JP4417056B2 - Crystal recovery and transfer equipment - Google Patents

Crystal recovery and transfer equipment Download PDF

Info

Publication number
JP4417056B2
JP4417056B2 JP2003304466A JP2003304466A JP4417056B2 JP 4417056 B2 JP4417056 B2 JP 4417056B2 JP 2003304466 A JP2003304466 A JP 2003304466A JP 2003304466 A JP2003304466 A JP 2003304466A JP 4417056 B2 JP4417056 B2 JP 4417056B2
Authority
JP
Japan
Prior art keywords
air lift
crystal
pipe
water
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003304466A
Other languages
Japanese (ja)
Other versions
JP2005074248A (en
Inventor
和彰 島村
英之 石川
俊博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003304466A priority Critical patent/JP4417056B2/en
Publication of JP2005074248A publication Critical patent/JP2005074248A/en
Application granted granted Critical
Publication of JP4417056B2 publication Critical patent/JP4417056B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

本発明は、排水などの被処理液中から特定なイオンを回収する装置に係わり、特に、各種の液中に含まれるリン酸イオン、カルシウムイオン、フッ素イオン、炭酸イオン、硫酸イオン、マンガンイオンを化学反応させて難溶性塩の結晶を析出させることにより、該結晶を効率よく、尚且つ安定して回収及び移送する装置に関する。 The present invention relates to an apparatus for recovering specific ions from a liquid to be treated such as waste water, and in particular, phosphate ions, calcium ions, fluorine ions, carbonate ions, sulfate ions, manganese ions contained in various liquids. The present invention relates to an apparatus for recovering and transferring crystals that are efficiently and stably obtained by causing a chemical reaction to precipitate crystals of a hardly soluble salt.

従来より、各種の被処理液中から特定なイオンを回収する方法の一つとして晶析法が用いられてきた。晶析法は、被処理液に含まれる特定のイオンと反応して難溶性の塩を形成する化合物を薬品として被処理液(以下「原水」ともいう)に添加したり、被処理液のpHを変化させることで被処理液中をイオンの過飽和状態として、特定イオンを含む結晶を析出させ分離する方法である。   Conventionally, a crystallization method has been used as one of methods for recovering specific ions from various liquids to be treated. In the crystallization method, a compound that reacts with specific ions contained in the liquid to be treated to form a hardly soluble salt is added as a chemical to the liquid to be treated (hereinafter also referred to as “raw water”), or the pH of the liquid to be treated. This is a method in which the liquid to be treated is brought into a supersaturated state of ions by changing the value to precipitate and separate crystals containing specific ions.

晶析法の例を示すと、「特許文献1」によれば、屎尿や下水の二次処理水や汚泥処理系からの返流水などの排水を被処理水として、その中のリン酸イオンを回収する場合には、カルシウム化合物を添加し、リン酸カルシウム(Ca3(PO42)やヒドロキシアパタイト(Ca10(PO46(OH)2;以下「HAP」という)の結晶を析出させることが示されている。また、半導体工場の排水にはフッ素イオンを多く含んでいる場合が多く、この排水からフッ素イオンを回収する場合には、同様にカルシウム化合物を添加してフッ化カルシウム(CaF2)の結晶を析出させることにより、排水中のフッ素を回収することができる。 As an example of the crystallization method, according to “Patent Document 1”, wastewater such as manure and sewage secondary treated water and return water from a sludge treatment system is treated water, and phosphate ions therein are In the case of recovery, a calcium compound is added to precipitate crystals of calcium phosphate (Ca 3 (PO 4 ) 2 ) or hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ; hereinafter referred to as “HAP”). It is shown. Also, wastewater from semiconductor factories often contains a lot of fluorine ions. When collecting fluorine ions from this wastewater, calcium compounds are added in the same manner to precipitate calcium fluoride (CaF 2 ) crystals. By doing so, fluorine in the waste water can be recovered.

更に、地下水を原水とする用水、廃水、最終処分地における浸出水からカルシウムイオンを除去する場合では、pHを上昇させたり、炭酸源を添加することで炭酸カルシウム(CaCO3)の結晶を析出させることができる。或いは、炭酸イオンを多く含む硬水に、カルシウムイオンを添加したりpHを上昇させたりすることで、同様に炭酸カルシウムの結晶を祈出させて、硬度を低下させることができる。更には、「特許文献2」には嫌気性消化汚泥のろ液や汚泥処理系からの返流水、肥料工場排水など、液中にリン酸イオン及びアンモニウムを含有している排水では、マグネシウムを添加してリン酸マグネシウムアンモニウム(以下「MAP」という)の結晶を析出させることが示されている。 In addition, when calcium ions are removed from water, waste water, or leachate at the final disposal site, the ground water is used as raw water, and the crystal of calcium carbonate (CaCO 3 ) is precipitated by increasing the pH or adding a carbonic acid source. be able to. Alternatively, by adding calcium ions or raising the pH to hard water containing a large amount of carbonate ions, the calcium carbonate crystals can be similarly prayed to reduce the hardness. Furthermore, in "Patent Document 2", magnesium is added to wastewater containing phosphate ions and ammonium in the liquid, such as filtrate of anaerobic digested sludge, return water from sludge treatment system, and fertilizer factory wastewater. It is shown that crystals of magnesium ammonium phosphate (hereinafter referred to as “MAP”) are precipitated.

晶析リアクターは、完全混合型リアクターや流動層型リアクターなどが用いられる。固液分離性能を考慮すると後者の方式が好ましい。流動層リアクターは被処理水を上向流で通液し、流動層内で流動している結晶核の表面で生成物を析出させることによって、結晶は重力により沈降させる一方で処理水を上部から回収することにより、結晶生成反応と固液分離とを同時に行うことができる。結晶核は、生成物と同一のものが好ましいが、必ずしも同一でなくてもよく、砂やゼオライト、またそれらを生成物でコーティングしたものでもよい。   As the crystallization reactor, a fully mixed reactor, a fluidized bed reactor, or the like is used. In view of the solid-liquid separation performance, the latter method is preferable. In the fluidized bed reactor, the water to be treated is passed upward, and the product is precipitated on the surface of the crystal nuclei flowing in the fluidized bed, so that the crystals are settled by gravity while the treated water is fed from the top. By collecting, crystal formation reaction and solid-liquid separation can be performed simultaneously. The crystal nuclei are preferably the same as the product, but are not necessarily the same, and may be sand or zeolite, or those coated with the product.

従来、生成により増加した結晶物は、リアクターの底部からバルブの開閉によって回収したり、ポンプを利用して回収していた。ポンプには機械式のポンプの他、リアクターに併設したエアリフトポンプを利用していた。
エアリフトポンプとは、水槽の液中に下端が配置され、液面の上方に上端が配置されるように設置されたエアリフト管(揚液管とも言う)の下端部に、圧縮空気を吹き込むことにより、揚液管中の気泡混合液の見かけ比重が管外の液の比重よりも小さくなることによって揚液管内の液面が水槽の液面よりも上昇して水槽の液面を超えて水槽内の液を揚液することができるものである。
Conventionally, the crystallized material that has increased due to production has been recovered from the bottom of the reactor by opening or closing a valve or using a pump. In addition to a mechanical pump, the pump used an air lift pump attached to the reactor.
An air lift pump is a system in which compressed air is blown into the lower end of an air lift pipe (also referred to as a pumped pipe) installed so that the lower end is arranged in the liquid of the water tank and the upper end is arranged above the liquid level. The apparent specific gravity of the bubble mixture in the pumping pipe is smaller than the specific gravity of the liquid outside the pipe, so that the liquid level in the pumping pipe rises above the liquid level in the water tank and exceeds the liquid level in the water tank. The liquid can be pumped.

特公昭57−34032号公報Japanese Patent Publication No.57-34032 特開2002−326089号公報JP 2002-326089 A

しかし、バルブの開閉による回収方法では、結晶物がバルブ付近で析出しバルブの開閉が鈍くなったり、結晶物による閉塞があった。その結果、所定量の結晶を回収することが困難となった。機械式のポンプの場合は、結晶が機械内部で析出して、モータ部の負荷が高くなったり、モータ自体が回転しなくなる場合が度々あった。
一方で、エアリフトポンプは、機械部分がほとんどなく簡単な構造であり、エアリフト管、気体の供給管、気体分離部、スラリー抜出部で構成される。エアリフトポンプは可動部分がなく、機械類と結晶物の接点が無いため、上記のような機械類の閉塞等の問題は解決される。しかしながら、エアリフトポンプを終了させた後、エアリフト管に残留した結晶が堆積し、気体の供給を良好に行うことができない場合があった。
However, in the recovery method by opening and closing the valve, a crystal substance is deposited in the vicinity of the valve, and the opening and closing of the valve becomes blunt, or the crystal substance is clogged. As a result, it has become difficult to recover a predetermined amount of crystals. In the case of a mechanical pump, crystals often precipitate inside the machine, and the load on the motor unit is often increased or the motor itself does not rotate.
On the other hand, the air lift pump has a simple structure with few mechanical parts, and includes an air lift pipe, a gas supply pipe, a gas separation section, and a slurry extraction section. Since the air lift pump has no moving parts and no contact points between the machinery and the crystal, the above problems such as blockage of the machinery are solved. However, after the air lift pump is terminated, there are cases where crystals remaining in the air lift pipe accumulate and gas cannot be supplied satisfactorily.

本発明が解決しようとする課題は、エアリフトポンプを利用した結晶の抜出方法及び装置において、上記問題点を解決した結晶の回収方法及び装置を提供することにある。   The problem to be solved by the present invention is to provide a crystal recovery method and apparatus that solves the above problems in a crystal extraction method and apparatus using an air lift pump.

本発明は、下記の手段により上記課題を解決した。
(1)晶析リアクターを用いて被処理液にその被除去イオンと反応して難溶性塩を形成する化合物を供給して難溶性塩の結晶を析出させ、該難溶性の結晶を回収及び移送する装置であり、該晶析リアクターにエアリフト管を備え、該エアリフト管の下部に気体を供給する気体供給管を設け、該エアリフト管の上部に下から順にエアリフト管を洗浄する洗浄水供給管、バルブ、気体分離部を設置し、該気体分離部にスラリー排出部を設置したことを特徴とする結晶の回収及び移送装置。
(2)前記洗浄水供給管は、前記晶析リアクターの水面よりも上方にあることを特徴とする前記(1)記載の結晶の回収及び移送装置。
The present invention has solved the above problems by the following means.
(1) Using a crystallization reactor, a compound that reacts with the ions to be removed to form a sparingly soluble salt is supplied to the liquid to be treated to precipitate the sparingly soluble salt crystal, and the sparingly soluble crystal is recovered and transferred. A rinsing water supply pipe that is provided with an air lift pipe in the crystallization reactor, provided with a gas supply pipe that supplies gas to a lower portion of the air lift pipe, and for cleaning the air lift pipe in order from the bottom on the air lift pipe; A crystal recovery and transfer device, wherein a valve and a gas separation unit are installed, and a slurry discharge unit is installed in the gas separation unit.
(2) The crystal recovery and transfer device according to (1 ), wherein the washing water supply pipe is located above the water surface of the crystallization reactor.

本発明によれば、被処理液に被除去イオンと反応して難溶性塩を形成する化合物を供給して晶析法によって難溶性塩の結晶を析出させ、該難溶性塩結晶を回収する方法において、難溶性塩結晶を生成させるリアクターに具備されたエアリフトポンプを利用して該難溶性塩結晶を回収・移送を行ない、その該難溶性塩結晶の回収・移送を行なった後、或いは、回収・移送終了直前に、エアリフト管に洗浄水を下向流で通水することによってエアリフト管を洗浄することで、結晶を効率よく安定して回収及び移送する方法及び装置を提供することができ、その結果、装置のメンテナンスが容易になり運転効率が大幅に向上した。   According to the present invention, a method is provided in which a compound that reacts with ions to be removed to form a hardly soluble salt is supplied to a liquid to be treated, crystals of the hardly soluble salt are precipitated by a crystallization method, and the hardly soluble salt crystals are recovered. In this case, the hardly soluble salt crystal is recovered and transferred by using an air lift pump provided in a reactor for generating the hardly soluble salt crystal, or after the hardly soluble salt crystal is recovered and transferred, or recovered. -Immediately before the end of transfer, it is possible to provide a method and an apparatus for recovering and transferring crystals efficiently and stably by washing the air lift pipe by passing the wash water downward through the air lift pipe. As a result, the maintenance of the apparatus became easy and the operation efficiency was greatly improved.

本発明を実施するための最良の形態を図面を参照して詳細に説明する。なお、実施の形態及び実施例を説明する全図において、同一機能を有する構成要素は同一の符号を付けて説明する。
以下に、結晶の回収方法及び装置について記述する。
図1は、結晶粒子成長槽1からなるリアクターに適用した本発明の結晶の回収及び移送装置の概要図を示すものである。結晶粒子成長槽1の底部には、原水2を供給する原水供給管3、循環水4(原水中の被除去イオンと反応する化合物を含む)を供給する循環水供給管5、リアクター内の粒子を攪拌するための空気供給管7、エアリフトポンプの一部を構成するエアリフト管8の先端部分が接続されている。エアリフトポンプはエアリフト管8の他に、気体(空気)の供給管9、気体分離部10、スラリー排出部11、及び洗浄水の供給管13から構成されている。図1の方法及び装置では、エアリフト管8をリアクター外部に設置した例を示したが、リアクター内部に設置しても構わない。結晶粒子成長槽1上部には、処理水14の流出管15が接続されている。
The best mode for carrying out the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments and examples.
The crystal recovery method and apparatus will be described below.
FIG. 1 shows a schematic diagram of a crystal recovery and transfer apparatus of the present invention applied to a reactor comprising a crystal grain growth tank 1. At the bottom of the crystal grain growth tank 1, a raw water supply pipe 3 for supplying raw water 2, a circulating water supply pipe 5 for supplying circulating water 4 (including a compound that reacts with ions to be removed in the raw water), and particles in the reactor The air supply pipe 7 for agitating the air and the tip part of the air lift pipe 8 constituting a part of the air lift pump are connected. In addition to the air lift pipe 8, the air lift pump includes a gas (air) supply pipe 9, a gas separation part 10, a slurry discharge part 11, and a wash water supply pipe 13. In the method and apparatus of FIG. 1, the example in which the air lift pipe 8 is installed outside the reactor is shown, but it may be installed inside the reactor. An outflow pipe 15 for the treated water 14 is connected to the upper part of the crystal grain growth tank 1.

結晶粒子成長槽1内には予め種晶が充填され、原水2及び循環水4の上向流及び空気6によって流動される。種晶(=結晶核と同じ意味)は前述したように、生成物と同一のものが好ましいが、必ずしも同一でなくてもよく、砂やゼオライト、またそれらを生成物でコーティングしたものでもよい。原水中の被除去イオン及び循環水中の被除去イオンと反応する化合物は、種晶の表面で反応し、種晶表面に析出する。すなわち、種晶が成長(肥大化ともいう)する。処理水14は結晶粒子成長槽1上部から流出する。   The crystal grain growth tank 1 is filled with seed crystals in advance, and is flowed by the upward flow of the raw water 2 and the circulating water 4 and the air 6. As described above, the seed crystal (= same meaning as the crystal nucleus) is preferably the same as the product, but is not necessarily the same, and may be sand, zeolite, or those coated with the product. The compound that reacts with the ions to be removed in the raw water and the ions to be removed in the circulating water reacts on the surface of the seed crystal and precipitates on the surface of the seed crystal. That is, seed crystals grow (also referred to as enlargement). The treated water 14 flows out from the upper part of the crystal grain growth tank 1.

種晶から成長した結晶粒子は、適時エアリフトポンプによって回収する。エアリフト管内に供給された気体9によってエアリフト管8内の見かけ比重が、結晶粒子成長槽内の比重よりも小さくなり、結晶粒子成長槽1内の液がエアリフト管8を通って外部に流出する。その際、液の流出と共に結晶も上昇し、結晶を回収することができる。なお、エアリフトポンプを構成する気体分離部10は、スラリー(液と結晶の混合液)と供給された気体9を分離する装置であり、スラリー排出部11はスラリーを排出する装置であり、製品結晶12を得る。
エアリフトポンプ動作中は、結晶粒子成長槽内の水位の低下を防ぐために、原水2及び循環水4の供給を行うのが好ましい。
Crystal particles grown from the seed crystal are collected by an air lift pump in a timely manner. The apparent specific gravity in the air lift pipe 8 is smaller than the specific gravity in the crystal grain growth tank by the gas 9 supplied into the air lift pipe, and the liquid in the crystal grain growth tank 1 flows out through the air lift pipe 8. At that time, the crystals rise with the outflow of the liquid, and the crystals can be recovered. In addition, the gas separation part 10 which comprises an air lift pump is an apparatus which isolate | separates slurry (mixed liquid of a liquid and a crystal | crystallization) and the supplied gas 9, The slurry discharge part 11 is an apparatus which discharges | releases a slurry, Product crystal Get 12.
During the operation of the air lift pump, it is preferable to supply the raw water 2 and the circulating water 4 in order to prevent the water level in the crystal grain growth tank from decreasing.

エアリフトポンプを終了させると、エアリフト管8を上昇中の結晶は、エアリフト管内で堆積するが、本発明では、エアリフト管上部に設置させた洗浄水供給管13から洗浄水(2、4、14に該当する)を供給する。このようにすることで、下向流の洗浄水がエアリフト管内に堆積した結晶を結晶粒子成長槽側へ押し出し、結晶によるエアリフト管8の閉塞問題が解決される。   When the air lift pump is terminated, the crystals rising up the air lift pipe 8 are deposited in the air lift pipe. In the present invention, the wash water (2, 4, 14) is supplied from the wash water supply pipe 13 installed on the upper part of the air lift pipe. Supply applicable). By doing so, the crystals of the downflow washing water deposited in the air lift pipe are pushed out to the crystal particle growth tank side, and the problem of clogging of the air lift pipe 8 due to the crystals is solved.

図1の説明では、洗浄水に、処理水に被除去イオンと反応して難溶性塩を形成する化合物(図1では薬品16)を添加した液(循環水という)を用いているが、原水2或いは処理水14でも構わない。洗浄水の供給方法は、エアリフトポンプ終了後、或いは終了直前に、循環水供給バルブ17を切り替えて、循環水4が洗浄水供給管13を流れるようにする。洗浄水量は、少なくともエアリフト管容積の1倍の水量、好ましくは2〜3倍、完全にエアリフト管8を洗浄するには10倍量とする。この場合、完全にエアリフト管8を洗浄するとは、エアリフト管内に完全に結晶がなくなることである。洗浄水の供給時間は、前述の所定水量を供給する時間とする。所定時間経過後は再び循環水供給バルブ17を切り替えて、循環水4をリアクターに直接供給する。なお、洗浄中は、洗浄水がエアリフト管上部から流出しないように、エアリフト管上部をバルブ18で閉める。   In the description of FIG. 1, a solution (referred to as circulating water) in which a compound (chemical 16 in FIG. 1) that forms a sparingly soluble salt by reacting with ions to be removed is used as cleaning water. 2 or treated water 14 may be used. As a cleaning water supply method, the circulating water supply valve 17 is switched after the air lift pump ends or immediately before the end so that the circulating water 4 flows through the cleaning water supply pipe 13. The amount of water to be washed is at least one time the amount of air lift pipe volume, preferably 2 to 3 times, and 10 times to completely clean the air lift pipe 8. In this case, to completely clean the air lift pipe 8 is to completely eliminate crystals in the air lift pipe. The supply time of the washing water is the time for supplying the above-mentioned predetermined amount of water. After a predetermined time has elapsed, the circulating water supply valve 17 is switched again to supply the circulating water 4 directly to the reactor. During cleaning, the upper part of the air lift pipe is closed by the valve 18 so that the cleaning water does not flow out from the upper part of the air lift pipe.

図2は、結晶粒子成長槽1及び種晶生成槽19からなる。結晶粒子成長槽1は前述の図1と同じである。種晶生成槽19は、結晶粒子成長槽1に供給する種晶を生成する槽である。種晶生成槽19は結晶粒子成長槽1同様に、原水供給管3(*Aで示している)、循環水供給管5、空気供給管7、種晶移送管8b(エアリフトポンプを構成している)、微細結晶移送管20、処理水14の流出管15からなる。
種晶生成槽19は、種晶が効率的に生成するように、結晶粒子成長槽1上部に浮遊する微細結晶を移送し、該微細結晶を成長させることで種晶を生成する。原水中の被除去イオン及び循環水中の被除去イオンと反応する化合物は、微細結晶の表面で反応し、析出する。すなわち、微細結晶が成長(肥大化ともいう)する。処理水14は種晶生成槽上部から流出する。
FIG. 2 includes a crystal grain growth tank 1 and a seed crystal production tank 19. The crystal grain growth tank 1 is the same as that shown in FIG. The seed crystal generation tank 19 is a tank for generating seed crystals to be supplied to the crystal particle growth tank 1. Similar to the crystal grain growth tank 1, the seed crystal generation tank 19 is a raw water supply pipe 3 (indicated by * A), a circulating water supply pipe 5, an air supply pipe 7, and a seed crystal transfer pipe 8b (which constitutes an air lift pump). A fine crystal transfer pipe 20 and an outflow pipe 15 for the treated water 14.
The seed crystal generation tank 19 generates a seed crystal by transferring the fine crystal floating above the crystal particle growth tank 1 and growing the fine crystal so that the seed crystal is efficiently generated. The compound that reacts with the ions to be removed in the raw water and the ions to be removed in the circulating water reacts and precipitates on the surface of the fine crystals. That is, fine crystals grow (also referred to as enlargement). The treated water 14 flows out from the upper part of the seed crystal production tank.

所定の粒径に成長した微細結晶は種晶として、結晶粒子成長槽1に移送する。この場合の移送方法も結晶粒子成長槽同様にエアリフトポンプとする。エアリフトポンプを作動させると、種晶生成槽内の種晶はエアリフト管8bを上昇し、気体分離部10から微細結晶排出部21を経て結晶粒子成長槽1に流入する。それと共に、結晶粒子成長槽上部で浮遊する微細結晶を含むスラリーが微細結晶移送管20を通して種晶生成槽19に流入する。   The fine crystal grown to a predetermined particle size is transferred to the crystal particle growth tank 1 as a seed crystal. The transfer method in this case is also an air lift pump like the crystal grain growth tank. When the air lift pump is actuated, the seed crystals in the seed crystal production tank ascend the air lift pipe 8b and flow into the crystal grain growth tank 1 from the gas separator 10 through the fine crystal discharge part 21. At the same time, the slurry containing fine crystals floating above the crystal grain growth tank flows into the seed crystal production tank 19 through the fine crystal transfer pipe 20.

移送が終了した後は、或いは終了直前には、エアリフト管8bの洗浄を行う。微細結晶移送管エアリフトポンプの洗浄方法は、エアリフトポンプを終了させた後、エアリフト管上部に設置させた洗浄水供給管13(*Cで示す)から洗浄水を供給し、下向流の洗浄水がエアリフト管8b内に堆積した結晶を種晶生成槽19側へ押し出す。洗浄水には、処理水に被除去イオンと反応して難溶性塩を形成する化合物(図2では薬品16)を添加した液(循環水という)、原水2或いは処理水14を使用する。洗浄水の供給方法は、エアリフトポンプ終了後、循環水供給バルブ17を切り替えて、循環水が洗浄水供給管を流れるようにする。洗浄水量は、少なくともエアリフト管容積の1倍の水量、好ましくは2〜3倍、完全にエアリフト管8bを洗浄するには10倍量とする。この場合、完全にエアリフト管8bを洗浄するとは、エアリフト管内に完全に結晶がなくなることである。洗浄水の供給時間は、前述の所定水量を供給する時間とする。所定時間経過後は再び循環水供給バルブ17を切り替えて、循環水を種晶生成槽19に直接供給する。なお、洗浄中は、洗浄水がエアリフト管8b上部から流出しないように、エアリフト管上部をバルブ18で閉める。
なお、図2において*A、*B及び*Cは同じ符号であれば、配管が接続されていることを示す。
After the transfer is completed or just before the end, the air lift pipe 8b is cleaned. The fine crystal transfer pipe air lift pump is washed by supplying wash water from a wash water supply pipe 13 (indicated by * C) installed at the upper part of the air lift pipe after the air lift pump is finished, Pushes the crystals deposited in the air lift pipe 8b to the seed crystal production tank 19 side. As the washing water, a liquid (referred to as circulating water), raw water 2 or treated water 14 to which a compound (chemical 16 in FIG. 2) which reacts with ions to be removed to form a hardly soluble salt is added to the treated water. In the washing water supply method, after the air lift pump is finished, the circulating water supply valve 17 is switched so that the circulating water flows through the washing water supply pipe. The amount of cleaning water is at least one time the amount of air lift pipe volume, preferably 2 to 3 times, and 10 times to clean the air lift pipe 8b completely. In this case, to completely clean the air lift pipe 8b is to completely eliminate crystals in the air lift pipe. The supply time of the washing water is the time for supplying the above-mentioned predetermined amount of water. After a predetermined time has elapsed, the circulating water supply valve 17 is switched again to supply the circulating water directly to the seed crystal production tank 19. During cleaning, the upper part of the air lift pipe is closed by the valve 18 so that the cleaning water does not flow out from the upper part of the air lift pipe 8b.
In FIG. 2, * A, * B, and * C indicate that the pipes are connected if they have the same sign.

以下において、本発明を実施例によりさらに詳細に説明するが、本発明の範囲はこれらの実施例により制限されるものではない。   EXAMPLES In the following, the present invention will be described in more detail with reference to examples, but the scope of the present invention is not limited by these examples.

実施例1
この実施例では、図1に示すような処理フローを用いて、余剰汚泥を濃縮した分離液中のリンをヒドロキシアパタイト(以下「HAP」という)を析出させることでリンを回収した。
操作条件を第1表に示す。リアクター内には予め種晶として骨炭を充填し、原水及び処理水にCaを添加した循環水をリアクター底部から上向流で通水した。骨炭の表面で析出したHAPは、骨炭と共にエアリフトポンプを用いて回収した。エアリフトポンプ動作中も原水及び循環水を供給した。エアリフト終了と共に、循環水供給バルブを切り替えて、循環水を洗浄水としてエアリフト管上部から下向流で通水した。洗浄水量はエアリフト管容積の1.5倍とした。
1日1回の抜き出しを1年間続けたところ、閉塞等のトラブルは無かった。また、第2表に示すように、抜出量はいずれも約200L(リットル)/dであり、大きな変動もなく安定して抜き出すことができた。
Example 1
In this example, phosphorus was recovered by precipitating hydroxyapatite (hereinafter referred to as “HAP”) from phosphorus in the separated liquid in which the excess sludge was concentrated using a treatment flow as shown in FIG.
The operating conditions are shown in Table 1. The reactor was filled with bone charcoal as seed crystals in advance, and circulating water in which Ca was added to the raw water and treated water was passed upward from the bottom of the reactor. HAP deposited on the surface of the bone charcoal was collected together with the bone charcoal using an air lift pump. Raw water and circulating water were supplied even during operation of the air lift pump. At the end of the air lift, the circulating water supply valve was switched, and the circulating water was passed as washing water from the upper part of the air lift pipe in a downward flow. The amount of washing water was 1.5 times the air lift tube volume.
When extraction was performed once a day for one year, there was no trouble such as blockage. Further, as shown in Table 2, the extraction amount was about 200 L (liter) / d, and it was possible to stably extract without large fluctuation.

Figure 0004417056
Figure 0004417056

Figure 0004417056
Figure 0004417056

実施例2
この実施例では、図2に示すような処理フローを用いて、消化汚泥を脱水したろ液中のリン及びアンモニウムをリン酸マグネシウムアンモニウム(以下「MAP」という)で回収した。
処理プロセスは、種晶生成槽とMAP粒子成長槽、Mg溶解槽からなる。
第3表に脱リンプロセスの操作条件を示す。原水及び処理水にMgを添加した循環水を両リアクター底部から上向流で通水した。MAP粒子成長槽上部で浮遊している微細MAP結晶は、3日に一度、微細MAP結晶移送管を通して種晶生成槽に移送させた。微細MAPの移送と共に、種晶生成槽で生成した種晶を全量、種晶生成槽に設置されたエアリフトポンプによって、MAP粒子成長槽に返送した。MAP粒子成長槽では、MAP粒子成長槽に設置されたエアリフトポンプによってMAPを1日に1度回収した。
Example 2
In this example, phosphorus and ammonium in a filtrate obtained by dewatering digested sludge were collected with magnesium ammonium phosphate (hereinafter referred to as “MAP”) using a treatment flow as shown in FIG.
The treatment process consists of a seed crystal production tank, a MAP particle growth tank, and an Mg dissolution tank.
Table 3 shows the operating conditions of the dephosphorization process. Circulating water in which Mg was added to the raw water and treated water was passed upward from the bottom of both reactors. The fine MAP crystal floating in the upper part of the MAP particle growth tank was transferred to the seed crystal production tank through a fine MAP crystal transfer pipe once every three days. Along with the transfer of the fine MAP, the entire amount of seed crystals produced in the seed crystal production tank was returned to the MAP particle growth tank by an air lift pump installed in the seed crystal production tank. In the MAP particle growth tank, MAP was collected once a day by an air lift pump installed in the MAP particle growth tank.

Figure 0004417056
Figure 0004417056

いずれのリアクターもエアリフトポンプ動作中は原水及び循環水を供給した。エアリフト終了と共に、循環水供給バルブを切り替えて、循環水を洗浄水としてエアリフト管上部から下向流で通水した。洗浄水量は、エアリフト管容積の1.5倍とした。
MAP粒子成長槽の抜き出しを1日1回の1年間続けたところ、閉塞等のトラブルは無かった。また、種晶生成槽の3日に1回の移送を1年間続けても同様に閉塞等のトラブルは無かった。第4表に示すように、MAP粒子成長槽の抜出量はいずれも約200L/dであり、大きな変動もなく安定して抜き出すことができた。
Both reactors supplied raw water and circulating water during the operation of the air lift pump. At the end of the air lift, the circulating water supply valve was switched, and the circulating water was passed as washing water from the upper part of the air lift pipe in a downward flow. The amount of washing water was 1.5 times the air lift tube volume.
When the extraction of the MAP particle growth tank was continued once a day for one year, there was no trouble such as blockage. Further, even if the transfer of the seed crystal generation tank once every three days was continued for one year, there was no trouble such as clogging. As shown in Table 4, the extraction amount of the MAP particle growth tank was about 200 L / d, and could be extracted stably without a large fluctuation.

Figure 0004417056
Figure 0004417056

比較例1
以下において、実施例1に対する比較例を示す。
この比較例では、図3に示すような処理フローを用いて、余剰汚泥を濃縮した分離液中のリンをHAPとして析出させることでリンを回収した。通水条件は第1表と同様である。増加したHAPは骨炭とともに、リアクター底部より1日1回、回収した。運転開始2週間は良好に回収することができたが、4週間を過ぎるとバルブ付近が閉塞し、6週間目には抜き出しを行うことができなかった。
Comparative Example 1
Below, the comparative example with respect to Example 1 is shown.
In this comparative example, phosphorus was recovered by precipitating phosphorus in the separated liquid obtained by concentrating excess sludge as HAP using a treatment flow as shown in FIG. The water flow conditions are the same as in Table 1. The increased HAP was collected from the bottom of the reactor once a day together with the bone charcoal. The recovery was successful for 2 weeks from the start of operation, but after 4 weeks, the vicinity of the valve was blocked, and extraction was not possible after 6 weeks.

比較例2
以下において、実施例2に対する比較例を示す。
この比較例では、図4に示すような処理フローを用いて、消化汚泥を脱水したろ液中のリン及びアンモニウムをMAPで回収した。
通水条件は第3表と同様である。増加したMAPは、MAP成長槽底部より1日1回、回収した。運転開始2週間は良好に回収することができたが、2週間を過ぎるとバルブ付近が閉塞し、3週間目には抜き出しを行うことができなかった。
Comparative Example 2
Below, the comparative example with respect to Example 2 is shown.
In this comparative example, phosphorus and ammonium in the filtrate from which the digested sludge was dehydrated were recovered by MAP using a treatment flow as shown in FIG.
The water flow conditions are the same as in Table 3. The increased MAP was collected once a day from the bottom of the MAP growth tank. The recovery was successful for 2 weeks from the start of operation, but after 2 weeks, the vicinity of the valve was blocked, and extraction was not possible in the 3rd week.

本発明は、下水、し尿、産業廃水などのリンを含有する廃水を効率よく運転処理し、リンを有効資源として回収することができるので、下水処理場や各種廃水処理施設等における利用が期待される。   Since the present invention can efficiently treat wastewater containing phosphorus such as sewage, human waste and industrial wastewater and recover phosphorus as an effective resource, it is expected to be used in sewage treatment plants and various wastewater treatment facilities. The

結晶粒子成長槽からなる本発明の排水処理装置の一実施形態を示すフロー図である。It is a flowchart which shows one Embodiment of the waste water treatment equipment of this invention which consists of a crystal grain growth tank. 結晶粒子成長槽及び種晶生成槽からなる本発明の排水処理装置の一実施形態を示すフロー図である。It is a flowchart which shows one Embodiment of the waste water treatment equipment of this invention which consists of a crystal grain growth tank and a seed crystal production tank. 比較例1で使用した排水処理装置の実施形態を示すフロー図である。It is a flowchart which shows embodiment of the waste water treatment equipment used in the comparative example 1. 比較例2で使用した排水処理装置の実施形態を示すフロー図である。It is a flowchart which shows embodiment of the waste water treatment equipment used in the comparative example 2.

符号の説明Explanation of symbols

1 結晶粒子成長槽
2 原水
3 原水供給管
4 循環水
5 循環水供給管
6 空気
7 空気供給管
8 エアリフト管
8a、8b エアリフト管
9 気体
10 気体分離部
11 スラリー排出部
12 製品結晶
13 洗浄水供給管
14 処理水
15 処理水流出管
16 薬品
17 循環水供給バルブ
18 バルブ
19 種晶生成槽
20 微細結晶移送管
21 微細結晶排出部
A、B、C 接続箇所
DESCRIPTION OF SYMBOLS 1 Crystal grain growth tank 2 Raw water 3 Raw water supply pipe 4 Circulating water 5 Circulating water supply pipe 6 Air 7 Air supply pipe 8 Air lift pipe 8a, 8b Air lift pipe 9 Gas 10 Gas separation part 11 Slurry discharge part 12 Product crystal 13 Washing water supply Pipe 14 Treated water 15 Treated water outflow pipe 16 Chemical 17 Circulating water supply valve 18 Valve 19 Seed crystal generation tank 20 Fine crystal transfer pipe 21 Fine crystal discharge part A, B, C

Claims (2)

晶析リアクターを用いて被処理液にその被除去イオンと反応して難溶性塩を形成する化合物を供給して難溶性塩の結晶を析出させ、該難溶性の結晶を回収及び移送する装置であり、該晶析リアクターにエアリフト管を備え、該エアリフト管の下部に気体を供給する気体供給管を設け、該エアリフト管の上部に下から順にエアリフト管を洗浄する洗浄水供給管、バルブ、気体分離部を設置し、該気体分離部にスラリー排出部を設置したことを特徴とする結晶の回収及び移送装置。A device that uses a crystallization reactor to supply a compound that reacts with the ions to be removed to form a sparingly soluble salt by depositing a sparingly soluble salt crystal into a liquid to be treated, and collects and transports the sparingly soluble crystal. The crystallization reactor is provided with an air lift pipe, a gas supply pipe for supplying gas to the lower part of the air lift pipe is provided, and a washing water supply pipe, a valve, and a gas for cleaning the air lift pipe in order from the bottom on the air lift pipe A crystal recovery and transfer device, wherein a separation unit is installed, and a slurry discharge unit is installed in the gas separation unit. 前記洗浄水供給管は、前記晶析リアクターの水面よりも上方にあることを特徴とする請求項1記載の結晶の回収及び移送装置。2. The crystal recovery and transfer device according to claim 1, wherein the washing water supply pipe is located above the water surface of the crystallization reactor.
JP2003304466A 2003-08-28 2003-08-28 Crystal recovery and transfer equipment Expired - Lifetime JP4417056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304466A JP4417056B2 (en) 2003-08-28 2003-08-28 Crystal recovery and transfer equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304466A JP4417056B2 (en) 2003-08-28 2003-08-28 Crystal recovery and transfer equipment

Publications (2)

Publication Number Publication Date
JP2005074248A JP2005074248A (en) 2005-03-24
JP4417056B2 true JP4417056B2 (en) 2010-02-17

Family

ID=34408144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304466A Expired - Lifetime JP4417056B2 (en) 2003-08-28 2003-08-28 Crystal recovery and transfer equipment

Country Status (1)

Country Link
JP (1) JP4417056B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100761010B1 (en) * 2007-04-05 2007-09-21 김재홍 Screen information management method and system using access direct of video memory
FI120544B (en) * 2007-12-13 2009-11-30 Optogan Oy HVPE reactor arrangement
JP5222596B2 (en) * 2008-03-19 2013-06-26 オルガノ株式会社 Crystallization reactor
CN102339456B (en) * 2010-07-22 2014-06-11 山东大学 Reversible watermarking apparatus of three-dimensional model and method thereof for realizing robustness on similar transformation
CN104386769B (en) * 2014-11-06 2017-01-25 曾小芳 Method for selectively extracting salt from high-salinity organic wastewater
JP6797053B2 (en) * 2017-03-27 2020-12-09 水ing株式会社 Crystallization method and crystallization equipment
JP7142800B1 (en) 2018-05-24 2022-09-27 水ing株式会社 Apparatus for treating liquid to be treated and method for treating liquid to be treated
JP2019202284A (en) * 2018-05-24 2019-11-28 水ing株式会社 Treatment apparatus of liquid to be treated and treatment method of liquid to be treated

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141200U (en) * 1983-03-12 1984-09-20 石川島播磨重工業株式会社 air lift pump
JP2003049800A (en) * 2001-08-03 2003-02-21 Hitachi Chem Co Ltd Air lift pump and septic tank having it
JP4052432B2 (en) * 2001-12-28 2008-02-27 株式会社荏原製作所 Method and apparatus for removing ions in liquid by crystallization method
JP4101506B2 (en) * 2001-12-06 2008-06-18 株式会社荏原製作所 Method and apparatus for removing ions in liquid
JP4104845B2 (en) * 2001-10-26 2008-06-18 株式会社荏原製作所 Method and apparatus for treatment of water containing phosphorus / ammonia

Also Published As

Publication number Publication date
JP2005074248A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
JP4743627B2 (en) Water or sludge treatment equipment containing ions in liquid
JP4748584B2 (en) Method and apparatus for removing ions in liquid by crystallization method
JP4310196B2 (en) Organic drainage and sludge treatment method and treatment equipment
JP4216569B2 (en) Organic wastewater and sludge treatment method and treatment equipment
JP4417056B2 (en) Crystal recovery and transfer equipment
KR100949564B1 (en) Method and apparatus for removing ion present in solution by the crystallization method
JP2007244995A (en) Treatment equipment of digestion sludge
JP2008073662A (en) Recycling method of hydroxyapatite crystal
JP4097910B2 (en) Method and apparatus for removing phosphorus
JP4765049B2 (en) Method for recovering useful substances from wastewater
JP4028189B2 (en) Method and apparatus for removing phosphorus
JPH10323677A (en) Waste water treatment device
JP4052432B2 (en) Method and apparatus for removing ions in liquid by crystallization method
JP2007244994A (en) Treatment method of digestion sludge and treatment equipment
JP2019202283A (en) Processing method of liquid to be treated of and processing apparatus of liquid to be treated
JP4025037B2 (en) Dephosphorization method and apparatus
JP2004321992A (en) Phosphorus resource recovery apparatus
JP4053273B2 (en) Reaction crystallization method and apparatus
JP2000301166A (en) Waste water treatment apparatus
JP2014200781A (en) Phosphorus recovery apparatus and phosphorus recovery method
JP4101506B2 (en) Method and apparatus for removing ions in liquid
JP2008183562A (en) Dephosphorization apparatus
JP4223334B2 (en) Phosphorus recovery equipment
JP6679468B2 (en) Apparatus and method for treating organic wastewater or organic sludge
JP7297122B2 (en) Organic waste treatment method and organic waste treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060106

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091125

R150 Certificate of patent or registration of utility model

Ref document number: 4417056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131204

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term