JP4631295B2 - Treatment method for wastewater containing phosphorus - Google Patents

Treatment method for wastewater containing phosphorus Download PDF

Info

Publication number
JP4631295B2
JP4631295B2 JP2004059380A JP2004059380A JP4631295B2 JP 4631295 B2 JP4631295 B2 JP 4631295B2 JP 2004059380 A JP2004059380 A JP 2004059380A JP 2004059380 A JP2004059380 A JP 2004059380A JP 4631295 B2 JP4631295 B2 JP 4631295B2
Authority
JP
Japan
Prior art keywords
phosphorus
tank
map
containing wastewater
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004059380A
Other languages
Japanese (ja)
Other versions
JP2005246213A (en
Inventor
孝明 徳富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004059380A priority Critical patent/JP4631295B2/en
Publication of JP2005246213A publication Critical patent/JP2005246213A/en
Application granted granted Critical
Publication of JP4631295B2 publication Critical patent/JP4631295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Description

本発明は、下水、し尿、畜産汚泥の嫌気消化工程で発生する汚泥脱離液や下水汚泥広域処理場の汚泥濃縮分離液及び脱水濾液等のリン含有排水からリンをMAP粒子として効率的に除去し、優れた処理水質の処理水を得ると共に、高濃度で脱水性に優れたMAP粒子を得ることができるリン含有排水の処理方法に関する。   The present invention efficiently removes phosphorus as MAP particles from phosphorus-containing wastewater such as sludge effluent generated in the anaerobic digestion process of sewage, human waste and livestock sludge, sludge concentrated separation liquid and dehydrated filtrate of sewage sludge wide-area treatment plant The present invention also relates to a method for treating phosphorus-containing wastewater that can obtain treated water having excellent treated water quality and obtain MAP particles having high concentration and excellent dewaterability.

排液中に含まれるリンは河川、湖沼及び海洋などにおける富栄養化の原因物質の一つであり、排液処理工程で効率的に除去する必要がある。一般に、排水中のリンの除去技術としては、凝集沈殿法、生物脱リン法等が実用化されている。   Phosphorus contained in the effluent is one of the causative substances of eutrophication in rivers, lakes and oceans, and it is necessary to remove it efficiently in the effluent treatment process. In general, as a technique for removing phosphorus in wastewater, a coagulation precipitation method, a biological dephosphorization method, and the like have been put into practical use.

また、リンをMAP(リン酸マグネシウムアンモニウム)として、回収する晶析装置も実用化されている。   A crystallizer for recovering phosphorus as MAP (magnesium ammonium phosphate) has also been put into practical use.

このMAP晶析脱リン装置において、MAPが析出するpH条件、例えばpH約8〜10となるように、NaOH等のアルカリ剤が添加され、また、MAPの析出にマグネシウムが不足する場合には、MgCl等のマグネシウム塩溶液を添加し、アンモニア成分が不足するときにはアンモニア溶液やアンモニウム塩溶液を添加する(例えば特開平11−10168号、特開2002−102602号)。 In this MAP crystallization dephosphorization apparatus, an alkaline agent such as NaOH is added so that the pH condition for precipitation of MAP, for example, pH of about 8 to 10, and when magnesium is insufficient for precipitation of MAP, A magnesium salt solution such as MgCl 2 is added, and when the ammonia component is insufficient, an ammonia solution or an ammonium salt solution is added (for example, JP-A Nos. 11-10168 and 2002-102602).

これら公報記載の方法では、上向流方式の反応塔が用いられている。   In the methods described in these publications, an upflow type reaction tower is used.

特開平7−124571号には、アンモニア性窒素を含有する有機性排水に反応槽内にてMg2+,PO 3−を加えてMAP粒子を析出させ、濾過により固液分離してリンを除去する方法が記載されている。
特開平11−10168号公報 特開2002−102602号公報 特開平7−124571号公報
In Japanese Patent Laid-Open No. 7-124571, Mg 2+ and PO 4 3− are added to organic waste water containing ammonia nitrogen in a reaction tank to precipitate MAP particles, followed by solid-liquid separation by filtration to remove phosphorus. How to do is described.
Japanese Patent Laid-Open No. 11-10168 JP 2002-102602 A JP-A-7-124571

上記特開平7−124571号の如く反応槽内にてMAP粒子を析出させた後、固液分離してリン除去を行う脱リン方法においては、反応槽内の全体に万遍なく種晶としてのMAP粒子が存在し、また、反応槽内の全体においてMAPが生成し易い約8〜11のpHに保たれるべきであるが、排水の流入部付近などにおいては、種晶MAP粒子が不足したり、好適pH範囲から外れてしまい、MAP生成効率が低下したり、あるいは処理水水質が低下するおそれがある。   In the dephosphorization method in which MAP particles are precipitated in a reaction vessel as described in JP-A-7-124571, followed by solid-liquid separation to remove phosphorus, the entire reaction vessel is uniformly seeded. MAP particles are present and should be maintained at a pH of about 8 to 11 where MAP is likely to be generated in the entire reaction tank. However, seed crystal MAP particles are insufficient in the vicinity of the inflow portion of waste water. Or out of the preferred pH range, the MAP production efficiency may be reduced, or the quality of the treated water may be reduced.

本発明は、反応槽内の全体に種晶MAP粒子を万遍なく存在させたり、あるいは反応槽内全体をMAP生成に好適なpHに保つことが可能であり、これによりMAP生成効率が高く、処理水水質も良好となるリン含有排水の処理方法を提供することを目的とする。   In the present invention, the seed crystal MAP particles can be uniformly present in the entire reaction tank, or the entire reaction tank can be maintained at a pH suitable for MAP production, which results in high MAP production efficiency. It aims at providing the processing method of the phosphorus containing wastewater from which the quality of treated water also becomes favorable.

発明のリン含有排水の処理方法は、アルカリ性条件下でリン含有排水中のマグネシウムイオン及びアンモニウムイオンを反応させて不溶物を生成させ、固液分離を行って処理水と不溶物を含んだ濃縮液とに分離するリン含有排水の処理方法において、前記濃縮液の一部を、前記リン含有排水と混合することなくアルカリ剤と混合し、得られたアルカリ混合物をリン含有排水に添加することを特徴とするものである。 The method for treating phosphorus-containing wastewater according to the present invention is a method of reacting magnesium ions and ammonium ions in phosphorus-containing wastewater under alkaline conditions to produce insoluble matter, and performing solid-liquid separation to concentrate containing treated water and insoluble matter. In the method for treating phosphorus-containing wastewater that is separated into liquid, a part of the concentrated liquid is mixed with an alkaline agent without mixing with the phosphorus-containing wastewater, and the obtained alkali mixture is added to the phosphorus-containing wastewater. It is a feature.

本発明では、リン含有排水とマグネシウムイオン、アンモニウムイオン(これらのイオンは、排水中に元々含まれているものであってもよく、排水に添加されたものであってもよい。)との反応及び返送濃縮液との混合は、完全混合型の反応槽(リアクタ)中で行われるのが好ましい。   In the present invention, phosphorus-containing wastewater reacts with magnesium ions and ammonium ions (these ions may be originally contained in the wastewater or may be added to the wastewater). The mixing with the return concentrated liquid is preferably performed in a completely mixed reaction tank (reactor).

本発明では、MAP粒子を含んだMAP生成反応液を固液分離して得られるMAP粒子含有濃縮液(以下、MAP濃縮液ということがある。)の一部を返送してリン含有排水に添加するので、MAP生成反応工程において、MAP粒子が種晶として槽全体に均一に分散して存在するようになり、脱水性の良い粒径の大きいMAP粒子を効率良く生成させることができる。   In the present invention, a part of the MAP particle-containing concentrated liquid (hereinafter sometimes referred to as MAP concentrated liquid) obtained by solid-liquid separation of the MAP production reaction liquid containing MAP particles is returned and added to the phosphorus-containing waste water. Therefore, in the MAP generation reaction step, the MAP particles are uniformly dispersed throughout the tank as seed crystals, and MAP particles having a large dehydrating property and a large particle size can be efficiently generated.

その際、この返送されるMAP濃縮液に、前記リン含有排水と混合することなくアルカリを添加することにより、反応槽全体のpHをMAP生成に好適なpH8〜11程度に保つことが容易となる。 At that time , by adding alkali to the returned MAP concentrate without mixing with the phosphorus-containing wastewater, it becomes easy to keep the pH of the entire reaction tank at about pH 8 to 11 suitable for MAP production. .

以下、図面を参照して本発明についてさらに詳細に説明する。図1は本発明の実施の形態を表す系統図である。   Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a system diagram showing an embodiment of the present invention.

1は原水の導入管であり、中和槽2に原水を導入する。2Aは中和槽2に設けられたpH計である。4は中和槽2内の液を凝集槽3に供給する配管であり、12は凝集槽3にポリマー(高分子凝集剤)を供給する配管である。5は凝集槽3内の液を沈殿槽6に供給する配管である。7は処理水の排出管、8は沈殿槽6で分離されたMAP濃縮液の抜出管であり、系外への排出管8Aと、反応槽9への返送管8Bとに分岐している。この返送管8Bにはポンプ14が設けられている。   Reference numeral 1 denotes a raw water introduction pipe, which introduces the raw water into the neutralization tank 2. 2A is a pH meter provided in the neutralization tank 2. 4 is a pipe for supplying the liquid in the neutralization tank 2 to the aggregation tank 3, and 12 is a pipe for supplying a polymer (polymer flocculant) to the aggregation tank 3. Reference numeral 5 denotes a pipe for supplying the liquid in the aggregation tank 3 to the precipitation tank 6. 7 is a discharge pipe for treated water, and 8 is a discharge pipe for the MAP concentrate separated in the precipitation tank 6, which branches into a discharge pipe 8 A to the outside of the system and a return pipe 8 B to the reaction tank 9. . A pump 14 is provided in the return pipe 8B.

10は反応槽9にアルカリ貯槽11内の水酸化ナトリウム、消石灰等のアルカリ水溶液を供給する配管であり、この配管10に設けられたアルカリ供給用ポンプ15は前記pH計2Aに連動するように設けられている。16はマグネシウム剤貯槽であり、塩化マグネシウム等のマグネシウム塩の水溶液が貯えられている。この貯槽16内のマグネシウム塩水溶液は配管17を経て、ポンプ18で反応槽9に供給される。   10 is a pipe for supplying an alkaline aqueous solution such as sodium hydroxide and slaked lime in the alkali storage tank 11 to the reaction tank 9, and an alkali supply pump 15 provided in the pipe 10 is provided so as to be linked to the pH meter 2A. It has been. Reference numeral 16 denotes a magnesium agent storage tank in which an aqueous solution of a magnesium salt such as magnesium chloride is stored. The magnesium salt aqueous solution in the storage tank 16 is supplied to the reaction tank 9 by a pump 18 through a pipe 17.

13は反応槽9からMAP濃縮液を中和槽2に供給する配管である
本実施の形態において、導入管1からの原水は中和槽2へ供給され、中和槽2において原水は反応槽9から配管13を経て返送されるMAP粒子含有濃縮液と混合され、含有されるリンイオンがMAPとして不溶化された後、配管4を経て凝集槽3に供給される。凝集槽3においては、原水とMAP濃縮液との反応液に配管12よりポリマーが添加されて、凝集処理される。
Reference numeral 13 denotes a pipe for supplying the MAP concentrate from the reaction tank 9 to the neutralization tank 2. In this embodiment, the raw water from the introduction pipe 1 is supplied to the neutralization tank 2. 9 is mixed with the concentrated liquid containing MAP particles returned via the pipe 13 and the contained phosphorus ions are insolubilized as MAP, and then supplied to the aggregation tank 3 via the pipe 4. In the coagulation tank 3, the polymer is added to the reaction liquid of the raw water and the MAP concentrated liquid through the pipe 12, and the coagulation treatment is performed.

凝集槽3において、十分に粒子の粗大化がなされた液は、配管5を経て沈殿槽6に供給されて処理水と沈降物とに分離される。得られた処理水は排出管7より排出され、沈降物(MAP粒子含有濃縮液)は抜出管8より抜き出され、その一部が返送管8Bより反応槽9に返送され、残りは排出管8Aより系外へ排出される。   In the agglomeration tank 3, the liquid having sufficiently coarsened particles is supplied to the precipitation tank 6 through the pipe 5 and separated into treated water and sediment. The obtained treated water is discharged from the discharge pipe 7, the sediment (MAP particle-containing concentrated liquid) is extracted from the discharge pipe 8, a part thereof is returned to the reaction tank 9 from the return pipe 8B, and the rest is discharged. It is discharged out of the system through the pipe 8A.

反応槽9に返送されたMAP濃縮液は、アルカリ貯槽11から供給されるアルカリ水溶液及びマグネシウム貯槽16から供給されるマグネシウム塩水溶液と混合され、MAP粒子表面にアルカリが吸着される。このアルカリを吸着したMAP粒子含有濃縮液は、前記の通り、配管13により中和槽2に供給される。   The MAP concentrate returned to the reaction tank 9 is mixed with the aqueous alkaline solution supplied from the alkaline storage tank 11 and the aqueous magnesium salt solution supplied from the magnesium storage tank 16, and the alkali is adsorbed on the surface of the MAP particles. The MAP particle-containing concentrated liquid adsorbing the alkali is supplied to the neutralization tank 2 through the pipe 13 as described above.

ここで、返送管8Bより反応槽9に返送するMAP濃縮液の固形分量は、原水とアルカリ濃縮液との反応で発生する不溶物の量の15〜40倍程度が好ましい。   Here, the solid content of the MAP concentrate returned to the reaction tank 9 from the return pipe 8B is preferably about 15 to 40 times the amount of insoluble matter generated by the reaction between the raw water and the alkali concentrate.

本実施の形態において、反応槽9へのアルカリの添加量は、中和槽2のpHが8.0〜11.0程度となる量であることが好ましく、マグネシウム剤の添加量は、原水中のリンに対してモル比で1.0〜2.5が望ましい。   In this Embodiment, it is preferable that the addition amount of the alkali to the reaction tank 9 is a quantity from which the pH of the neutralization tank 2 will be about 8.0-11.0, and the addition amount of a magnesium agent is raw | natural water. A molar ratio of 1.0 to 2.5 is desirable with respect to phosphorus.

また、凝集槽3へのポリマー添加量は原水量に対して2〜5mg/Lとすることが望ましい。   The amount of polymer added to the flocculation tank 3 is desirably 2 to 5 mg / L with respect to the amount of raw water.

なお、本発明においては、固液分離手段として、沈殿槽の他、膜分離、遠心分離器等を用いることも可能である。   In the present invention, as a solid-liquid separation means, it is also possible to use a membrane separator, a centrifuge, etc. in addition to a precipitation tank.

晶析反応塔を用いる従来例の場合、薬注部分における薬品の拡散速度が問題となるが、この実施の形態では全ての反応が完全混合槽の中で行われるため、スケールアップを容易に行うことができる。   In the case of the conventional example using the crystallization reaction tower, the diffusion rate of the chemical in the chemical injection part becomes a problem. be able to.

以下、実施例及び比較例について説明する。
[実施例1]
図1に示す装置を用いてリン含有排水の処理を行った、原水としては塩化アンモニウム及びリン酸ナトリウムを含有する合成排水を用いた。濃度はNH−N 150mg/L,PO−P 50mg/Lとした。原水流量は0.48m/dayとした。
Hereinafter, examples and comparative examples will be described.
[Example 1]
The synthetic waste water containing ammonium chloride and sodium phosphate was used as raw water, which was treated with the phosphorus-containing waste water using the apparatus shown in FIG. Concentrations were NH 4 -N 150 mg / L and PO 4 -P 50 mg / L. The raw water flow rate was 0.48 m 3 / day.

アルカリ貯槽11内のアルカリ水溶液は25%のNaOH水溶液とし、マグネシウム剤貯槽16内のマグネシウム塩水溶液は1.0%の塩化マグネシウム水溶液とした。反応槽9の容量は3L、中和槽2の容量は4.5L、凝集槽3の容量は1.5Lとした。この凝集槽3では、ポリマー凝集剤を2mg/Lの濃度となるように添加した。   The alkaline aqueous solution in the alkaline storage tank 11 was a 25% NaOH aqueous solution, and the magnesium salt aqueous solution in the magnesium agent storage tank 16 was a 1.0% magnesium chloride aqueous solution. The capacity of the reaction tank 9 was 3 L, the capacity of the neutralization tank 2 was 4.5 L, and the capacity of the aggregation tank 3 was 1.5 L. In this agglomeration tank 3, a polymer flocculant was added to a concentration of 2 mg / L.

反応槽9において、沈殿槽より返送されるMAP濃縮液に塩化マグネシウム水溶液と、NaOH水溶液を添加し、アルカリ性とした濃縮液を中和槽2に返送して原水と混合した。中和槽2のpHが8.5になるようにポンプ15によるNaOHの注入量を調整した。塩化マグネシウム水溶液の添加量は、塩化マグネシウムとして6.0g/Hrとした。沈殿槽6から反応槽9へ返送するMAP濃縮液量は、その固形物量が原水から発生する固形物量の約30倍となる量とした。   In the reaction tank 9, a magnesium chloride aqueous solution and a NaOH aqueous solution were added to the MAP concentrate returned from the precipitation tank, and the alkalinized concentrate was returned to the neutralization tank 2 and mixed with raw water. The amount of NaOH injected by the pump 15 was adjusted so that the pH of the neutralization tank 2 was 8.5. The amount of magnesium chloride aqueous solution added was 6.0 g / Hr as magnesium chloride. The amount of the MAP concentrated liquid returned from the sedimentation tank 6 to the reaction tank 9 was set to an amount such that the amount of the solid matter was about 30 times the amount of the solid matter generated from the raw water.

この結果、T−P濃度17mg/L、PO−P濃度13mg/Lの処理水が得られた。また、MAP回収率は90%であった。 As a result, treated water having a TP concentration of 17 mg / L and a PO 4 -P concentration of 13 mg / L was obtained. The MAP recovery rate was 90%.

比較例1
実施例1において、反応槽9にアルカリ及び塩化マグネシウムの添加を行わず、代りにこれらを中和槽2へ直接に供給するようにしたこと以外は同様にして合成排水の処理を行った。
[ Comparative Example 1 ]
In Example 1, the synthetic waste water was treated in the same manner except that the alkali and magnesium chloride were not added to the reaction tank 9 and instead these were directly supplied to the neutralization tank 2.

その結果、処理水のT−P濃度は23mg/L、PO−P濃度は16mg/L、MAP回収率は80%となった。 As a result, the TP concentration of treated water was 23 mg / L, the PO 4 -P concentration was 16 mg / L, and the MAP recovery rate was 80%.

[比較例
実施例1において、ポンプ14を停止し、MAP濃縮液の返送を行わなかったこと以外は同様にして合成排水の処理を行った。
[Comparative Example 2 ]
In Example 1, the synthetic waste water was treated in the same manner except that the pump 14 was stopped and the MAP concentrate was not returned.

その結果、処理水のT−P濃度は26mg/L、PO−P濃度は14mg/L、MAP回収率は67%となった。 As a result, the TP concentration of the treated water was 26 mg / L, the PO 4 -P concentration was 14 mg / L, and the MAP recovery rate was 67%.

これらの実験結果より、返送されるMAP濃縮液の一部にアルカリを添加してから原水と混合することにより、処理水質が向上し、MAP粒子回収率も向上することが認められた。 From these experimental results, it was confirmed that the quality of treated water was improved and the MAP particle recovery rate was improved by adding alkali to a part of the returned MAP concentrate and mixing with raw water .

実施の形態に係るリン含有排水の処理方法を示す系統図である。It is a systematic diagram which shows the processing method of the phosphorus containing waste_water | drain which concerns on embodiment.

符号の説明Explanation of symbols

2 中和槽
2A pH計
3 凝集槽
6 沈殿槽
9 反応槽
2 Neutralization tank 2A pH meter 3 Coagulation tank 6 Precipitation tank 9 Reaction tank

Claims (2)

アルカリ性条件下でリン含有排水中のマグネシウムイオン及びアンモニウムイオンを反応させて不溶物を生成させ、固液分離を行って処理水と不溶物を含んだ濃縮液とに分離するリン含有排水の処理方法において、前記濃縮液の一部を、前記リン含有排水と混合することなくアルカリ剤と混合し、得られたアルカリ混合物をリン含有排水に添加することを特徴とするリン含有排水の処理方法。 A method for treating phosphorus-containing wastewater by reacting magnesium ions and ammonium ions in phosphorus-containing wastewater under alkaline conditions to produce insoluble matter, and performing solid-liquid separation to separate into treated water and a concentrate containing insoluble matter In this method, a part of the concentrated solution is mixed with an alkaline agent without being mixed with the phosphorus-containing wastewater, and the obtained alkali mixture is added to the phosphorus-containing wastewater. 請求項1において、前記リン含有排水及び前記アルカリ混合物を、中和槽内で混合して前記不溶物を生成させた後、In claim 1, after the phosphorus-containing wastewater and the alkali mixture are mixed in a neutralization tank to generate the insoluble matter,
凝集槽内に供給すると共にポリマーを添加して凝集処理し、While supplying into the coagulation tank and adding polymer, coagulation treatment,
次いで固液分離手段内に供給して前記処理水と前記濃縮液とに分離し、Next, it is supplied into a solid-liquid separation means and separated into the treated water and the concentrated liquid,
該濃縮液の一部を反応槽内でアルカリ剤と混合して前記アルカリ混合物とし、該アルカリ混合物を該中和槽内に供給することを特徴とするリン含有排水の処理方法。A method for treating phosphorus-containing wastewater, wherein a part of the concentrate is mixed with an alkali agent in a reaction tank to form the alkali mixture, and the alkali mixture is supplied into the neutralization tank.
JP2004059380A 2004-03-03 2004-03-03 Treatment method for wastewater containing phosphorus Expired - Fee Related JP4631295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059380A JP4631295B2 (en) 2004-03-03 2004-03-03 Treatment method for wastewater containing phosphorus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059380A JP4631295B2 (en) 2004-03-03 2004-03-03 Treatment method for wastewater containing phosphorus

Publications (2)

Publication Number Publication Date
JP2005246213A JP2005246213A (en) 2005-09-15
JP4631295B2 true JP4631295B2 (en) 2011-02-16

Family

ID=35027212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059380A Expired - Fee Related JP4631295B2 (en) 2004-03-03 2004-03-03 Treatment method for wastewater containing phosphorus

Country Status (1)

Country Link
JP (1) JP4631295B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193892A (en) * 1984-10-15 1986-05-12 Ebara Infilco Co Ltd Fluidized bed type dephosphorization method
JPH10235374A (en) * 1997-02-27 1998-09-08 Kitakiyuushiyuushi Wastewater treatment by map method using sea water
JPH1110168A (en) * 1997-06-19 1999-01-19 Kurita Water Ind Ltd Dephosphorization device
JPH11309464A (en) * 1998-04-28 1999-11-09 Mitsubishi Heavy Ind Ltd Crystallization dephosphorization method and its device
JP2001334274A (en) * 2000-05-25 2001-12-04 Kurita Water Ind Ltd Dephosphorization method
JP2002102602A (en) * 2000-09-29 2002-04-09 Kurita Water Ind Ltd Crystallization reaction device
JP2002126761A (en) * 2000-10-20 2002-05-08 Ebara Corp Two-stage dephosphorization method and apparatus
JP2002320976A (en) * 2001-04-24 2002-11-05 Ebara Corp Method and device for removing underwater phosphorus
JP2002326089A (en) * 2001-05-08 2002-11-12 Ebara Corp Method and apparatus for removing phosphorus
JP2002336875A (en) * 2001-05-17 2002-11-26 Ebara Corp Recovering method and equipment for phosphorus in water
JP2003047973A (en) * 2001-08-02 2003-02-18 Ebara Corp Dephosphorization method and apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193892A (en) * 1984-10-15 1986-05-12 Ebara Infilco Co Ltd Fluidized bed type dephosphorization method
JPH10235374A (en) * 1997-02-27 1998-09-08 Kitakiyuushiyuushi Wastewater treatment by map method using sea water
JPH1110168A (en) * 1997-06-19 1999-01-19 Kurita Water Ind Ltd Dephosphorization device
JPH11309464A (en) * 1998-04-28 1999-11-09 Mitsubishi Heavy Ind Ltd Crystallization dephosphorization method and its device
JP2001334274A (en) * 2000-05-25 2001-12-04 Kurita Water Ind Ltd Dephosphorization method
JP2002102602A (en) * 2000-09-29 2002-04-09 Kurita Water Ind Ltd Crystallization reaction device
JP2002126761A (en) * 2000-10-20 2002-05-08 Ebara Corp Two-stage dephosphorization method and apparatus
JP2002320976A (en) * 2001-04-24 2002-11-05 Ebara Corp Method and device for removing underwater phosphorus
JP2002326089A (en) * 2001-05-08 2002-11-12 Ebara Corp Method and apparatus for removing phosphorus
JP2002336875A (en) * 2001-05-17 2002-11-26 Ebara Corp Recovering method and equipment for phosphorus in water
JP2003047973A (en) * 2001-08-02 2003-02-18 Ebara Corp Dephosphorization method and apparatus

Also Published As

Publication number Publication date
JP2005246213A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
WO2005049511A1 (en) Method of formation/recovery of magnesium ammonium phosphate and apparatus therefor
CN107915354A (en) A kind of desulfurization wastewater zero-emission and resource utilization device and method
JP4660247B2 (en) Water treatment method and apparatus
JP2013119081A (en) Treatment method and treatment apparatus for phosphorus-containing wastewater
JP2013230414A (en) Recovery process of phosphorus and recovery apparatus of the phosphorus
KR101278475B1 (en) Sludge Treatment Facility Combining Swirl Flow Type Inorganic Sludge Selective Discharge Device and Bioreactor
JP4642635B2 (en) High concentration organic waste liquid treatment method and apparatus
JPH1110194A (en) Wastewater treatment device
US11577959B2 (en) Method for recovering N, K, and P from liquid waste stream
JP2002205077A (en) Method and apparatus for treating organic sewage
JPH11267665A (en) Dephosphorizing device
JP4631295B2 (en) Treatment method for wastewater containing phosphorus
JP2003300095A (en) Method and apparatus for sewage treatment
KR101004067B1 (en) System for recovering posphate and method for recovering posphate using the same
JP4368159B2 (en) Method for treating wastewater containing phosphate
KR101218395B1 (en) Inorganic sludge selective discharge facility applying contact grawing method in swirl flow
JP2000334474A (en) Method for removing phosphorus from waste water
KR101065940B1 (en) Treatment and reuse system for wastewater containing high concentrations of hydrofluoric acid, phosphoric acid and nitric acid
JP2002316191A (en) Method and apparatus for treating organic foul water
JP2002346574A (en) Boron-containing water treatment method
JP4390959B2 (en) Wastewater treatment equipment
JP3921922B2 (en) Dephosphorization method
JP6407052B2 (en) Phosphorus recovery apparatus and phosphorus recovery method
JP2003039081A (en) Phosphorus recovery apparatus
KR20160003935A (en) Phosphorus removal, recovery apparatus and method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Ref document number: 4631295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees