応塔にpH7.8、リン酸態リン濃度150mg/リットル、汚泥濃度26000mg/リットル、アンモニア性窒素濃度1000mg/リットル含まれた消化汚泥を5m/日の流量で連続的に供給し、MAP反応塔底部より40リットル/分で連続的に空気で曝気し、リン酸態リン濃度150mg/リットルに対し、モル比で1.5となるように5%水酸化マグネシウムスラリーを連続的に供給した。
Next, the present invention will be specifically described with reference to examples.
Example 1
The diameter of the straight body part of the MAP reaction tower is 300 mm, the diameter of the sedimentation part is 600 mm, the total height of the straight body part, the sedimentation part and the lower cone part is 1510 mm, and the total volume is 160 liters. PH 7.8 is installed in a MAP reaction tower in which a cylindrical body is installed so as to form a slit at the intersection with the inclined portion of the precipitation section, and a second cylindrical body having a diameter of 155 mm is installed so that the upper end is located above the slit. Digested sludge containing phosphate phosphorus concentration of 150 mg / liter, sludge concentration of 26000 mg / liter and ammoniacal nitrogen concentration of 1000 mg / liter is continuously supplied at a flow rate of 5 m 3 / day, and 40 liter / min from the bottom of the MAP reaction tower. And 5% magnesium hydroxide so that the molar ratio is 1.5 with respect to the phosphate phosphorus concentration of 150 mg / liter. It was continuously fed the rally.

MAP反応塔沈殿部よりオーバーフローした消化汚泥と微細MAP粒子の混合物を有効容量520リットルの液体サイクロン中継槽に溜め、この液体サイクロン中継槽により1分間に120回転の速度で常時撹拌した。液体サイクロン中継槽に設置したレベルスイッチにより液体サイクロン原汚泥供給ポンプを起動させ、120m/日の流量で、直胴部直径115mm、円錐部を合わせた全高550mmの回収用液体サイクロンに切線速度6.8m/秒で供給した。なお、液体サイクロンにより回収された微細なMAP粒子を多量に含む消化汚泥はMAP返送ポンプにより6m/日の流量で連続的にMAP反応塔へ返送した。 A mixture of digested sludge and fine MAP particles overflowed from the precipitation part of the MAP reaction tower was stored in a liquid cyclone relay tank having an effective capacity of 520 liters, and constantly stirred at a speed of 120 revolutions per minute by this liquid cyclone relay tank. The hydrocyclone raw sludge supply pump is activated by a level switch installed in the hydrocyclone relay tank, and the cutting speed is 6 at a flow rate of 120 m 3 / day at a recovery hydrocyclone with a straight body diameter of 115 mm and a conical part total height of 550 mm. Supplied at 8 m / sec. The digested sludge containing a large amount of fine MAP particles recovered by the liquid cyclone was continuously returned to the MAP reaction tower at a flow rate of 6 m 3 / day by a MAP return pump.

上記の運転を1週間継続し、MAP反応塔下部より反応塔内部のMAP粒子と消化汚泥をMAP引抜ポンプにより120m/日の流量で、直胴部直径115mm、円錐部を合わせた全高550mmの濃縮用液体サイクロンに切線速度6.8m/秒で供給した。なお、液体サイクロンにより濃縮されたMAP粒子を多量に含む消化汚泥は濃縮MAP供給ポンプにより、2m/日の流量で内径200mm、長さ600mm、目開き0.3mmのドラム型ウェッジワイヤースクリーンに連続的に供給し、1分間に10回転の速度で回転させ、4m/日の洗浄水で連続的に洗浄し、スクリーンを通過した微細なMAP粒子と消化汚泥及び洗浄水は分離汚泥移送ポンプによりMAP反応塔へ返送した。一方、液体サイクロンの上部より流出した消化汚泥はMAP反応塔へ返送した。 The above operation is continued for one week, and the MAP particles and digested sludge inside the reaction tower are flown from the lower part of the MAP reaction tower at a flow rate of 120 m 3 / day with a flow rate of 120 m 3 / day, the straight body diameter is 115 mm, and the total height is 550 mm. The liquid cyclone for concentration was supplied at a cutting speed of 6.8 m / sec. Digested sludge containing a large amount of MAP particles concentrated by a hydrocyclone is continuously connected to a drum type wedge wire screen with an inner diameter of 200 mm, a length of 600 mm, and an opening of 0.3 mm at a flow rate of 2 m 3 / day by a concentrated MAP supply pump. , Rotating at a speed of 10 revolutions per minute, and continuously washing with 4 m 3 / day of washing water. Fine MAP particles passing through the screen, digested sludge and washing water are separated by a separated sludge transfer pump. Returned to the MAP reaction tower. On the other hand, the digested sludge that flowed out from the top of the liquid cyclone was returned to the MAP reaction tower.

以上の方法により、回収用液体サイクロンの処理汚泥は、pH8.3程度まで上昇し、リン酸態リン濃度は20mg/リットル以下にまで低下した。なお、MAP分離スクリーンにより、0.3mm以上の固体粒子が得られ、X線回折の結果、MAP(リン酸マグネシウムアンモニウム;MgNHPO・6HO)であることが判明した。真空乾燥後、成分分析を行なった結果、く溶性リン酸(P)28%、く溶性苦土(MgO)15%、アンモニア性窒素(NH−N)5.4%を含み、カドミウム、水銀、鉛などの有害成分含有量は、肥料取締法に定める化成肥料の有害成分許容値を大幅に下回ることが判明した。
比較例1
実施例1で用いた消化汚泥と同じものを上記と同様なMAP反応塔により処理し、液体サイクロンにより流出した微細なMAP粒子を回収し、MAP反応塔底部より引き抜いたMAP粒子と消化汚泥の混合物を液体サイクロンにより濃縮せず、そのまま2m/日の流量で内径200mm、長さ600mm、目開き0.3mmのドラム型ウェッジワイヤースクリーンに連続的に供給し、1分間に10回転の速度で回転させ、4m/日の洗浄水で連続的に洗浄した場合、MAP反応塔処理汚泥のリン酸態リン濃度は20mg/リットル以下にまで低下したものの、スクリーンにより分離されたMAP粒子中には多量の夾雑物が混入された。
By the above method, the treatment sludge of the recovery liquid cyclone was raised to about pH 8.3, and the phosphate phosphorus concentration was lowered to 20 mg / liter or less. The MAP separation screen yielded solid particles of 0.3 mm or more, and as a result of X-ray diffraction, it was found to be MAP (magnesium ammonium phosphate; MgNH 4 PO 4 .6H 2 O). As a result of component analysis after vacuum drying, it contains 28% soluble phosphoric acid (P 2 O 5 ), 15% soluble bitter earth (MgO), 5.4% ammoniacal nitrogen (NH 4 -N), It has been found that the content of harmful components such as cadmium, mercury, lead, etc. is far below the allowable values of chemical components for chemical fertilizers stipulated in the Fertilizer Control Law.
Comparative Example 1
The same digested sludge used in Example 1 was treated with a MAP reaction tower similar to the above, and the fine MAP particles that flowed out by the liquid cyclone were recovered, and the mixture of MAP particles and digested sludge extracted from the bottom of the MAP reaction tower. Is continuously supplied to a drum-type wedge wire screen having an inner diameter of 200 mm, a length of 600 mm, and an opening of 0.3 mm at a flow rate of 2 m 3 / day without being concentrated by a hydrocyclone, and rotated at a speed of 10 rotations per minute. When washed continuously with 4 m 3 / day of wash water, the phosphate phosphorus concentration in the sludge treated with the MAP reaction tower decreased to 20 mg / liter or less, but a large amount was present in the MAP particles separated by the screen. Of impurities.

本発明の消化汚泥の処理装置を示すフローシート図である。It is a flowchart which shows the processing apparatus of the digested sludge of this invention. 本発明の消化汚泥の処理装置の一例を示す概略図である。It is the schematic which shows an example of the processing apparatus of the digested sludge of this invention.

符号の説明Explanation of symbols

1 嫌気性消化槽
2 処理装置
3 MAP反応塔
4 消化汚泥注入管
5 マグネシウム化合物注入管
6 気体吹き込み管
7 MAP引抜管
8 処理汚泥管
9 MAP回収装置
10 回収MAP返送管
11 分離装置
12 分離汚泥返送管
13 液体サイクロン処理汚泥管
14 次工程
15 分離MAP粒子
16 MAP反応塔直胴部
17 MAP反応塔円錐部
18 MAP反応塔沈殿部
19 MAP反応塔円筒体
20 MAP反応塔第2円筒体
21 MAP引抜弁
22 液体サイクロン中継槽
23 液体サイクロン原汚泥供給ポンプ
24A 液体サイクロン
24B 液体サイクロン
25 回収MAP返送ポンプ
26 回収MAP返送管
27 MAP引抜ポンプ
28 MAP分離機
29 分離汚泥移送ポンプ
30 濃縮MAP供給ポンプ
31 消化汚泥返送管
DESCRIPTION OF SYMBOLS 1 Anaerobic digestion tank 2 Processing apparatus 3 MAP reaction tower 4 Digested sludge injection pipe 5 Magnesium compound injection pipe 6 Gas blowing pipe 7 MAP extraction pipe 8 Processed sludge pipe 9 MAP recovery apparatus 10 Recovery MAP return pipe 11 Separation apparatus 12 Separation sludge return Tube 13 Hydrocyclone-treated sludge tube 14 Next step 15 Separated MAP particles 16 MAP reaction tower straight body part 17 MAP reaction tower cone part 18 MAP reaction tower sedimentation part 19 MAP reaction tower cylinder 20 MAP reaction tower second cylinder 21 MAP extraction Valve 22 Hydrocyclone relay tank 23 Liquid cyclone raw sludge supply pump 24A Liquid cyclone 24B Liquid cyclone 25 Recovery MAP return pump 26 Recovery MAP return pipe 27 MAP extraction pump 28 MAP separator 29 Separation sludge transfer pump 30 Concentrated MAP supply pump 31 Digested sludge Return tube

Claims (1)

消化汚泥を注入するための消化汚泥注入管、マグネシウム化合物注入管、曝気用の気体吹き込み管、リン酸マグネシウムアンモニウム粒子を含んだ消化汚泥を引き抜くための引抜管及び処理された消化汚泥を排出するための処理汚泥管を備える反応塔と、この処理汚泥管に接続しており、処理汚泥に含まれる微細なリン酸マグネシウムアンモニウム粒子を回収して前記反応塔に戻すための回収装置と、前記反応塔の引抜管に接続しており、リン酸マグネシウムアンモニウム粒子を含む消化汚泥を濃縮するための液体サイクロンと、この液体サイクロンからの濃縮液からリン酸マグネシウムアンモニウム粒子を分離・除去するスクリーンとからなることを特徴とする消化汚泥の処理装置。 Digested sludge injection pipe for injecting digested sludge, magnesium compound injection pipe, gas blowing pipe for aeration, extraction pipe for extracting digested sludge containing magnesium ammonium phosphate particles, and for discharging treated digested sludge A reaction tower provided with a treated sludge pipe, a recovery device connected to the treated sludge pipe, for recovering fine magnesium ammonium phosphate particles contained in the treated sludge and returning it to the reaction tower, and the reaction tower A liquid cyclone for concentrating digested sludge containing magnesium ammonium phosphate particles, and a screen for separating and removing magnesium ammonium phosphate particles from the concentrate from this liquid cyclone Digested sludge treatment equipment characterized by
JP2006071899A 2006-03-16 2006-03-16 Treatment equipment of digestion sludge Pending JP2007244995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006071899A JP2007244995A (en) 2006-03-16 2006-03-16 Treatment equipment of digestion sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006071899A JP2007244995A (en) 2006-03-16 2006-03-16 Treatment equipment of digestion sludge

Publications (1)

Publication Number Publication Date
JP2007244995A true JP2007244995A (en) 2007-09-27

Family

ID=38589844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006071899A Pending JP2007244995A (en) 2006-03-16 2006-03-16 Treatment equipment of digestion sludge

Country Status (1)

Country Link
JP (1) JP2007244995A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000718A (en) * 2011-06-21 2013-01-07 Swing Corp Method and equipment for treating organic waste water and sludge
JP2014069132A (en) * 2012-09-28 2014-04-21 Sekisui Chem Co Ltd Attachment recovery pipe, and sludge treatment facility having the pipe
CN105271625A (en) * 2015-08-12 2016-01-27 广东石油化工学院 Cleaner production method for improving residual activated sludge resource energy recovery rate
CN106007278A (en) * 2016-06-21 2016-10-12 昆明理工大学 Sludge treatment method
JP2018075555A (en) * 2016-11-11 2018-05-17 水ing株式会社 Apparatus and method for treatment of organic effluent and organic sludge

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384696A (en) * 1986-09-26 1988-04-15 Fukuokashi Dephosphorization device
JP2005161158A (en) * 2003-12-01 2005-06-23 Ebara Corp Plant for recovering map and system for circulating map

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384696A (en) * 1986-09-26 1988-04-15 Fukuokashi Dephosphorization device
JP2005161158A (en) * 2003-12-01 2005-06-23 Ebara Corp Plant for recovering map and system for circulating map

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013000718A (en) * 2011-06-21 2013-01-07 Swing Corp Method and equipment for treating organic waste water and sludge
JP2014069132A (en) * 2012-09-28 2014-04-21 Sekisui Chem Co Ltd Attachment recovery pipe, and sludge treatment facility having the pipe
CN105271625A (en) * 2015-08-12 2016-01-27 广东石油化工学院 Cleaner production method for improving residual activated sludge resource energy recovery rate
CN105271625B (en) * 2015-08-12 2019-07-30 广东石油化工学院 A kind of clean preparation method improving the residual active sludge energy resource rate of recovery
CN106007278A (en) * 2016-06-21 2016-10-12 昆明理工大学 Sludge treatment method
JP2018075555A (en) * 2016-11-11 2018-05-17 水ing株式会社 Apparatus and method for treatment of organic effluent and organic sludge

Similar Documents

Publication Publication Date Title
JP4743627B2 (en) Water or sludge treatment equipment containing ions in liquid
JP4523069B2 (en) Wastewater and sludge treatment equipment
EP1593417A1 (en) Method and apparatus for removing ion in fluid by crystallization
JP6592406B2 (en) Crystallizer, methane fermentation facility, and scale prevention method in methane fermentation facility
JP2007244995A (en) Treatment equipment of digestion sludge
US11932561B2 (en) Method and assembly for recovering magnesium ammonium phosphate
JP3441042B2 (en) Phosphorus removal and recovery equipment using seawater
US20060196835A1 (en) Method and apparatus for removing ions in liquid through crystallization method
JP2007244994A (en) Treatment method of digestion sludge and treatment equipment
JP5952132B2 (en) Phosphorus removal and collection apparatus and phosphorus removal and collection method
JPH10113673A (en) Waste water treating device and method therefor
JP4417056B2 (en) Crystal recovery and transfer equipment
JP5808638B2 (en) Method and apparatus for treating wastewater containing high concentration calcium and alkali
JP2019202283A (en) Processing method of liquid to be treated of and processing apparatus of liquid to be treated
JP4147609B2 (en) Dephosphorization device
JPH10323677A (en) Waste water treatment device
JPH08155469A (en) Apparatus for granulating and removing phosphorus compound
JP2008183562A (en) Dephosphorization apparatus
JPH09136091A (en) Wastewater treatment apparatus
JPH11300369A (en) Dephosphorizing device and dephosphorizing equipment
JP5222596B2 (en) Crystallization reactor
JP2014200781A (en) Phosphorus recovery apparatus and phosphorus recovery method
JP2016175083A (en) Phosphorous removal/recovery device, and phosphorous removal/recovery method
CN216472404U (en) Fluidized bed phosphorus recovery reactor
JP2001009472A (en) Granulating and dephosphorizing apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20080430

Free format text: JAPANESE INTERMEDIATE CODE: A7424

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080527

A621 Written request for application examination

Effective date: 20090216

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20101101

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

A711 Notification of change in applicant

Effective date: 20110401

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110401

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110502

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110509

A521 Written amendment

Effective date: 20110610

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Written amendment

Effective date: 20111107

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120424