JPH0315512B2 - - Google Patents

Info

Publication number
JPH0315512B2
JPH0315512B2 JP20374283A JP20374283A JPH0315512B2 JP H0315512 B2 JPH0315512 B2 JP H0315512B2 JP 20374283 A JP20374283 A JP 20374283A JP 20374283 A JP20374283 A JP 20374283A JP H0315512 B2 JPH0315512 B2 JP H0315512B2
Authority
JP
Japan
Prior art keywords
ions
calcium
precipitate
solid
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20374283A
Other languages
Japanese (ja)
Other versions
JPS6097090A (en
Inventor
Yoshihiro Eto
Yumi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP20374283A priority Critical patent/JPS6097090A/en
Publication of JPS6097090A publication Critical patent/JPS6097090A/en
Publication of JPH0315512B2 publication Critical patent/JPH0315512B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明はフツ化物イオンおよび硫酸イオンを
含有する水の処理方法、特にスケールの生成なし
にフツ化物イオンおよび硫酸イオンを除去する処
理方法に関するものである。 〔従来技術〕 フツ化物イオンおよび硫酸イオン含有水をカル
シウム化合物と反応させて、析出物を生成させ、
固液分離する処理方法がある。この方法はフツ化
カルシウムおよび硫酸カルシウムの形でフツ化物
イオンおよび硫酸イオンを析出させるものである
が、反応槽、固液分離槽、または管路などに硫酸
カルシウムを主体とするスケールが生成するとい
う問題点があつた。 このような点を改善するために、固液分離によ
り分離された析出物を種結晶として反応系に返送
する方法が提案されている(特願昭58−45058
号)。この方法は新しい析出物が返送析出物を核
として析出するため、スケール化が防止される
が、原水中の硫酸イオン濃度が低い場合やカルシ
ウム化合物の添加量が少ない場合には過飽和度が
低くなり、反応時間を長くしなければ種晶効果が
なく、スケールの生成を防止できない場合がある
という問題点があつた。 〔発明の目的〕 この発明は、以上のような従来法の問題点を解
消するためのもので、カルシウム化合物を固液分
離された析出物と混合した後、原水と反応させる
ことにより、過飽和度が低い場合でもスケールを
生成させることなく、フツ化物イオンおよび硫酸
イオンを除去できるフツ化物および硫酸イオン含
有水の処理方法を提供することを目的としてい
る。 〔発明の構成〕 この発明は、フツ化物イオンおよび硫酸イオン
を含有する原水をカルシウム化合物と反応させて
析出物を生成させ、固液分離する方法において、
カルシウム化合物を、固液分離された析出物と混
合した後、原水と反応させることを特徴とするフ
ツ化物および硫酸イオン含有水の処理方法であ
る。 この発明において処理対象となるフツ化物イオ
ンおよび硫酸イオン含有水としては、リン酸製造
工程、リン酸肥料製造工程、氷晶石回収工程、排
煙脱硫工程および排煙脱硝工程等から排出される
廃水などが例示できる。 以下この発明を図面により説明する。図面はこ
の発明の好ましい実施態様を示す系統図であり、
1は溶解槽、2は第1反応槽、3は固液分離槽、
4は第2反応槽、5は固液分離槽である。 処理方法は、まず、溶解槽1に原水管6から原
水を導入し、返送管7から固液分離槽5の析出物
を導入し、必要に応じて薬注管8から酸を加えて
PH4以下、好ましくはPH2〜4に調整し、返送さ
れた析出物を溶解する。この析出物は後述のよう
に水酸化マグネシウムおよび炭酸カルシウムを含
んでいるので、溶解によりマグネシウムイオンお
よびカルシウムイオンが溶出する。PH4以下に調
整するのは析出物を完全に溶解するためと、溶解
槽での石膏スケールの生成を防止するためであ
る。原水が酸性で、析出物を溶解したのちPH4以
下になるときは酸を添加する必要はないが、それ
以外の場合は添加する。酸としては特に限定され
ないが、硫酸はカルシウムイオンを消費するので
好ましくなく、また硝酸は窒素源となるため好ま
しくなく、塩酸が最適である。 溶解槽1からの流出水は第1反応槽2に流入す
る。一方、返送管9から返送される固液分離槽3
の析出物を熟成槽10に導入し、薬注管11から
カルシウム化合物を添加して混合し、短時間(10
〜60間)反応させる。薬注管11から添加するカ
ルシウム化合物は原水と反応させるカルシウム化
合物で、例えば塩化カルシウム、炭酸カルシウ
ム、水酸化カルシウム等がある。カルシウム化合
物の添加量は原水に添加してフツ化物イオンおよ
び硫酸イオンと反応させる量で十分であり、
CaF2としてのCa当量あたり1〜3倍程度であ
り、特に2倍当量程度が望ましい。しかし排煙脱
硫または(および)脱硫廃水などのように多量の
アルミニウムイオンが含まれている場合にはカル
シウムイオンの添加量を減少させることでき、こ
のほか廃水の塩類濃度などにより必要量は異なる
が、カルシウムイオンの添加量は簡単に実験的に
確認することができる。 熟成槽10において返送析出物にカルシウム化
合物を混合して反応させると、析出物中の硫酸カ
ルシウムが熟成されて粒径も大となり、種結晶に
適したものとなるので、これを第1反応槽2に導
入し、溶解槽1から流出する原水と混合し、PH5
〜8.5、好ましくはPH6〜7に調整すると、反応
系の過飽和度が低い場合でも硫酸カルシウムが前
記析出物の表面に析出し、これにより過飽和状態
が解消され、スケール化が防止される。この場
合、カルシウムイオンのほかにアルミニウムイオ
ンが存在していてもよい。 PHの調整は必要により薬注管12からPH調整剤
を注入して行う。PH調整剤は、アルカリとしては
水酸化ナトリウム、炭酸ナトリウム、水酸化カル
シウム等が使用でき、このうち水酸化カルシウム
はカルシウムイオン源としても利用でき好まし
い。酸としては塩酸、硫酸、硝酸などが使用で
き、このうち塩酸が好ましい。このようなPH調整
剤を添加して前記PH範囲に調整することにより、
析出物が生成する。析出物はカルシウムイオンが
硫酸イオンと反応したCaSO4およびフツ化物イオ
ンと反応したCaF2が主体であり、アルミニウム
イオンが存在する場合はAl(OH)3がフツ化物を
抱き込んだ形で含まれると推定されるが、詳細は
不明である。この工程におけるPH範囲はCaF2
Al(OH)3の析出物の溶解度が小さく、かつ後述
の工程において返送される水酸化マグネシウムの
析出物生成の少ない範囲、すなわちPH5〜8.5が
好ましく、PH6〜7が特に好ましい。 第1反応槽2の反応液は固液分離槽3において
固液分離を行い、分離した析出物の一部は返送管
9から熟成槽10へ返送され、残部は排泥管13
から系外へ排出される。一方上澄液は第2反応槽
4へ流出させる。 第2反応槽4では、さらにマグネシウムイオン
および炭酸イオン(重炭酸イオンを含む)の存在
下に、PH9.5以上に調整して析出物を生成させて、
水中の残留フツ化物イオンをさらに低減させる。
なお、この工程では水中の残留カルシウムイオン
も同時に除去される。第2反応槽4では、必要に
応じて薬注管14からマグネシウム塩を、薬注管
15から炭酸塩を、薬注管16からPH調整剤を添
加する。マグネシウム塩としては塩化マグネシウ
ム等が使用できるが、反応液中にすでに存在する
場合には添加しなくてもよい。炭酸塩としては炭
酸ナトリウム、重炭酸ナトリウム等が使用できる
が、炭酸ガスを吹き込んでもよい。またPH調整剤
はマグネシウム塩および炭酸塩を添加してなお所
定のPHにならないときに添加するもので、最初の
工程と同様のものが使用できる。反応液中に存在
させるマグネシウムイオンの量はフツ化物イオン
に対して重量比で20倍以上とすると、残留フツ化
物イオン量を1mg/以下にすることができる。 また、炭酸イオンの量は標準的にはカルシウム
イオンに対して1/2当量程度以上とする。前記PH
に調整することにより、水酸化マグネシウムおよ
び炭酸カルシウムの析出物が生成し、液中のフツ
化物もこれらに抱き込まれて析出する。この場
合、炭酸カルシウムと水酸化マグネシウムが混合
された状態で析出するため、生成するフロツクは
緻密で重質のものとなり、水酸化マグネシウム単
独の場合よりもフツ化物の除去率が高く、しかも
固液分離性も良好となり、高濃縮された状態で返
送することができる。 第2反応槽4の反応液は固液分離槽5において
固液分離を行い、上澄水は処理水として処理水管
17から系外へ排出し、必要に応じて中和等の処
理を行う。また析出物は返送管7から溶解槽1に
返送する。なお特に排煙脱硫廃水では固液分離槽
5から排出される析出物中にマンガンや鉄などの
金属水酸化物も含まれているので、析出物を返送
する際、第1反応槽2で確実にこれらを析出させ
るために曝気する方が好ましい。 返送された析出物は溶解槽1で溶解し、放出さ
れたフツ化物イオンは原水中のフツ化物イオンと
ともに前述の処理を受ける。この場合、溶離した
カルシウムイオンはフツ化物イオンと反応するの
で、薬注管11からのカルシウム化合物の添加量
は原水中のカルシウムイオンおよびアルミニウム
イオンならびに析出物から溶離するカルシウムイ
オンで不足する分を補給するだけでよい。また溶
離したマグネシウムイオンはそのまま第2反応槽
4に流出して、循環使用される。このため第2反
応槽4におけるマグネシウムイオンの添加量は固
液分離槽3から排出されるマグネシウム析出物に
対応する量だけでよいが、第1反応槽2において
PH7以下に調整する場合には、マグネシウムがほ
とんど析出しないので、マグネシウムイオンの添
加は最初だけでよいことになる。また原水中にマ
グネシウムイオンが含まれる場合は、第2反応槽
4におけるPH調整剤の添加量を適当量に調節して
おくことにより、フツ化物イオン除去に必要なマ
グネシウムが系内で循環し、余剰のものが処理水
中に排出されることになる。また処理水中のマグ
ネシウムイオンの量を少なくしたい場合は、第2
反応槽4でその量に見合うPH調整剤を加え、固液
分離槽5で余剰分のマグネシウム析出物を取り出
せばよい。 以上の処理では、フツ化物イオンおよび硫酸イ
オン含有水をスケール障害を発生させることな
く、カルシウムイオンと反応させて析出物を分離
したのち、水酸化マグネシウムおよび炭酸カルシ
ウムの析出物を生成させて返送するので、フツ化
物イオンを効率的かつ高度に除去することがで
き、得られる処理水中のフツ化物イオン濃度は低
くなる。また未反応のカルシウムイオンは析出物
として返送されるので、処理水中のカルシウムイ
オン濃度を低下させるとともに、カルシウムイオ
ンを有効に使用でき、薬注管11からのカルシウ
ム塩の添加量を少なくすることができる。そして
処理水を弱塩基性等の合成吸着剤によりさらに処
理する場合、あらかじめ脱硬度処理されているた
め、樹脂層におけるカルシウム等の析出が防止さ
れ、樹脂を有効に使用することができる。さらに
汚泥処理の対象となる析出物は固液分離槽3から
の析出物のみであり、このため処理すべき汚泥量
が少なくなるとともに、難脱水性の水酸化マグネ
シウムの量が少ないため処理も簡単になる。また
溶解槽1におけるPHを4以下に調整するのでスケ
ールが生成せず、処理効果もよくなる。 なお以上の説明において、カルシウム化合物の
添加は薬注管11より熟成槽10に対してのみ行
つているが、さらに第1反応槽2に対して行つて
もよい。また熟成槽10へ添加するカルシウム化
合物として水酸化カルシウム等のアルカリ性のも
のを使用する場合は、第1反応槽2における薬注
管12からのPH調整剤の添加を省略できる場合が
ある。さらに要求される水質によつては、溶解槽
1、第2反応槽4および固液分離槽5を省略する
ことができる。 〔発明の効果〕 この発明によれば、カルシウム化合物を、固液
分離された析出物と混合した後、原水と反応させ
るようにしたので、析出物を熟成して結晶種とし
て活性化させることができ、これにより原水水質
が変動して反応系の過飽和度が低くなる場合で
も、硫酸カルシウムを前記析出物表面に析出させ
て、スケール化を防止できるとともに、フツ化物
イオンの除去率も高くすることができる。 〔発明の実施例〕 F660mg/、SO45000mg/、Ca644mg/、
PH1.6の排煙脱硫廃水にCa(OH)2を3200mg/添
加して30分間反応させ、10分間静置して固液分離
した析出物にCa(OH)2を添加して20分間撹拌混
合した後、前記廃水に添加してPH6.4とし、30分
間撹拌して反応させた。析出物の原水あたりの添
加量は200ml/である。そして上記反応液にア
ニオン性高分子凝集剤を1mg/添加して固液分
離を行い、分離水を濾過して得られた濾過水の水
質分析を行うとともに、その濾過水を3日間放置
してスケールの析出状態を観察した(No.1)。比
較例として、析出物を添加しなかつた場合(No.
2)および析出物は添加したが、Ca(OH)2を析
出物と混合することなく直接原水に添加し、かつ
Ca(OH)2も直接原水に添加した場合(No.3)に
ついて同様の試験を行つた。結果を表1に示す。
TECHNICAL FIELD OF THE INVENTION This invention relates to a method for treating water containing fluoride ions and sulfate ions, and in particular to a treatment method for removing fluoride ions and sulfate ions without forming scale. [Prior art] Water containing fluoride ions and sulfate ions is reacted with a calcium compound to form a precipitate,
There is a treatment method that involves solid-liquid separation. This method precipitates fluoride ions and sulfate ions in the form of calcium fluoride and calcium sulfate, but it is said that scale mainly composed of calcium sulfate is generated in the reaction tank, solid-liquid separation tank, or pipes. There was a problem. In order to improve this problem, a method has been proposed in which the precipitate separated by solid-liquid separation is returned to the reaction system as a seed crystal (Japanese Patent Application No. 58-45058).
issue). In this method, new precipitates are precipitated using the returned precipitates as nuclei, which prevents scaling. However, if the concentration of sulfate ions in the raw water is low or the amount of calcium compounds added is small, the degree of supersaturation will be low. However, there was a problem in that unless the reaction time was prolonged, there would be no seed crystal effect and scale formation could not be prevented. [Purpose of the Invention] This invention is intended to solve the problems of the conventional method as described above. After mixing a calcium compound with a solid-liquid separated precipitate, the supersaturation level is reduced by reacting it with raw water. It is an object of the present invention to provide a method for treating water containing fluoride and sulfate ions, which can remove fluoride ions and sulfate ions without forming scale even when the fluoride and sulfate ions are low. [Structure of the Invention] The present invention provides a method for reacting raw water containing fluoride ions and sulfate ions with a calcium compound to generate a precipitate and separating the solid-liquid,
This is a method for treating water containing fluoride and sulfate ions, which is characterized by mixing a calcium compound with a precipitate that has been separated into solid and liquid, and then reacting the mixture with raw water. Fluoride ion and sulfate ion-containing water to be treated in this invention includes wastewater discharged from phosphoric acid production processes, phosphate fertilizer production processes, cryolite recovery processes, flue gas desulfurization processes, flue gas denitrification processes, etc. For example, This invention will be explained below with reference to the drawings. The drawings are system diagrams showing preferred embodiments of the invention,
1 is a dissolution tank, 2 is a first reaction tank, 3 is a solid-liquid separation tank,
4 is a second reaction tank, and 5 is a solid-liquid separation tank. The treatment method is to first introduce raw water into the dissolution tank 1 from the raw water pipe 6, introduce the precipitate from the solid-liquid separation tank 5 through the return pipe 7, and add acid from the chemical injection pipe 8 as necessary.
The pH is adjusted to 4 or less, preferably 2 to 4, and the returned precipitate is dissolved. Since this precipitate contains magnesium hydroxide and calcium carbonate as described below, magnesium ions and calcium ions are eluted by dissolution. The reason for adjusting the pH to below 4 is to completely dissolve the precipitates and to prevent the formation of gypsum scale in the dissolution tank. If the raw water is acidic and the pH drops to below 4 after dissolving the precipitates, there is no need to add acid, but in other cases it is necessary to add acid. Although the acid is not particularly limited, sulfuric acid is not preferred because it consumes calcium ions, nitric acid is not preferred because it becomes a nitrogen source, and hydrochloric acid is most suitable. Outflow water from the dissolution tank 1 flows into the first reaction tank 2. On the other hand, the solid-liquid separation tank 3 returned from the return pipe 9
The precipitate of
~60 minutes). The calcium compound added from the drug injection tube 11 is a calcium compound that is reacted with raw water, and includes, for example, calcium chloride, calcium carbonate, calcium hydroxide, and the like. The amount of calcium compound added is sufficient to be added to raw water and reacted with fluoride ions and sulfate ions.
It is about 1 to 3 times the Ca equivalent as CaF 2 , and preferably about 2 times the equivalent. However, if a large amount of aluminum ions are contained, such as in flue gas desulfurization or (and) desulfurization wastewater, the amount of calcium ions added can be reduced, and the amount required will vary depending on the salt concentration of the wastewater, etc. , the amount of calcium ions added can be easily confirmed experimentally. When a calcium compound is mixed and reacted with the returned precipitate in the aging tank 10, the calcium sulfate in the precipitate is aged and the particle size increases, making it suitable for seed crystals. 2, mixed with the raw water flowing out from dissolution tank 1, and the pH reached 5.
When the pH is adjusted to ~8.5, preferably 6 to 7, calcium sulfate precipitates on the surface of the precipitate even when the supersaturation degree of the reaction system is low, thereby eliminating the supersaturation state and preventing scaling. In this case, aluminum ions may be present in addition to calcium ions. Adjustment of PH is carried out by injecting a PH adjusting agent from the drug injection pipe 12 if necessary. As the pH adjuster, sodium hydroxide, sodium carbonate, calcium hydroxide, etc. can be used as the alkali, and among these, calcium hydroxide is preferable because it can also be used as a calcium ion source. As the acid, hydrochloric acid, sulfuric acid, nitric acid, etc. can be used, and among these, hydrochloric acid is preferred. By adding such a PH adjuster to adjust the PH to the above range,
A precipitate forms. The precipitates are mainly CaSO4 , which is the reaction of calcium ions with sulfate ions, and CaF2 , which is the reaction with fluoride ions.If aluminum ions are present, Al(OH) 3 is included in the form of fluoride. It is assumed that this is the case, but the details are unknown. The PH range in this process is CaF2 and
A range in which the solubility of Al(OH) 3 precipitates is low and the formation of magnesium hydroxide precipitates to be returned in the process described later is small, that is, a pH range of 5 to 8.5 is preferable, and a pH of 6 to 7 is particularly preferable. The reaction liquid in the first reaction tank 2 undergoes solid-liquid separation in the solid-liquid separation tank 3, and a part of the separated precipitate is returned to the aging tank 10 from the return pipe 9, and the remainder is transferred to the sludge drain pipe 13.
is discharged from the system. On the other hand, the supernatant liquid is allowed to flow out into the second reaction tank 4. In the second reaction tank 4, the pH is further adjusted to 9.5 or higher in the presence of magnesium ions and carbonate ions (including bicarbonate ions) to form a precipitate.
Further reduces residual fluoride ions in water.
Note that in this step, residual calcium ions in the water are also removed at the same time. In the second reaction tank 4, magnesium salt is added from the chemical injection pipe 14, carbonate is added from the chemical injection pipe 15, and PH adjuster is added from the chemical injection pipe 16 as necessary. Magnesium chloride or the like can be used as the magnesium salt, but it may not be added if it already exists in the reaction solution. As the carbonate, sodium carbonate, sodium bicarbonate, etc. can be used, but carbon dioxide gas may also be blown into it. Further, the pH adjuster is added when the predetermined pH is still not reached even after adding the magnesium salt and carbonate, and the same one as in the first step can be used. When the amount of magnesium ions present in the reaction solution is at least 20 times the weight of fluoride ions, the amount of residual fluoride ions can be reduced to 1 mg/min or less. Further, the amount of carbonate ions is typically about 1/2 equivalent or more relative to calcium ions. Said PH
By adjusting the temperature, precipitates of magnesium hydroxide and calcium carbonate are formed, and fluoride in the liquid is also trapped and precipitated. In this case, since calcium carbonate and magnesium hydroxide are precipitated in a mixed state, the resulting floc is dense and heavy, resulting in a higher fluoride removal rate than in the case of magnesium hydroxide alone. Separability is also improved, and the product can be returned in a highly concentrated state. The reaction liquid in the second reaction tank 4 undergoes solid-liquid separation in the solid-liquid separation tank 5, and the supernatant water is discharged as treated water to the outside of the system from the treated water pipe 17, and is subjected to treatments such as neutralization as necessary. Further, the precipitate is returned to the dissolution tank 1 through the return pipe 7. In particular, in flue gas desulfurization wastewater, metal hydroxides such as manganese and iron are included in the precipitates discharged from the solid-liquid separation tank 5, so when returning the precipitates, the first reaction tank 2 It is preferable to carry out aeration to precipitate these substances. The returned precipitate is dissolved in the dissolution tank 1, and the released fluoride ions are subjected to the above-mentioned treatment together with the fluoride ions in the raw water. In this case, the eluted calcium ions react with fluoride ions, so the amount of calcium compound added from the chemical injection tube 11 is to make up for the shortage of calcium ions and aluminum ions in the raw water and calcium ions eluted from the precipitates. Just do it. Further, the eluted magnesium ions flow directly into the second reaction tank 4 and are recycled. Therefore, the amount of magnesium ions added in the second reaction tank 4 only needs to be the amount corresponding to the magnesium precipitate discharged from the solid-liquid separation tank 3;
When adjusting the pH to 7 or less, magnesium hardly precipitates, so it is only necessary to add magnesium ions at the beginning. In addition, if the raw water contains magnesium ions, by adjusting the amount of PH adjuster added in the second reaction tank 4 to an appropriate amount, the magnesium necessary for removing fluoride ions can be circulated within the system. The surplus will be discharged into the treated water. In addition, if you want to reduce the amount of magnesium ions in the treated water,
It is sufficient to add a PH adjuster corresponding to the amount in the reaction tank 4 and take out the excess magnesium precipitate in the solid-liquid separation tank 5. In the above treatment, water containing fluoride ions and sulfate ions is reacted with calcium ions to separate precipitates without causing scale damage, and then magnesium hydroxide and calcium carbonate precipitates are generated and returned. Therefore, fluoride ions can be efficiently and highly removed, and the fluoride ion concentration in the resulting treated water is low. In addition, since unreacted calcium ions are returned as precipitates, the concentration of calcium ions in the treated water can be reduced, and calcium ions can be used effectively, and the amount of calcium salt added from the chemical injection pipe 11 can be reduced. can. When the treated water is further treated with a synthetic adsorbent such as a weakly basic one, since it has been previously subjected to dehardening treatment, precipitation of calcium, etc. in the resin layer is prevented, and the resin can be used effectively. Furthermore, the precipitates that are subject to sludge treatment are only the precipitates from the solid-liquid separation tank 3, which reduces the amount of sludge that must be treated, and the treatment is also easy because the amount of magnesium hydroxide, which is difficult to dewater, is small. become. Furthermore, since the pH in the dissolution tank 1 is adjusted to 4 or less, no scale is generated and the treatment effect is improved. In the above description, the calcium compound is added only to the aging tank 10 from the chemical injection pipe 11, but it may also be added to the first reaction tank 2. Furthermore, when an alkaline compound such as calcium hydroxide is used as the calcium compound added to the aging tank 10, the addition of the PH adjuster from the chemical injection pipe 12 in the first reaction tank 2 may be omitted. Furthermore, depending on the required water quality, the dissolution tank 1, the second reaction tank 4, and the solid-liquid separation tank 5 can be omitted. [Effects of the Invention] According to the present invention, the calcium compound is mixed with the solid-liquid separated precipitate and then reacted with raw water, so that the precipitate can be aged and activated as crystal seeds. As a result, even if the raw water quality fluctuates and the supersaturation degree of the reaction system decreases, calcium sulfate can be precipitated on the surface of the precipitate to prevent scaling and increase the removal rate of fluoride ions. Can be done. [Example of the invention] F660mg/, SO 4 5000mg/, Ca644mg/,
Add 3200 mg of Ca(OH) 2 to flue gas desulfurization wastewater with a pH of 1.6, react for 30 minutes, leave to stand for 10 minutes, solid-liquid separation, add Ca(OH) 2 to the precipitate, and stir for 20 minutes. After mixing, it was added to the waste water to adjust the pH to 6.4, and was stirred for 30 minutes to react. The amount of precipitate added per raw water was 200 ml. Then, 1 mg/anionic polymer flocculant was added to the above reaction solution to perform solid-liquid separation, and the separated water was filtered and the quality of the filtrate obtained was analyzed, and the filtrate was left to stand for 3 days. The state of scale precipitation was observed (No. 1). As a comparative example, when no precipitate was added (No.
2) and precipitates were added, but Ca(OH) 2 was added directly to the raw water without mixing with the precipitates, and
A similar test was conducted when Ca(OH) 2 was also added directly to raw water (No. 3). The results are shown in Table 1.

【表】 表1の結果より本発明(No.1)の場合は、比較
例に比べてスケールの析出がなく、かつフツ化物
イオンの除去率が優れていることがわかる。 なお、析出物をそのまま添加するNo.3の方法で
は、反応時間3時間以上の析出物を用いればNo.1
と同程度のスケール析出度合となるが、F=60
mg/であつた。
[Table] From the results in Table 1, it can be seen that in the case of the present invention (No. 1), there was no scale precipitation and the removal rate of fluoride ions was superior compared to the comparative example. In addition, in method No. 3, in which the precipitate is added as it is, if the precipitate is used for a reaction time of 3 hours or more, the result is No. 1.
The degree of scale precipitation is the same as that of F=60
mg/.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の一実施態様を示す系統図であ
り、1は溶解槽、2は第1反応槽、3,5は固液
分離槽、4は第2反応槽、10は熟成槽である。
The drawing is a system diagram showing one embodiment of the present invention, in which 1 is a dissolution tank, 2 is a first reaction tank, 3 and 5 are solid-liquid separation tanks, 4 is a second reaction tank, and 10 is an aging tank.

Claims (1)

【特許請求の範囲】 1 フツ化物イオンおよび硫酸イオンを含有する
原水をカルシウム化合物と反応させて析出物を生
成させ、固液分離する方法において、カルシウム
化合物を、固液分離された析出物と混合した後、
原水と反応させることを特徴とするフツ化物およ
び硫酸イオン含有水の処理方法。 2 カルシウム化合物が熟成槽において、析出物
と混合される特許請求の範囲第1項記載のフツ化
物および硫酸イオン含有水の処理方法。 3 カルシウム化合物および析出物は混合後PH調
整剤とともに原水に添加される特許請求の範囲第
1項または第2項記載のフツ化物および硫酸イオ
ン含有水の処理方法。
[Scope of Claims] 1. In a method of reacting raw water containing fluoride ions and sulfate ions with a calcium compound to form a precipitate and separating the solid-liquid, the calcium compound is mixed with the precipitate separated from the solid-liquid. After that,
A method for treating water containing fluoride and sulfate ions, which comprises reacting with raw water. 2. The method for treating water containing fluoride and sulfate ions according to claim 1, wherein the calcium compound is mixed with the precipitate in the aging tank. 3. The method for treating water containing fluoride and sulfate ions according to claim 1 or 2, wherein the calcium compound and the precipitate are added to the raw water together with a PH regulator after mixing.
JP20374283A 1983-11-01 1983-11-01 Treatment of water containing fluoride ion and sulfate ion Granted JPS6097090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20374283A JPS6097090A (en) 1983-11-01 1983-11-01 Treatment of water containing fluoride ion and sulfate ion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20374283A JPS6097090A (en) 1983-11-01 1983-11-01 Treatment of water containing fluoride ion and sulfate ion

Publications (2)

Publication Number Publication Date
JPS6097090A JPS6097090A (en) 1985-05-30
JPH0315512B2 true JPH0315512B2 (en) 1991-03-01

Family

ID=16479095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20374283A Granted JPS6097090A (en) 1983-11-01 1983-11-01 Treatment of water containing fluoride ion and sulfate ion

Country Status (1)

Country Link
JP (1) JPS6097090A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038368A (en) * 1999-08-02 2001-02-13 Kurita Water Ind Ltd Treatment of water containing fluorine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001212574A (en) * 2000-02-02 2001-08-07 Kurita Water Ind Ltd Method for treating fluorine-containing water
JP4543482B2 (en) * 2000-03-06 2010-09-15 栗田工業株式会社 Fluorine-containing water treatment method
JP4831799B2 (en) * 2000-08-25 2011-12-07 三菱重工業株式会社 Method for removing manganese ions in waste water
JP4140050B2 (en) * 2002-03-26 2008-08-27 栗田工業株式会社 Fluorine-containing water treatment method and fluorine-containing water treatment apparatus
JP6288217B1 (en) * 2016-11-17 2018-03-07 栗田工業株式会社 Method and apparatus for treating wastewater containing sulfuric acid, fluorine and heavy metal ions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001038368A (en) * 1999-08-02 2001-02-13 Kurita Water Ind Ltd Treatment of water containing fluorine

Also Published As

Publication number Publication date
JPS6097090A (en) 1985-05-30

Similar Documents

Publication Publication Date Title
US5043072A (en) Method of treating fluoride-containing water
KR100200021B1 (en) Method of treating waste water to remove harmful ion by coagulating sedimentation
EP0986518B1 (en) A process for the treatment of effluent streams
US4028237A (en) Method and apparatus for treatment of fluorine-containing waste waters
JP2007130518A (en) Fluorine and/or phosphorus treatment method of chelating agent-containing water, and apparatus
US6210589B1 (en) Process for removing fluoride from wastewater
JPH0315512B2 (en)
JP2503806B2 (en) Fluoride-containing water treatment method
JP3077174B2 (en) Treatment method for fluoride-containing liquid
JPS6097091A (en) Treatment of fluoride ion-containing water
JP3399276B2 (en) Treatment method for fluorine-containing wastewater
JPS6339308B2 (en)
JPH0128635B2 (en)
JP3157347B2 (en) Treatment of wastewater containing fluorine compounds
JP3672262B2 (en) Method for treating boron-containing water
JP3203745B2 (en) Fluorine-containing water treatment method
JP4337303B2 (en) How to remove sulfate ions
JPS59169595A (en) Water disposal
JPS646831B2 (en)
JP3918294B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP3349637B2 (en) Fluorine-containing wastewater treatment apparatus and method
JP2002346574A (en) Boron-containing water treatment method
JPS5813230B2 (en) Treatment method for water containing fluoride ions
JP2598456B2 (en) Treatment method for phosphate-containing water
JP2004283759A (en) Method for treating fluorine-containing wastewater