JPS6193892A - Fluidized bed type dephosphorization method - Google Patents

Fluidized bed type dephosphorization method

Info

Publication number
JPS6193892A
JPS6193892A JP21428684A JP21428684A JPS6193892A JP S6193892 A JPS6193892 A JP S6193892A JP 21428684 A JP21428684 A JP 21428684A JP 21428684 A JP21428684 A JP 21428684A JP S6193892 A JPS6193892 A JP S6193892A
Authority
JP
Japan
Prior art keywords
water
treated
solid
fluidized bed
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21428684A
Other languages
Japanese (ja)
Other versions
JPS648597B2 (en
Inventor
Nobuyuki Iwai
岩井 信幸
Izumi Hirasawa
泉 平沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP21428684A priority Critical patent/JPS6193892A/en
Publication of JPS6193892A publication Critical patent/JPS6193892A/en
Publication of JPS648597B2 publication Critical patent/JPS648597B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently remove phosphates, by applying solid-liquid separation treatment to a part of treated water before recirculate and return the same to inflow water or a fluidized bed. CONSTITUTION:Water to be treated, of which the pH was adjusted to a predetermined value, supplied to a dephosphorization tower from the lower part thereof by a raw water pump 2' through a raw water inflow pipe 2. a part of treated water used as recirculation water is guided to the solid-liquid separation process arranged on the way of a recirculation line to remove SS and the treated water is returned to the dephosphorization tower as recirculation water through a recirculation water introducing pipe 3. By this method, the action for obstructing the precipitation reaction of SS in a bed main body is suppressed and dephosphorization reaction can be performed efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下水、し銀系汚水、工場排水その地腹体中に
比較的高濃度で存在するリン酸塩類を流動化状態にある
、固体粒子層を用いて効率良く除去する方法に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for mobilizing phosphates present at relatively high concentrations in sewage, silver-based sewage, and industrial wastewater. The present invention relates to an efficient removal method using a solid particle layer.

〔従来の技術〕[Conventional technology]

一般に自然水系に排出される上記の各種液体中には、無
機性のリン酸塩としてオルトリン酸塩や各種の縮合リン
酸塩さらに有機性リン酸塩などが様々な状態で存在して
おり、これらのリン酸塩類の存在が湖沼、内海、内湾な
どの閉鎖水域乃至は停滞水域の「あおこ」、「赤潮」発
生の誘起因子となシ、さらに各種の用水として使用する
場合に装置、配管内に生物学的なスライムが発生し、ま
た化学的なスケールが形成されて、事故発生の重大な原
因となっている。
Generally, in the various liquids mentioned above that are discharged into natural water systems, inorganic phosphates such as orthophosphates, various condensed phosphates, and organic phosphates exist in various states. The presence of phosphates is a factor that induces the occurrence of "blue water" and "red tide" in closed or stagnant waters such as lakes, inland seas, and inner bays, and also in equipment and piping when using water for various purposes. Biological slime and chemical scale are formed, which is a major cause of accidents.

したがって、これら液中に存在するリン酸塩を除去する
必要から、各種のリン除去方法が検討されているが、そ
の一つとして本発明者等は、従来にない新規な処理方法
として一定の粒径をもつ固体粒子を筒状あるいは錐状の
脱リン塔に充填し、被処理液のpHを6〜11の範囲に
調整し、さらに被処理液中に含まれている溶解性すン酸
塩類の濃度に対応して塩化カルシウムなどのカルシウム
剤を加え、これを一定の流速で通過接触せしめることに
よシ、充填されてbる固体粒子の表面にリン酸カルシウ
ムの結晶を晶出、固着せしめて溶解性リン酸塩類を除去
する方法を提案した。
Therefore, various methods for removing phosphorus are being considered in order to remove the phosphates present in these liquids. A cylindrical or cone-shaped dephosphorization tower is filled with solid particles having a certain diameter, the pH of the liquid to be treated is adjusted to a range of 6 to 11, and the soluble sulfates contained in the liquid to be treated are further removed. By adding a calcium agent such as calcium chloride according to the concentration of calcium chloride and bringing it into contact with the fluid at a constant flow rate, calcium phosphate crystals are crystallized, fixed, and dissolved on the surface of the filled solid particles. We proposed a method to remove these phosphates.

この方法例おける固体粒子表面での代表的な化学反応は
次の通シである。
A typical chemical reaction on the surface of a solid particle in this method example is as follows.

50a”−1−70H−+5馬PO,−士Oa、(OH
) (POs)a+6111ao・・・(1)このよう
な脱リン方法を適用すれば、リン酸カルシウムが固着し
た固体粒子の分離、脱水が極めて容易であり、従来の化
学的凝集沈殿法と比較すると、沈殿汚泥の濃縮装置、脱
水機、乾燥装置などの既成概念における汚泥処理施設を
まったく必要としないだけでなく、資源としてのリンを
回収することができる優れた脱リン技術である。
50a"-1-70H-+5 horse PO,-shiOa,(OH
) (POs) a+6111ao... (1) If such a dephosphorization method is applied, it is extremely easy to separate and dehydrate the solid particles to which calcium phosphate is fixed, and compared to the conventional chemical coagulation-precipitation method, the precipitation This is an excellent dephosphorization technology that not only does not require conventional sludge treatment facilities such as sludge thickeners, dehydrators, and dryers, but also can recover phosphorus as a resource.

、   (RBIE[l!5.!−f、B1%’li!
i!、a)ところで、従来の流動層式脱リン法には以下
のような欠点があった。従来法は、最適な層内流動状態
をつ〈シ効率良くリン除去を行なうために、処理水の一
部を循環する方法を採用しているが、循環水KBsが多
く含まれる場合には、層内での晶析反応に悪影響を及ぼ
すことが度々あった。即ち、層内に循環水によって持ち
込まれる日日量が増加すると、層を形成している固体粒
子表面上に液中から晶析するリン量に比べ、層内〈浮遊
している8Bを核として晶析するリン量の割合が増加し
、8Bを核として形成された晶析片はきわめて微細な粒
子のため、層内に留まることなく系外に選び出され゛処
理水水質が著しく悪化する現象が起きた。この現象は原
水リン濃度が高い場合や循環水中のS8がリン酸カルシ
ウムや炭酸カルシウム等の特に晶析反応に関与する成分
を多く含む場合には、ますます顕著となシ、処理が悪化
して流動層式脱リン法にとって致命的なものとなってし
まうことがあった。
, (RBIE[l!5.!-f, B1%'li!
i! , a) By the way, the conventional fluidized bed dephosphorization method has the following drawbacks. In the conventional method, a part of the treated water is circulated in order to achieve an optimal bed fluidization state and to efficiently remove phosphorus, but if the recycled water contains a large amount of KBs, This often had a negative effect on the crystallization reaction within the layer. In other words, as the daily amount brought into the layer by circulating water increases, compared to the amount of phosphorus that crystallizes from the liquid on the surface of the solid particles forming the layer, The ratio of crystallized phosphorus increases, and the crystallized pieces formed with 8B as the nucleus are extremely fine particles, so they are not retained in the layer and are selected out of the system, resulting in a phenomenon in which the quality of treated water deteriorates significantly. happened. This phenomenon becomes more pronounced when the raw water has a high phosphorus concentration or when the S8 in the circulating water contains a large amount of components particularly involved in crystallization reactions, such as calcium phosphate and calcium carbonate. This could be fatal to the formula dephosphorization method.

〔発明の構成〕[Structure of the invention]

本発明は、固体粒子を流動化せしめた層に、リン含有排
水を通液してカルシウム存在下で処理水の一部を循環し
ながら液中のリンを除去する方法において、その処理水
の一部を固液分離した後、流入水または流動層内に循環
返送することを特徴とするものであって、前述のように
従来、流動層式税リン法において問題であった循環水中
の88によって脱リン能力が低下する欠点を解消し、効
率良く安定したリン酸除去方法を提供することを目的と
するものである。
The present invention provides a method for removing phosphorus from the liquid while circulating a part of the treated water in the presence of calcium by passing phosphorus-containing wastewater through a bed in which solid particles are fluidized. This method is characterized by separating the solid-liquid portion into solid-liquid and then circulating it back into the inflow water or into the fluidized bed. The purpose of this invention is to provide an efficient and stable method for removing phosphoric acid by eliminating the drawback of reduced dephosphorization ability.

以下、本発明の実施態様を第1図に基すて説明する。EMBODIMENT OF THE INVENTION Hereinafter, embodiments of the present invention will be described based on FIG.

第1図9符号1はpH調整槽、2は原水流入管、2′は
原水ポンプ、3は循環水導入管、3′は循環水ポンプ、
4は脱リン塔、5は処理水流出管、6はアルカリ剤貯槽
、7はアルカリ剤注入管、7′はアルカリ剤注入ポンプ
、8はカルシウム剤注入管、8′はカルシウム剤注入ポ
ンプ、9はカルシウム剤貯槽、10は固液分離装置、1
1は攪拌機、Aは流動層を形成する固体粒子、Bは槽内
に滞留している5S1Cは流動層を示す。
Fig. 1 9 Reference numeral 1 is a pH adjustment tank, 2 is a raw water inflow pipe, 2' is a raw water pump, 3 is a circulating water introduction pipe, 3' is a circulating water pump,
4 is a dephosphorization tower, 5 is a treated water outflow pipe, 6 is an alkali agent storage tank, 7 is an alkali agent injection pipe, 7' is an alkali agent injection pump, 8 is a calcium agent injection pipe, 8' is a calcium agent injection pump, 9 is a calcium agent storage tank, 10 is a solid-liquid separator, 1
1 is a stirrer, A is solid particles forming a fluidized bed, and B is 5S1C remaining in the tank, indicating a fluidized bed.

pH調整槽1に゛導入された被処理水(原水)は、攪拌
機11で攪拌しながら、アルカリ剤貯槽6からアルカリ
剤注入ポンプ7′によりアルカリ剤注入管7を経て供給
されるアルカリにより所定の値1cpHを調節した後、
原水ポンプ2′によシ原水流入管2を経て脱リン塔にそ
の下部から供給される。脱リン塔4の上部から処理水流
出管5を経て流出する処理水の一部は循環水導入管3を
経て脱リン塔に循環せしめられるが、BE?を多量に含
む循環水が、脱リン塔4中に返送されると、液中から層
内の流動層を形成する固体粒子A上にリン酸カルシウム
が析出する反応とともに、循環水より層内に持ち込まれ
たSS粒子Bを核としてリン酸カルシウムが析出する反
応が同時に起とシ、浮遊FIBを核とした晶析物は、微
細なため層内に保持されずにそのまま処理水流水管5中
へ流出してしまい処理水質が悪化するので、まず循環水
として使用′する処理水の一部を、循環ライン途中に設
置した固液分離工程1oに導き、SSを除去した後、循
環液として循環水導入管6を経て脱リン塔に返送するこ
とによって、かかるSS0層本体の晶析反応を妨害する
作用を抑制し、効率良く脱リン反応を行なうことができ
る。なお、この例においては原水中のリンの濃度に応じ
て、必要な量のカルシウムをカルシウム剤貯槽よりポン
プ8′によシカルシウム剤注入管よシ循項水中に供給す
る。
The water to be treated (raw water) introduced into the pH adjustment tank 1 is agitated by the stirrer 11, and the alkali supplied from the alkali agent storage tank 6 through the alkali agent injection pipe 7 by the alkali agent injection pump 7' adjusts the water to a predetermined level. After adjusting the value 1cpH,
The raw water is supplied to the dephosphorization tower from the lower part of the raw water pump 2' through the raw water inlet pipe 2. A part of the treated water flowing out from the upper part of the dephosphorization tower 4 through the treated water outflow pipe 5 is circulated to the dephosphorization tower through the circulating water introduction pipe 3, but BE? When the circulating water containing a large amount of At the same time, a reaction occurs in which calcium phosphate is precipitated using the SS particles B as nuclei, and the crystallized substances containing floating FIB as nuclei are so fine that they are not retained in the layer and directly flow into the treated water flow pipe 5. Since the quality of the treated water will deteriorate, firstly, a part of the treated water to be used as circulating water is introduced into the solid-liquid separation process 1o installed in the middle of the circulation line, and after removing SS, the circulating water is introduced into the circulating water inlet pipe 6 as circulating liquid. By returning the SS0 layer to the dephosphorization tower, the effect of interfering with the crystallization reaction of the main body of the SS0 layer can be suppressed, and the dephosphorization reaction can be carried out efficiently. In this example, depending on the concentration of phosphorus in the raw water, a necessary amount of calcium is supplied from the calcium agent storage tank to the pump 8' and into the circulating water through the calcium agent injection pipe.

前記固液分離工程は、単なる重力沈降分離でも°凝集沈
殿でも、あるいは固体粒子を充填した層を通液させるろ
適法でも良い。
The solid-liquid separation step may be simple gravity sedimentation separation, coagulation sedimentation, or a filtration method in which liquid is passed through a bed filled with solid particles.

以上述べたように本発明によれば流動層から排出される
処理水中のaSを固液分離して流動層に循環返送するこ
とで脱リン処理をきわめて効果的Kかつ安定して行なう
ことが可能となった。
As described above, according to the present invention, the aS in the treated water discharged from the fluidized bed is separated into solid and liquid and is circulated back to the fluidized bed, thereby making it possible to carry out the dephosphorization process extremely effectively and stably. It became.

さらに、前記固液分離工程で88のみではなく、液中の
溶解性リンの一部が除去され得るので流動層の流入リン
負荷を低減することができ、処理効率を一層高める効果
を合わせ持つことができる。
Furthermore, in the solid-liquid separation step, not only 88 but also a part of the soluble phosphorus in the liquid can be removed, so the inflow phosphorus load of the fluidized bed can be reduced, which also has the effect of further increasing the processing efficiency. Can be done.

実施例1 内径foomφ、有効深さ25mの円筒状、で底部が逆
円錐型をしだ説すン塔に、破砕、篩分けしたリン鉱石(
有効径α4fi、均等係数1.りを1000111II
の厚さ誌填した。粗大固形物を大別分離した工場廃水を
活性汚泥法で処理した2次処理水を被処理液とし、酸性
ストリップ法で炭酸を除去した後、苛性ソーダを添加し
て被処理液のpHをa5〜1 [10に調整したものを
原水とし、またカルシウム剤として塩化カルシウムを使
用し、被処理液中の溶解〜性リン酸塩類の濃度に対応し
てaa/po、の重量比が1.0〜15の範囲になるよ
うに循環水へ添加した。循環水は処理水を、砂ろ過層で
いったんろ過した後、流動層に返送した。砂ろ過層は内
径200■φ、有効深さ15 mの円筒状のカラムに砂
(有効径0.6調、均等係数1.4)を1000+g+
aの厚さに充填し、′LV = 200 m1日で通水
した。原水および原水と同量の循環水を脱リン塔下部よ
り上方にLV=50〜40惰/日の流速で通水しながら
約2ケ月間実験を行なった。結果を表−1に示す。
Example 1 A crushed and sieved phosphate rock (
Effective diameter α4fi, uniformity factor 1. Riwo 1000111II
The thickness of the magazine was filled. The liquid to be treated is secondary treated water obtained by treating factory wastewater with coarse solids largely separated using the activated sludge method.After removing carbon dioxide by the acid strip method, caustic soda is added to adjust the pH of the liquid to be treated from a5 to a5. 1 [The raw water adjusted to 10 was used, calcium chloride was used as the calcium agent, and the weight ratio of aa/po was 1.0 to 1.0, corresponding to the concentration of soluble phosphates in the liquid to be treated. It was added to the circulating water in a range of 15%. As for the circulating water, the treated water was once filtered through a sand filter bed and then returned to the fluidized bed. The sand filter layer is a cylindrical column with an inner diameter of 200 mm and an effective depth of 15 m, and 1000+ g of sand (effective diameter 0.6, uniformity coefficient 1.4).
The tank was filled to a thickness of 200 m, and water was passed through it for 1 day for 'LV = 200 m. The experiment was conducted for about 2 months while flowing raw water and circulating water in the same amount as the raw water upward from the lower part of the dephosphorization tower at a flow rate of LV = 50 to 40 inertia/day. The results are shown in Table-1.

表−1 表−1から明らかなように流動層処理水のろ過液を循環
して処理した結果、リン除去率80%以上、リン濃度3
〜/l(pとして)以下の処理水が安定して得られた。
Table 1 As is clear from Table 1, as a result of circulating the filtrate of fluidized bed treated water, the phosphorus removal rate was 80% or more, and the phosphorus concentration was 3.
Treated water of ~/l (as p) or less was stably obtained.

一方、比較例として流動層処理水をろ過せずに循環し、
他は全て同一条件で2ケ月間通水した場合の結果は同じ
く、表−1の比較例に示す通りであるが、処理水SS濃
度が34■/lと高くなシ、リン除去率は60%、処理
水リン濃度& Om9/ t (Pとして)程度の水質
のものしか得られなかった。
On the other hand, as a comparative example, fluidized bed treated water was circulated without filtration.
The results obtained when water was passed for two months under all other conditions were the same, as shown in the comparative example in Table 1, but the SS concentration in the treated water was as high as 34 ■/l, and the phosphorus removal rate was 60. %, treated water phosphorus concentration & Om9/t (as P).

実施例2 実施例1において、循環ライン途中に設置した砂ろ過層
の他に、固液分離工程を検討するため、沈降分離槽、凝
集沈殿槽、固定式脱リン槽をそれぞれ使用し、性能を比
較した。実験は、実施例1と同一の装置、被処理液を用
い、被処理液を実施例1記載の方法と同様な方法で前処
理したものを原水とした。層内plHL5〜1110に
なるように苛性ソーダを注入し、また塩化カルシウムは
固液分離した後の循環ラインに実施例1と同一の濃度範
囲に々るように添加し、原水と循環水の比が1になるよ
うにして流動層脱リン塔下部から上方へL730〜40
ML/時の流速で通水した。
Example 2 In Example 1, in addition to the sand filter layer installed in the middle of the circulation line, in order to study the solid-liquid separation process, a sedimentation separation tank, a coagulation sedimentation tank, and a fixed dephosphorization tank were used, and the performance was evaluated. compared. In the experiment, the same equipment and liquid to be treated as in Example 1 were used, and the liquid to be treated was pretreated in the same manner as in Example 1, and raw water was used. Caustic soda was injected so that the intralayer plHL was 5 to 1110, and calcium chloride was added to the circulation line after solid-liquid separation to the same concentration range as in Example 1, and the ratio of raw water to circulating water was adjusted. L730~40 from the bottom of the fluidized bed dephosphorization tower upward so that the
Water was passed through at a flow rate of ML/hr.

以上の条件で各固液分離装置によシ、それぞれ約1ケ月
間連続実験した。結果を表2に示す。
Continuous experiments were conducted using each solid-liquid separator under the above conditions for about one month. The results are shown in Table 2.

表−2から明らかなように、前記4種のいずれの固液分
離装置を循環ライン途中に設けても、流動層処理水のリ
ン濃度は4.0■/l以下となり、原水中の70%以上
のリンが除去されることがわかり、本方式に適用できる
ことを確認した。
As is clear from Table 2, no matter which of the four types of solid-liquid separators mentioned above are installed in the middle of the circulation line, the phosphorus concentration in the fluidized bed treated water is 4.0 ■/l or less, which is 70% of the raw water. It was found that the above amount of phosphorus was removed, and it was confirmed that this method can be applied.

実施例5 実施例1において流動層の固体粒子としてリン鉱石の代
わりに砂([L2〜[L 4 sw )を用いた場合の
処理結果を表−5に示す。    ゛表−3処理結果 
゛ 表−3に示すように、砂を用いた場合は初期にはあまり
良い結果が得られなかったが、通水時間の経過とともに
水質が向上し、1週間後には、リン鉱石の場合と同等な
性能が得られた。
Example 5 Table 5 shows the treatment results when sand ([L2 to [L 4 sw )] was used instead of phosphate rock as the solid particles in the fluidized bed in Example 1.゛Table-3 Processing results
゛As shown in Table 3, when sand was used, good results were not obtained initially, but as time passed, the water quality improved, and after one week, the results were comparable to those using phosphate rock. performance was obtained.

従って流動層の固体粒子どして砂を適用できることがわ
かった。
Therefore, it was found that sand can be used as solid particles in a fluidized bed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施の態様を説明するための概略フ
ロー図である。
FIG. 1 is a schematic flow diagram for explaining one embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、固体粒子を流動化せしめた層に、リン含有排水を通
液してカルシウムの存在下で処理水の一部を循環しなが
ら排水中のリンを除去する方法において、その処理水の
一部を固液分離した後、流入水または流動層内に循環返
送することを特徴とする排水中のリン酸塩の除去方法。 2、固体粒子を充填した層に通液させて固液分離する特
許請求の範囲第1項記載のリン酸塩の除去方法。 3、固体粒子がリン鉱石である特許請求第1項又は第2
項記載のリン酸塩の除去方法。
[Claims] 1. A method for removing phosphorus from the waste water while circulating a portion of the treated water in the presence of calcium by passing phosphorus-containing waste water through a layer in which solid particles are fluidized, A method for removing phosphates from wastewater, which comprises separating a portion of the treated water into solid-liquid and then circulating it back into the inflow water or into a fluidized bed. 2. The method for removing phosphates according to claim 1, which comprises passing liquid through a bed filled with solid particles to separate solid and liquid. 3. Claim 1 or 2 in which the solid particles are phosphate rock
Phosphate removal method described in section.
JP21428684A 1984-10-15 1984-10-15 Fluidized bed type dephosphorization method Granted JPS6193892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21428684A JPS6193892A (en) 1984-10-15 1984-10-15 Fluidized bed type dephosphorization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21428684A JPS6193892A (en) 1984-10-15 1984-10-15 Fluidized bed type dephosphorization method

Publications (2)

Publication Number Publication Date
JPS6193892A true JPS6193892A (en) 1986-05-12
JPS648597B2 JPS648597B2 (en) 1989-02-14

Family

ID=16653211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21428684A Granted JPS6193892A (en) 1984-10-15 1984-10-15 Fluidized bed type dephosphorization method

Country Status (1)

Country Link
JP (1) JPS6193892A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050190A1 (en) * 1998-03-30 1999-10-07 Ebara Corporation Method and device for treating manganese containing water
US6495050B1 (en) 1998-03-30 2002-12-17 Ebara Corporation Method for treating manganese containing water
JP2005246213A (en) * 2004-03-03 2005-09-15 Kurita Water Ind Ltd Treatment method of phosphorus-containing drainage
JP2016002543A (en) * 2014-06-19 2016-01-12 水ing株式会社 Phosphorus recovery apparatus and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050190A1 (en) * 1998-03-30 1999-10-07 Ebara Corporation Method and device for treating manganese containing water
US6495050B1 (en) 1998-03-30 2002-12-17 Ebara Corporation Method for treating manganese containing water
JP2005246213A (en) * 2004-03-03 2005-09-15 Kurita Water Ind Ltd Treatment method of phosphorus-containing drainage
JP4631295B2 (en) * 2004-03-03 2011-02-16 栗田工業株式会社 Treatment method for wastewater containing phosphorus
JP2016002543A (en) * 2014-06-19 2016-01-12 水ing株式会社 Phosphorus recovery apparatus and method

Also Published As

Publication number Publication date
JPS648597B2 (en) 1989-02-14

Similar Documents

Publication Publication Date Title
US6919031B2 (en) Method of treating water and wastewater with a ballasted flocculation process and a chemical precipitation process
CA2801933C (en) A process for reducing the sulfate concentration in a wastewater stream
FI93537C (en) Improved method for separating treatment water from biomass in the context of biological wastewater treatment
US7927493B2 (en) Low phosphorus water treatment methods
US3839199A (en) Method of softening water to provide easily drained and easily filtered precipitates
JP2005246249A (en) Method for recovering phosphorus and its apparatus
KR101061982B1 (en) Retrofitted wastewater and sewage treatment plant for phosphorus removal
JPS6242677B2 (en)
JPS6193892A (en) Fluidized bed type dephosphorization method
KR100986220B1 (en) Advanced treatment method for removal of phosphorus in sewage water
JP2576679B2 (en) Dephosphorization device
JP2002205077A (en) Method and apparatus for treating organic sewage
JP3373033B2 (en) How to remove phosphorus from water
JP2004008957A (en) Phosphorus and nitrogen recovery method and apparatus therefor
JPH0130554B2 (en)
JP3496773B2 (en) Advanced treatment method and apparatus for organic wastewater
JP3438508B2 (en) Advanced water treatment method and apparatus
JPH0315512B2 (en)
JP2000061473A (en) Method of removing phosphorus in sewage water
JP2003305477A (en) Method for removing sulfate ion
JPS61157392A (en) Removal of phosphorus
JP2003154372A (en) Method and apparatus for removing sulfate ion and method for treating wastewater
JPS6193893A (en) Removal of phosphorus in liquid
JPS61164696A (en) Fluidized bed type deposphorization method
JPH09299977A (en) Method for removing or recovering phosphorous in sewage