JP2000334474A - Method for removing phosphorus from waste water - Google Patents

Method for removing phosphorus from waste water

Info

Publication number
JP2000334474A
JP2000334474A JP11146818A JP14681899A JP2000334474A JP 2000334474 A JP2000334474 A JP 2000334474A JP 11146818 A JP11146818 A JP 11146818A JP 14681899 A JP14681899 A JP 14681899A JP 2000334474 A JP2000334474 A JP 2000334474A
Authority
JP
Japan
Prior art keywords
map
particles
ions
reaction tower
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11146818A
Other languages
Japanese (ja)
Inventor
Masahide Shibata
雅秀 柴田
Satoshi Ishizuka
諭 石塚
Tetsuro Fukase
哲朗 深瀬
Fumio Mishina
文雄 三品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Sewage Works Agency
Kurita Water Industries Ltd
Original Assignee
Japan Sewage Works Agency
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Sewage Works Agency, Kurita Water Industries Ltd filed Critical Japan Sewage Works Agency
Priority to JP11146818A priority Critical patent/JP2000334474A/en
Publication of JP2000334474A publication Critical patent/JP2000334474A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To recover MAP and to obtain treated water having high water quality by efficiently removing phosphorus from a waste liquid such as a separated dehydrated liquid from a sludge wherein phosphate ions, ammoniacal nitrogen and calcium ions coexist by utilizing the MAP method (magnesium ammonium phosphate) and the HA(hydroxyapatite) crystallizing method. SOLUTION: Waste water containing phosphate ions, ammoniacal nitrogen and calcium ions is passed upwardly through a reaction tower 1 and MAP is formed as an insoluble substance from the phosphorus ions in this waste water and separated in the presence of a magnesium compound. A mixed fluidized bed of MAP and HA particles are formed in this reaction tower 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は排水の脱リン方法に
係り、特に、汚泥の脱水分離液等のリン酸イオンとアン
モニア性窒素とカルシウムイオンとが共存する排水か
ら、リン酸マグネシウムアンモニウム(以下「MAP」
と略称する。)法とヒドロキシアパタイト(以下「H
A」と略称する。)晶折法とを利用して、効率的にリン
を除去、回収する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dephosphorizing wastewater, and more particularly, to a method for removing magnesium ammonium phosphate (hereinafter referred to as "water") from wastewater in which phosphate ions, ammoniacal nitrogen and calcium ions coexist, such as sludge dewatered separation liquid. "MAP"
Abbreviated. ) Method and hydroxyapatite (H
A ". A) a method for efficiently removing and recovering phosphorus by utilizing a crystallographic method;

【0002】[0002]

【従来の技術】下水処理汚泥等の有機性汚泥は、必要に
応じて濃縮した後脱水処理され、得られた脱水ケーキ
は、溶融又は焼却処理された後、再利用又は投棄処分さ
れている。
2. Description of the Related Art Organic sludge such as sewage sludge is concentrated and dewatered if necessary, and the resulting dewatered cake is reused or dumped after being melted or incinerated.

【0003】このような有機性汚泥の濃縮、脱水処理で
得られる濃縮分離液や脱水濾液(以下、これらをまとめ
て「脱水分離液」と称す。)は、リン酸イオン、アンモ
ニア性窒素、カルシウムイオン等を含むものであるが、
この脱水分離液は、前段の生物処理工程へ返送するなど
して処理されている。
[0003] Concentrated separation liquid and dehydration filtrate obtained by such concentration and dehydration treatment of organic sludge (hereinafter collectively referred to as "dehydration separation liquid") are phosphate ions, ammonia nitrogen, calcium, and the like. It contains ions etc.,
This dehydrated separation liquid is processed by returning it to the biological treatment step in the preceding stage.

【0004】ところで、リン含有水からリンを除去する
方法として、リン含有水中にマグネシウム化合物を添加
して、下記反応により該排水中に含有されるアンモニア
性窒素及びリン酸イオンとマグネシウムイオンとからM
APを生成させ、生成したMAP粒子を分離回収する方
法が提案されている。このMAP法の処理対象水は、嫌
気性消化脱離液(特公平7−77640号公報)、活性
アルミナ脱離液(特開平9−85263号公報)等であ
り、また生し尿にマグネシウム塩を添加する(特公昭5
8−45320号公報)場合のように、PO4−P濃度
が100mg/L以上の高濃度リン含有水とされてい
る。このようなMAP法によるリン除去法は、余剰汚泥
の排出がなく、また、リンをMAPとして除去、回収
し、有効再利用できるという利点がある。
[0004] As a method for removing phosphorus from phosphorus-containing water, a magnesium compound is added to phosphorus-containing water, and the following reaction is carried out to remove M from ammonia nitrogen and phosphate ions and magnesium ions contained in the wastewater.
A method of generating an AP and separating and collecting the generated MAP particles has been proposed. The water to be treated by the MAP method is an anaerobic digestion and desorption solution (Japanese Patent Publication No. Hei 7-77640), an activated alumina desorption solution (Japanese Patent Application Laid-Open No. 9-85263), and the like. To be added
As described in Japanese Patent Application Laid-Open No. 8-45320, the concentration of PO 4 -P is high-concentration phosphorus-containing water of 100 mg / L or more. Such a phosphorus removal method by the MAP method has the advantage that no excess sludge is discharged, and that phosphorus can be removed and recovered as MAP, and can be effectively reused.

【0005】MAP法: Mg2++NH4 ++HPO4 2-+OH-+6H2O→MgN
4PO4・6H2O+H2O 一方、晶折法によるリン除去法として、下記反応により
HAを析出させるHA晶折法があり、この方法によれ
ば、処理水のPO4−P濃度を1mg/L以下に低減す
ることができる。
MAP method: Mg 2+ + NH 4 + + HPO 4 2− + OH + 6H 2 O → MgN
H 4 PO 4 .6H 2 O + H 2 O On the other hand, there is an HA crystallization method in which HA is precipitated by the following reaction as a phosphorus removal method by a crystallization method. According to this method, the PO 4 -P concentration of treated water is reduced. It can be reduced to 1 mg / L or less.

【0006】HA晶折法: 5Ca2++3HPO4 2-+4OH-→Ca5(OH)(PO4)
3+3H2O 上記MAP法及びHA晶折法は、いずれも弱アルカリ性
の条件で不溶化反応が進行する。
[0006] HA Akiraoriho: 5Ca 2+ + 3HPO 4 2+ 4OH - → Ca 5 (OH) (PO 4)
3 + 3H 2 O In both the MAP method and the HA crystallization method, the insolubilization reaction proceeds under weak alkaline conditions.

【0007】[0007]

【発明が解決しようとする課題】MAP法によるリン除
去では、前述の如く、余剰汚泥の排出がなく、また有価
物の回収、再利用の点からも有利であるが、リン除去率
が十分でなく、良好な水質の処理水が得られない点に問
題がある。例えば、PO4−P濃度約100mg/L程
度の嫌気性消化脱離液を処理する場合において、リン除
去率は80%程度であり、処理水のPO4−P濃度は2
0mg/L程にしかならず、PO4−P濃度が更に低い
低濃度リン含有水を処理する場合にはリン除去率はより
低いものとなる。
As described above, phosphorus removal by the MAP method is advantageous in terms of eliminating excess sludge and recovering and reusing valuable resources, but has a sufficient phosphorus removal rate. However, there is a problem that treated water of good quality cannot be obtained. For example, when an anaerobic digestion / desorption solution having a PO 4 -P concentration of about 100 mg / L is treated, the phosphorus removal rate is about 80%, and the PO 4 -P concentration of the treated water is 2%.
In the case of treating low-concentration phosphorus-containing water having a lower PO 4 -P concentration, the phosphorus removal rate is lower than about 0 mg / L.

【0008】MAP法によるリン除去では、マグネシウ
ム化合物の添加量を増やすと共に、アルカリによる調整
pHを高くし、系内のMg2+濃度とOH-濃度を上げる
ことによりMAPの生成を促進し、処理水のPO4−P
濃度を低下させることが可能であるが、この場合には、
マグネシウム化合物及びアルカリの添加コストが高騰
し、経済的に不利である。しかも、pH9以上の高pH
にした場合には、リン酸マグネシウムの生成反応が進行
し、これによりMAPの生成反応が阻害される恐れもあ
る。
In the phosphorus removal by the MAP method, the amount of the magnesium compound added is increased, the pH adjusted by the alkali is increased, and the Mg 2+ concentration and OH concentration in the system are increased to promote the generation of MAP, PO 4 -P of water
It is possible to reduce the concentration, but in this case,
The cost of adding the magnesium compound and the alkali increases, which is economically disadvantageous. Moreover, high pH of pH 9 or higher
In this case, the reaction for producing magnesium phosphate proceeds, which may hinder the reaction for producing MAP.

【0009】前述の如く、有機性汚泥の濃縮、脱水工程
で得られる汚泥の脱水分離液は、リンを含有するもので
はあるが、そのPO4−P濃度が25〜50mg/L程
度と、一般にMAP法による処理が行われている嫌気性
消化脱離液等に比べて非常に低いことから、MAP法に
よる効率的なリン除去は困難である。また、リン酸イオ
ンと共にカルシウムイオンを含む脱水分離液をMAP法
で処理する場合、反応塔や配管内等にカルシウムスケー
ルが生成して流路閉塞等のスケール障害を引き起こすと
いう問題もある。
As described above, the sludge dewatered separation liquid obtained in the organic sludge concentration and dewatering step contains phosphorus, but has a PO 4 -P concentration of about 25 to 50 mg / L, which is generally about 25 to 50 mg / L. Since it is very low as compared with an anaerobic digestion / desorption solution or the like that has been treated by the MAP method, it is difficult to efficiently remove phosphorus by the MAP method. Further, when a dehydrated separation solution containing calcium ions together with phosphate ions is treated by the MAP method, there is a problem in that calcium scale is generated in a reaction tower, a pipe, or the like, causing scale obstacles such as flow path blockage.

【0010】このようなことから、従来において、汚泥
の脱水分離液については、MAP法によるリンの除去、
回収は行われていないが、有価物の回収、再利用の点か
らは、この脱水分離液についても含有されるリンをMA
Pとして除去、回収することが望まれる。
[0010] From the above, conventionally, the sludge dewatered and separated liquid is subjected to removal of phosphorus by the MAP method,
Although not recovered, the phosphorus contained in this dehydrated separation liquid was also removed from the viewpoint of recovery and reuse of valuables.
It is desired to remove and recover as P.

【0011】一方、HA晶折法であれば、PO4−P濃
度1mg/L以下の良好な水質の処理水を得ることがで
きることから、汚泥の脱水分離液のように、リン酸イオ
ンとアンモニア性窒素とカルシウムイオンとが共存する
排水であれば、同一系内でMAP法とHA晶折法による
リン除去反応を同時に進行させることにより、極めて効
率的なリン除去を行えるものと考えられる。
On the other hand, according to the HA crystallization method, it is possible to obtain treated water of good water quality with a PO 4 -P concentration of 1 mg / L or less. It is considered that extremely efficient phosphorus removal can be performed by simultaneously proceeding the phosphorus removal reaction by the MAP method and the HA crystallization method in the same system in the case of wastewater in which neutral nitrogen and calcium ions coexist.

【0012】しかし、HA晶折反応系内にマグネシウム
イオンが存在するとリン酸カルシウム系の塩の形成が阻
害され、このためにHAの結晶形成が損なわれたり、リ
ン酸カルシウム塩が微細な粒子となって析出し、これが
処理水と共に流出することで処理水水質を悪化させるな
どの問題もあった。
However, the presence of magnesium ions in the HA crystallization reaction system inhibits the formation of calcium phosphate salts, which impairs the formation of HA crystals or precipitates calcium phosphate salts as fine particles. However, there is also a problem that the water flows out together with the treated water to deteriorate the quality of the treated water.

【0013】本発明は上記従来の実情に鑑みてなされた
ものであって、MAP法とHA晶折法とを利用して、汚
泥の脱水分離液等の、リン酸イオンとアンモニア性窒素
とカルシウムイオンとが共存する排水から効率的にリン
を除去してMAPを回収すると共に、高水質の処理水を
得る排水の脱リン方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and utilizes a MAP method and an HA crystallization method to remove phosphate ions, ammonia nitrogen, calcium, etc., such as sludge dewatered and separated liquids. An object of the present invention is to provide a method for removing phosphorus from wastewater in which high-quality treated water is obtained while efficiently removing phosphorus from wastewater in which ions coexist to recover MAP.

【0014】[0014]

【課題を解決するための手段】本発明の排水の脱リン方
法は、反応塔に、リン酸イオンとアンモニア性窒素とカ
ルシウムイオンとを含む排水を上向流で流通させると共
に、マグネシウム化合物の存在下に、この排水から該排
水中のリン酸イオンをMAPの不溶化物として生成さ
せ、これを分離する排水の脱リン方法において、該反応
塔にMAP粒子とHA粒子との流動床(流動層)を形成
することを特徴とする。
According to the method for dephosphorizing wastewater of the present invention, wastewater containing phosphate ions, ammoniacal nitrogen and calcium ions is allowed to flow through a reaction tower in an upward flow while the presence of a magnesium compound. Below, in a method of dephosphorizing wastewater, in which phosphate ions in the wastewater are generated as insoluble MAP from the wastewater and separated from the wastewater, a fluidized bed (a fluidized bed) of MAP particles and HA particles is provided in the reaction tower. Is formed.

【0015】反応塔内にMAP粒子とHA粒子とが共存
した場合、流動床(流動層)を形成することにより、M
AP法とHA晶折法による不溶化物の生成を同時に進行
させて、効率的なリン除去を行うと共に、排水中のリン
をMAPとして回収することができる。
When MAP particles and HA particles coexist in the reaction tower, a fluidized bed (fluidized bed) is formed,
The generation of insolubles by the AP method and the HA crystallization method can be simultaneously advanced to efficiently remove phosphorus and to recover phosphorus in wastewater as MAP.

【0016】即ち、前述の如く、HA晶折反応はマグネ
シウムイオンにより阻害されるが、リン酸イオン及びカ
ルシウムイオンが各々数十mg/L存在すれば、HAの
生成は可能であり、HA粒子を共存させることにより、
このHA粒子を核としてHAの析出を円滑に進行させる
ことができる。
That is, as described above, the HA crystallization reaction is inhibited by magnesium ions, but if phosphate ions and calcium ions are present at several tens of mg / L each, it is possible to generate HA, and the HA particles can be dispersed. By coexisting,
With the HA particles as nuclei, the precipitation of HA can proceed smoothly.

【0017】このようにHAを析出させることによりカ
ルシウムスケールによるスケール障害は防止され、ま
た、リン酸カルシウムの微細粒子の生成及びこの微細粒
子の処理水中への流出による処理水水質の悪化も防止さ
れ、PO4−P濃度が著しく低減されると共に、SSも
少ない良好な水質の処理水を得ることができる。
Precipitation of HA in this way prevents scale disturbance due to calcium scale, and also prevents the formation of fine particles of calcium phosphate and the deterioration of the quality of treated water due to the outflow of these fine particles into treated water. 4- P concentration is remarkably reduced, and treated water of good water quality with less SS can be obtained.

【0018】[0018]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0019】図1は本発明の排水の脱リン方法で用いら
れる反応塔の実施の形態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a reaction tower used in the waste water dephosphorization method of the present invention.

【0020】図1において、1は反応塔であり、下部に
ポンプP1を有した原水(汚泥の脱水分離液等のPO4
P,NH4−N,Ca含有排水)の導入配管2が接続さ
れ、反応塔1の上部に処理水の取出配管3が接続されて
いる。また、処理水の一部を塔底部に循環させるための
ポンプP2を有する循環配管4が設けられている。反応
塔1の頂部は開放しており、塔下部には被処理水の流通
孔を有するMAP粒子及びHA粒子の支持板10が設け
られ、塔内に該支持板10の上側にこれらの粒子の流動
層(流動床)5が形成されている。6はpH計、7はp
H調整用のNaOH(水酸化ナトリウム)水溶液の導入
配管であり、8はMgCl2(塩化マグネシウム)等の
マグネシウム化合物水溶液の導入配管である。
In FIG. 1, reference numeral 1 denotes a reaction tower, which is a raw water (PO 4 − such as a sludge dewatered / separated liquid) having a pump P 1 at its lower part.
An inlet pipe 2 for P, NH 4 —N, and Ca-containing wastewater) is connected, and an outlet pipe 3 for treated water is connected above the reaction tower 1. Also, circulation pipe 4 is provided with a pump P 2 for circulating a portion of the treated water to the bottom. The top of the reaction tower 1 is open, and a support plate 10 of MAP particles and HA particles having a flow hole for the water to be treated is provided at the bottom of the tower. A fluidized bed (fluidized bed) 5 is formed. 6 is a pH meter, 7 is p
A pipe for introducing an aqueous solution of NaOH (sodium hydroxide) for adjusting H, and a pipe 8 for introducing an aqueous solution of a magnesium compound such as MgCl 2 (magnesium chloride).

【0021】原水は、配管2より反応塔1の下部に導入
される。また、塔内のpHが7.5〜9.5となるよう
にNaOH水溶液が注入される。なお、pH調整はアル
カリ剤であれば良く、何らNaOH水溶液に限定される
ものではない。ただし、水酸化カルシウムは、HAの析
出を促進し、MAPの回収率を低下させることから、不
適当である。
Raw water is introduced into the lower part of the reaction tower 1 through a pipe 2. Further, an aqueous NaOH solution is injected so that the pH in the tower becomes 7.5 to 9.5. It should be noted that the pH adjustment may be any alkaline agent, and is not limited to an aqueous NaOH solution. However, calcium hydroxide is not suitable because it promotes the precipitation of HA and reduces the recovery rate of MAP.

【0022】また、塔内のMg/P比が1.0〜3.0
の範囲となるように、MgCl2水溶液が注入される。
このMgの添加も、何らMgCl2に限定されるもので
はなく、水酸化マグネシウム(Mg(OH)2)、その
他のマグネシウム化合物であっても良い。Mg(OH)
2を用いた場合には、pH調整のためのアルカリを不要
化ないし削減することができる。
Further, the Mg / P ratio in the column is 1.0 to 3.0.
The MgCl 2 aqueous solution is injected so as to fall within the range.
The addition of Mg is not limited to MgCl 2 , but may be magnesium hydroxide (Mg (OH) 2 ) or another magnesium compound. Mg (OH)
When 2 is used, the alkali for pH adjustment can be made unnecessary or reduced.

【0023】反応塔1内では、流動層5のMAP粒子を
種晶としてMAPが造粒されると共に、HA粒子を種晶
としてHAが造粒される。即ち、原水の流入と処理水の
循環によりMAP粒子及びHA粒子が流動状態となり、
このMAP粒子及びHA粒子の表面にそれぞれ新たなM
AP,HAが析出し、MAP粒子及びHA粒子が粒成長
する。MAP及びHAの析出によりリンの濃度が低下し
た処理水は取出配管3より排出される。また処理水の一
部は循環配管4により塔下部へ循環される。
In the reaction tower 1, MAP is granulated using the MAP particles of the fluidized bed 5 as seed crystals, and HA is granulated using the HA particles as seed crystals. That is, the MAP particles and the HA particles are brought into a fluidized state by the inflow of the raw water and the circulation of the treated water,
A new M is added to the surface of each of the MAP particles and the HA particles.
AP and HA precipitate, and MAP particles and HA particles grow. The treated water whose phosphorus concentration has decreased due to the precipitation of MAP and HA is discharged from the extraction pipe 3. Part of the treated water is circulated to the lower part of the tower by the circulation pipe 4.

【0024】本発明において、反応塔1内に流動層5を
形成するためのMAP粒子としては、初期平均粒径0.
5〜2.0mm程度のものが好ましく、また、HA粒子
としては、初期平均粒径0.5〜2.0mm程度のもの
が好ましい。このHA粒子としては具体的にはリン鉱石
の粒子を用いることができる。
In the present invention, the MAP particles for forming the fluidized bed 5 in the reaction tower 1 have an initial average particle size of 0.1.
The HA particles preferably have a size of about 5 to 2.0 mm, and the HA particles preferably have an initial average particle size of about 0.5 to 2.0 mm. Specifically, phosphate ore particles can be used as the HA particles.

【0025】反応塔1内におけるMAP粒子とHA粒子
との割合は、MAP粒子:HA粒子=19:1〜7:3
(容積比)とするのが好ましい。この割合よりも、HA
粒子が少なくMAP粒子が多いとHA晶折反応の促進効
果が十分に得られず、逆にMAP粒子が少なくHA粒子
が多いとMAP反応が損なわれ、MAPの回収効率が低
下する。
The ratio between the MAP particles and the HA particles in the reaction tower 1 is as follows: MAP particles: HA particles = 19: 1 to 7: 3
(Volume ratio). HA ratio
When the number of MAP particles is small and the amount of MAP particles is large, the effect of promoting the HA crystallization reaction is not sufficiently obtained.

【0026】なお、MAP生成にアンモニウムイオンが
不足する場合には、反応塔に更にアンモニア又はアンモ
ニウム塩を添加する必要がある。
When ammonium ions are insufficient for MAP generation, it is necessary to further add ammonia or ammonium salt to the reaction tower.

【0027】図1に示す反応塔は、本発明の実施に好適
な反応塔の一例であって、本発明は何ら図示のものに限
定されるものではない。例えば、反応塔は、空気曝気に
より塔内の粒子を流動させる型式のものであってもよ
い。また、MgCl2水溶液を直接反応塔に導入せず
に、原水に予め混合しても良い。この原水に予めNaO
H水溶液を混合して反応塔に導入しても良い。
The reaction tower shown in FIG. 1 is an example of a reaction tower suitable for carrying out the present invention, and the present invention is not limited to the illustrated one. For example, the reaction tower may be of a type in which particles in the tower are caused to flow by air aeration. Alternatively, the MgCl 2 aqueous solution may not be directly introduced into the reaction tower, but may be previously mixed with raw water. NaO is added to this raw water in advance.
An H aqueous solution may be mixed and introduced into the reaction tower.

【0028】本発明の排水の脱リン方法は、前述の有機
性汚泥の脱水分離液のような、PO4−P濃度20〜5
0mg/L,NH4−N濃度30〜80mg/L,Ca
濃度20〜100mg/L程度の比較的低PO4−P濃
度のNH4−N,Ca含有排水、特に、地域内の汚泥を
配管等で移送して集めて処理する汚泥処理センターにお
ける汚泥脱水分離液の処理に好適である。
The method for dephosphorizing waste water according to the present invention uses a PO 4 -P concentration of 20 to 5 as in the case of the above-mentioned organic sludge dewatered separation liquid.
0 mg / L, NH 4 -N concentration 30-80 mg / L, Ca
Sludge dewatering / separation at a sludge treatment center that transports and collects and treats wastewater containing NH 4 —N and Ca with a relatively low PO 4 —P concentration of about 20 to 100 mg / L, particularly pipes, etc. Suitable for treating liquids.

【0029】[0029]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0030】実施例1 図1に示す反応塔(直径30mm,高さ2500mm)
にMAP粒子(平均粒径0.75mm)600mLとリ
ン鉱石粒子(平均粒径0.75mm)100mLを収容
して流動床を形成し、マグネシウム化合物としてMgC
2を添加して下記水質とした排水を原水として280
0mL/hrで反応塔1に導入し、循環水量を2800
mL/hrとして、5600mL/hrで上向流通水し
た。また、反応塔には、処理水のpHが8.7となるよ
うに24重量%NaOH水溶液を注入した。
Example 1 A reaction tower shown in FIG. 1 (diameter 30 mm, height 2500 mm)
Contains 600 mL of MAP particles (average particle size 0.75 mm) and 100 mL of phosphate rock particles (average particle size 0.75 mm) to form a fluidized bed, and contains MgC as a magnesium compound.
with the addition of l 2 280 wastewater had the following water quality as raw water
0 mL / hr was introduced into the reaction tower 1 and the amount of circulating water was 2800
Upstream flowing water was supplied at 5600 mL / hr as mL / hr. Further, a 24 wt% aqueous solution of NaOH was injected into the reaction tower so that the pH of the treated water became 8.7.

【0031】[原水]有機性汚泥の脱水分離液をさらに
10000Gで遠心分離し、SSを除去した上澄液 [原水水質] PO4−P: 35mg/L Mg : 30mg/L NH4−N: 50mg/L Ca : 48mg/L その結果、2週間の連続処理で得られた処理水の平均水
質は表1に示す通りであった。
[Raw water] The dewatered separation liquid of the organic sludge is further centrifuged at 10,000 G to remove the SS. The supernatant liquid [raw water quality] PO 4 -P: 35 mg / L Mg: 30 mg / L NH 4 -N: 50 mg / L Ca: 48 mg / L As a result, the average water quality of the treated water obtained by the continuous treatment for two weeks was as shown in Table 1.

【0032】比較例1 反応塔にリン鉱石粒子を充填せず、MAP粒子のみを7
00mL収容したこと以外は実施例1と同様にして処理
を行い、2週間の連続処理で得られた処理水の平均水質
を表1に示した。
COMPARATIVE EXAMPLE 1 A reaction tower was not filled with phosphate rock particles, and only MAP particles
The treatment was carried out in the same manner as in Example 1 except that the container was accommodated in a volume of 00 mL. The average water quality of the treated water obtained by the continuous treatment for two weeks is shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】表1より、反応塔にMAP粒子とHA粒子
の混合流動床を形成することにより、効率的なリン除去
を行うことができ、しかも、微細粒子の流出が防止され
ることから処理水SSも低減され、良好な水質の処理水
を得ることができることがわかる。
From Table 1, it can be seen that by forming a mixed fluidized bed of MAP particles and HA particles in the reaction tower, it is possible to efficiently remove phosphorus and to prevent the outflow of fine particles. It can be seen that SS is also reduced and that treated water of good quality can be obtained.

【0035】[0035]

【発明の効果】以上詳述した通り、本発明の排水の脱リ
ン方法によれば、MAP法とHA晶折法とを利用して、
汚泥の脱水分離液等のリン酸イオンとアンモニア性窒素
とカルシウムイオンとが共存する排水から効率的にリン
を除去することにより、排水中のリンをMAPとして回
収すると共に、PO4−P濃度が著しく低く、SSも少
ない高水質の処理水を得ることができる。また、カルシ
ウムスケールによるスケール障害も防止され、長期に亘
り安定な処理を継続することができる。
As described in detail above, according to the method for dephosphorizing waste water of the present invention, the MAP method and the HA crystallization method are used.
By efficiently removing phosphorus from wastewater in which phosphate ions, ammoniacal nitrogen and calcium ions coexist in sludge dewatering separation liquid, etc., phosphorus in the wastewater is recovered as MAP, and the PO 4 -P concentration is reduced. It is possible to obtain high quality treated water which is remarkably low and has low SS. In addition, scale disturbance due to calcium scale is also prevented, and stable processing can be continued for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の排水の脱リン方法で用いられる反応塔
の実施の形態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a reaction tower used in a method for removing phosphorus from wastewater of the present invention.

【符号の説明】[Explanation of symbols]

1 反応塔 2 原水導入配管 3 処理水取出配管 4 循環配管 5 流動層 6 pH計 Reference Signs List 1 reaction tower 2 raw water introduction pipe 3 treated water extraction pipe 4 circulation pipe 5 fluidized bed 6 pH meter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石塚 諭 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社 (72)発明者 深瀬 哲朗 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社 (72)発明者 三品 文雄 大阪府岸和田市加守町2−1−23−307 Fターム(参考) 4D038 AA08 AB48 AB51 AB52 AB54 BA02 BB13 BB17  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Satoshi Ishizuka 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo Kurita Kogyo Co., Ltd. Industrial Co., Ltd. (72) Inventor Fumio Sanpin 2-1-23-307 Kamoricho, Kishiwada-shi, Osaka F-term (reference) 4D038 AA08 AB48 AB51 AB52 AB54 BA02 BB13 BB17

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 反応塔に、リン酸イオンとアンモニア性
窒素とカルシウムイオンとを含む排水を上向流で流通さ
せると共に、マグネシウム化合物の存在下に、この排水
から該排水中のリン酸イオンをリン酸マグネシウムアン
モニウムの不溶化物として生成させ、これを分離する排
水の脱リン方法において、 該反応塔にリン酸マグネシウムアンモニウム粒子とヒド
ロキシアパタイト粒子との流動床を形成することを特徴
とする排水の脱リン方法。
1. A wastewater containing phosphate ions, ammoniacal nitrogen and calcium ions is allowed to flow upward through a reaction tower, and phosphate ions in the wastewater are removed from the wastewater in the presence of a magnesium compound. A method for dephosphorizing wastewater, which is produced as an insolubilized product of magnesium ammonium phosphate and separates the wastewater, comprising: forming a fluidized bed of magnesium ammonium phosphate particles and hydroxyapatite particles in the reaction tower. Rin method.
JP11146818A 1999-05-26 1999-05-26 Method for removing phosphorus from waste water Pending JP2000334474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11146818A JP2000334474A (en) 1999-05-26 1999-05-26 Method for removing phosphorus from waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11146818A JP2000334474A (en) 1999-05-26 1999-05-26 Method for removing phosphorus from waste water

Publications (1)

Publication Number Publication Date
JP2000334474A true JP2000334474A (en) 2000-12-05

Family

ID=15416235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11146818A Pending JP2000334474A (en) 1999-05-26 1999-05-26 Method for removing phosphorus from waste water

Country Status (1)

Country Link
JP (1) JP2000334474A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306903A (en) * 2001-04-12 2002-10-22 Kurita Water Ind Ltd Crystallization dephosphorizing apparatus
WO2005077834A1 (en) * 2004-02-13 2005-08-25 The University Of British Columbia Fluidized bed wastewater treatment
JP2005334735A (en) * 2004-05-25 2005-12-08 Mitsubishi Materials Corp Reactive crystallization treatment apparatus
JP2006122896A (en) * 2004-09-28 2006-05-18 Mitsubishi Materials Corp Method of treatment with reactional crystallization and apparatus therefor
JP2013071076A (en) * 2011-09-28 2013-04-22 Sumitomo Heavy Industries Environment Co Ltd Water treatment device
JP2016087583A (en) * 2014-11-10 2016-05-23 クボタ環境サ−ビス株式会社 Phosphorus recovery facility, and phosphorus recovery method
JP2016087584A (en) * 2014-11-10 2016-05-23 クボタ環境サ−ビス株式会社 Phosphorus recovery facility, and phosphorus recovery method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002306903A (en) * 2001-04-12 2002-10-22 Kurita Water Ind Ltd Crystallization dephosphorizing apparatus
WO2005077834A1 (en) * 2004-02-13 2005-08-25 The University Of British Columbia Fluidized bed wastewater treatment
US7622047B2 (en) 2004-02-13 2009-11-24 The University Of British Columbia Fluidized bed wastewater treatment
US7922897B2 (en) 2004-02-13 2011-04-12 The University Of British Columbia Fluidized bed wastewater treatment apparatus
KR101098890B1 (en) 2004-02-13 2011-12-26 더 유니버시티 오브 브리티쉬 콜롬비아 Fluidized Bed Wastewater Treatment
JP2005334735A (en) * 2004-05-25 2005-12-08 Mitsubishi Materials Corp Reactive crystallization treatment apparatus
JP4696473B2 (en) * 2004-05-25 2011-06-08 三菱マテリアル株式会社 Reaction crystallizer
JP2006122896A (en) * 2004-09-28 2006-05-18 Mitsubishi Materials Corp Method of treatment with reactional crystallization and apparatus therefor
JP2013071076A (en) * 2011-09-28 2013-04-22 Sumitomo Heavy Industries Environment Co Ltd Water treatment device
JP2016087583A (en) * 2014-11-10 2016-05-23 クボタ環境サ−ビス株式会社 Phosphorus recovery facility, and phosphorus recovery method
JP2016087584A (en) * 2014-11-10 2016-05-23 クボタ環境サ−ビス株式会社 Phosphorus recovery facility, and phosphorus recovery method

Similar Documents

Publication Publication Date Title
JP4310196B2 (en) Organic drainage and sludge treatment method and treatment equipment
JP4216569B2 (en) Organic wastewater and sludge treatment method and treatment equipment
JP4519485B2 (en) Phosphorus recovery method and apparatus
JP4660247B2 (en) Water treatment method and apparatus
JP2000334474A (en) Method for removing phosphorus from waste water
JPH1110194A (en) Wastewater treatment device
JP2002336875A (en) Recovering method and equipment for phosphorus in water
JP4568391B2 (en) Fluidized bed crystallization reactor
JPH04141293A (en) Dephosphorization apparatus
JP3921922B2 (en) Dephosphorization method
JP4147609B2 (en) Dephosphorization device
JP2006289299A (en) Phosphorus removal method
JP4288336B2 (en) Method for producing calcium phosphate from wastewater
JP2001113288A (en) Waste water treatment method
JP4019212B2 (en) How to recover phosphorus from sludge
JP2000061473A (en) Method of removing phosphorus in sewage water
JPH1110166A (en) Dephosphorization device
JP2001198582A (en) Dephosphorizing device
JP4505878B2 (en) Treatment method of organic sludge
JP3341631B2 (en) Dephosphorization method
JP2000225395A (en) Dephosphorization apparatus
JPH11277071A (en) Removal of phosphorus
JP2000334472A (en) Treatment of waste water
JP4631295B2 (en) Treatment method for wastewater containing phosphorus
JPH11267663A (en) Dephosphorizing device