JP2503806B2 - Fluoride-containing water treatment method - Google Patents

Fluoride-containing water treatment method

Info

Publication number
JP2503806B2
JP2503806B2 JP3147188A JP14718891A JP2503806B2 JP 2503806 B2 JP2503806 B2 JP 2503806B2 JP 3147188 A JP3147188 A JP 3147188A JP 14718891 A JP14718891 A JP 14718891A JP 2503806 B2 JP2503806 B2 JP 2503806B2
Authority
JP
Japan
Prior art keywords
fluoride
water
calcium
membrane
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3147188A
Other languages
Japanese (ja)
Other versions
JPH04371292A (en
Inventor
正 白方
直人 一柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP3147188A priority Critical patent/JP2503806B2/en
Publication of JPH04371292A publication Critical patent/JPH04371292A/en
Application granted granted Critical
Publication of JP2503806B2 publication Critical patent/JP2503806B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はフッ化物含有水の処理方
法に係り、特に運転管理が容易でスケール析出の問題が
なく、高水質の処理水を安定的かつ効率的に、安価に得
ることができるフッ化物含有水の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating fluoride-containing water, which is particularly easy to operate and has no problem of scale deposition, and is capable of obtaining stable, efficient and inexpensive treated water of high quality. The present invention relates to a method of treating fluoride-containing water capable of producing.

【0002】[0002]

【従来の技術】従来、排煙脱硫排水等のフッ化物含有水
の処理方法として、消石灰法及び硫酸バンド法が知られ
ている。これらのうち、消石灰法としては、フッ化物含
有水をpH10〜12とした後、水溶性カルシウム化合
物を加え、生成する沈殿物を分離後、pH4〜7として
逆浸透圧処理し、更に高度処理に付す方法が提案されて
いる(特公昭59−9236号)。
2. Description of the Related Art The slaked lime method and the sulfuric acid band method have hitherto been known as methods for treating fluoride-containing water such as flue gas desulfurization wastewater. Among these, as the slaked lime method, after the fluoride-containing water is adjusted to pH 10 to 12, a water-soluble calcium compound is added, the generated precipitate is separated, and then the pH is adjusted to 4 to 7 to perform reverse osmotic pressure treatment for further advanced treatment. A method of attaching is proposed (Japanese Patent Publication No. 59-9236).

【0003】[0003]

【発明が解決しようとする課題】上記従来法のうち、特
公昭59−9236号に開示される消石灰法では、沈殿
槽を必要とする上、逆浸透膜を用いるためスケール成分
(カルシウム濃度)が増大し、石膏等のスケール析出に
よる障害がしばしば発生するという欠点がある。また、
水酸化カルシウム化合物の注入は、pH制御で行なわれ
ており、原水であるフッ化物含有水の酸性度に対応する
だけであるため、原水のフッ化物イオンの変動には対応
できず、処理水質の悪化がしばしば起こるという欠点も
ある。このようなことから、消石灰法で、高水質の処理
水を安定に回収するための運転管理は相当に難しい。
Among the above-mentioned conventional methods, the slaked lime method disclosed in Japanese Examined Patent Publication No. 59-9236 requires a settling tank and uses a reverse osmosis membrane so that the scale component (calcium concentration) is reduced. However, there is a drawback in that it often increases and often causes problems due to scale precipitation such as gypsum. Also,
Since the injection of the calcium hydroxide compound is carried out by pH control and only corresponds to the acidity of the fluoride-containing water that is the raw water, it cannot cope with the fluctuation of the fluoride ion of the raw water and the treated water quality There is also the drawback that deterioration often occurs. For this reason, it is considerably difficult to manage operation by the slaked lime method in order to stably recover high-quality treated water.

【0004】一方、硫酸バンド法による処理において
も、pH調整剤として水酸化カルシウム(Ca(OH)
2 )を用いる場合には、上記とほぼ同様の問題が起こ
る。pH調整剤として苛性ソーダ(NaOH)を用いる
場合には、スケール障害は生じないものの、硫酸バンド
の注入は定量注入となるため、やはり原水の水質(フッ
化物イオン濃度)変動には全く対応できないという欠点
がある。このため、硫酸バンド法において、原水の水質
変動に起因する処理水水質の悪化を防ぐためには、過剰
量の硫酸バンドを注入することが必要となる。この場合
には、硫酸バンド法のランニングコストは非常に高いも
のとなっていた。
On the other hand, even in the treatment by the sulfuric acid band method, calcium hydroxide (Ca (OH)) is used as a pH adjusting agent.
When 2 ) is used, problems similar to the above occur. When caustic soda (NaOH) is used as a pH adjuster, scale hindrance does not occur, but since the injection of the sulfuric acid band is a quantitative injection, it is still not possible to deal with fluctuations in the water quality (fluoride ion concentration) of the raw water. There is. Therefore, in the sulfuric acid band method, it is necessary to inject an excessive amount of the sulfuric acid band in order to prevent the deterioration of the treated water quality due to the fluctuation of the raw water quality. In this case, the running cost of the sulfuric acid band method was very high.

【0005】本発明は上記従来の問題点を解決し、運転
管理が容易で、スケール析出の問題がなく、高水質の処
理水を安定的かつ効率的に、安価に得ることができるフ
ッ化物含有水の処理方法を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, is easy to operate and manage, does not have the problem of scale deposition, and contains a fluoride containing stable, efficient and inexpensive processed water of high quality. It is intended to provide a method for treating water.

【0006】[0006]

【課題を解決するための手段】請求項1のフッ化物含有
水の処理方法は、フッ化物及び硫酸イオンを含有する
にカルシウム化合物を加え、pHを6〜8に調整して得
られた懸濁液を循環槽に導入する反応工程、循環槽から
導入された液を膜分離処理して透過液と濃縮液とに分離
する膜分離工程、膜分離工程から排出される濃縮液を前
記循環槽に循環する循環工程、及び、透過液を吸着処理
して処理水を得る吸着工程、によりフッ化物含有水を処
理する方法であって、前記反応工程に硫酸添加するこ
とを特徴とする。
The method for treating fluoride-containing water according to claim 1 is a suspension obtained by adjusting the pH to 6 to 8 by adding a calcium compound to water containing fluoride and sulfate ions. The reaction step of introducing the turbid liquid into the circulation tank, the membrane separation step of separating the liquid introduced from the circulation tank into the permeate and the concentrated liquid, and the concentrated liquid discharged from the membrane separation step into the circulation tank. circulating step circulating in, and the adsorption step to obtain a treated water permeate adsorption treatment to a method of treating a fluoride-containing water by, characterized that you adding sulfuric acid to the reaction step.

【0007】[0007]

【作用】フッ化物及び硫酸イオン含有水にカルシウム化
合物を添加することにより、フッ化物イオンはCaF2
として析出する。
[Function] By adding a calcium compound to fluoride and sulfate ion- containing water, the fluoride ion becomes CaF 2
Is deposited as.

【0008】ところで、このような、カルシウム化合物
を用いる処理では、反応工程における溶解カルシウム濃
度が非常に高くなり、カルシウム系スケールが発生し易
い。また、溶解カルシウム濃度が高いために、その後の
処理水の軟化工程で高価な炭酸ソーダ等の軟化剤が多量
に必要となる。このように、カルシウム化合物を用いる
処理方法では、スケールが発生し易い、薬剤コストが高
いという問題がある。
By the way, in such a treatment using a calcium compound, the concentration of dissolved calcium in the reaction step becomes very high, and a calcium-based scale is easily generated. Further, since the dissolved calcium concentration is high, a large amount of expensive softening agent such as sodium carbonate is required in the subsequent softening step of the treated water. As described above, the treatment method using the calcium compound has problems that scales are likely to occur and the cost of the medicine is high.

【0009】これに対して、本発明の方法では、反応工
程に硫酸添加するため、高カルシウム濃度に起因する
スケール発生、薬剤コストの高騰の問題は解決される。
即ち系内の硫酸イオンの増加で、共通イオン効果により
硫酸カルシウムの溶解度が著しく小さくなり、カルシウ
ムイオンは硫酸カルシウムとして析出する結果、溶解カ
ルシウム濃度が低くなる。なお、本発明で使用される硫
安価な薬品であるため、これによるコスト高騰の問
題はない。
[0009] In contrast, in the method of the present invention, order to add sulfuric acid to the reaction step, scale formation due to the high calcium concentration, drug costs rise problems are solved.
That is, due to the increase of sulfate ion in the system, due to the common ion effect
The solubility of calcium sulfate is significantly reduced,
As a result of the precipitation of calcium ions as calcium sulfate, dissolved ions
Decrease in lucium concentration. Incidentally, sulfuric <br/> acid that is used in the present invention because it is inexpensive chemicals, there is no problem of rising costs by this.

【0010】また、反応工程の懸濁液は直接膜分離処理
に供すると、未反応のカルシウム成分等により分離膜面
にスケールが生成する。即ち、スケール成分である石膏
は反応生成に時間がかかるため、多くの場合、反応工程
終了後において、分離膜面にて石膏が生成してスケール
化する。これに対して、本発明では、循環槽を設け、反
応工程の懸濁液を直接膜分離工程に通液せずに、一旦循
環槽に貯留した後、膜分離工程に供給するため、分離膜
面でのスケール化は防止される。また、この循環槽に膜
分離工程の濃縮水を供給することにより、濃縮水中のS
Sが種晶として作用し、その晶析効果によりカルシウム
濃度が低減され、循環槽におけるスケール発生は防止さ
れる。
When the suspension in the reaction step is directly subjected to the membrane separation treatment, scale is generated on the surface of the separation membrane due to unreacted calcium components and the like. That is, since gypsum, which is a scale component, takes time to generate a reaction, in many cases, gypsum is generated and scales on the surface of the separation membrane after the completion of the reaction step. On the other hand, in the present invention, since a circulation tank is provided and the suspension of the reaction step is not directly passed through the membrane separation step but is temporarily stored in the circulation tank and then supplied to the membrane separation step, the separation membrane is used. Surface scaling is prevented. Further, by supplying the concentrated water of the membrane separation process to this circulation tank, S
S acts as a seed crystal, the crystallization effect reduces the calcium concentration, and the scale generation in the circulation tank is prevented.

【0011】膜分離工程においては、反応工程で析出し
たフッ化物含有析出物やその他の微細なSSが高度に除
去される。
In the membrane separation step, fluoride-containing deposits and other fine SS deposited in the reaction step are highly removed.

【0012】そして、膜分離工程の透過水を更に吸着処
理することにより、より高水質の処理水が得られる。
Then, the permeated water in the membrane separation step is further subjected to adsorption treatment to obtain treated water of higher quality.

【0013】[0013]

【実施例】以下に図面を参照して本発明の実施例につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0014】第1図は本発明のフッ化物含有水の処理方
法の一実施方法を示す系統図である。
FIG. 1 is a system diagram showing a method for carrying out the method for treating fluoride-containing water according to the present invention.

【0015】図示の方法においては、まず、原水である
フッ化物及び硫酸イオンを含有する水を配管10より撹
拌機1Aを備える反応槽1に供給し、配管11より硫酸
及び配管12よりカルシウム化合物、更に必要に応じて
pH調整剤を加えて撹拌し、pH6〜8に調整する。
[0015] In the illustrated method, first, a water containing fluoride and sulfate ions is the raw water fed to the reaction vessel 1 equipped with a stirrer 1A from the pipe 10, sulfuric acid from line 11 <br/> and pipe 12 A calcium compound and, if necessary, a pH adjusting agent are added and stirred to adjust the pH to 6-8.

【0016】反応槽1に添加されるカルシウム化合物と
しては、水酸化カルシウム(Ca(OH)2 )、酸化カ
ルシウム(CaO)等が挙げられる。
Examples of the calcium compound added to the reaction tank 1 include calcium hydroxide (Ca (OH) 2 ) and calcium oxide (CaO).

【0017】反応槽1では、硫酸の添加により系内に硫
酸イオンが増加するため、共通イオン効果により、硫酸
カルシウムの溶解度が著しく小さくなる。このため、カ
ルシウムイオンは硫酸カルシウムとして析出し易くな
り、溶解カルシウム濃度が低くなる。
[0017] In reaction vessel 1, since the sulfate ions increases in the system by the addition of sulfuric acid, by a common ion effect, significantly reduced the solubility of calcium sulfate. Therefore, calcium ions are easily precipitated as calcium sulfate, and the dissolved calcium concentration becomes low.

【0018】反応工程においては、反応液のpHを6〜
8、好ましくは6〜7に調整するために、必要に応じて
pH調整剤を添加する。即ち、Ca(OH)2 等を添加
する場合には、Ca(OH)2 自体がpH調整剤として
作用するために、別途pH調整剤を用いる必要はない
、硫添加によるpH低下を調整するために、pH
調整剤としてNaOH、Ca(OH)2 等のアルカリを
添加する。本発明においては、スケール障害の問題は解
決されており、従来の硫酸バンド法のようなスケール障
害発生の恐れはないため、pH調整剤としてはCa(O
H)2 を用いるのが有利である。
In the reaction step, the pH of the reaction solution is adjusted to 6 to
In order to adjust the pH to 8, preferably 6 to 7, a pH adjuster is added as needed. That is, when the addition of Ca (OH) 2 or the like, in order to Ca (OH) 2 itself acts as a pH adjusting agent, there is no need to use a separate pH adjusting agent, a pH drop due to the addition of sulfuric acid PH to adjust
An alkali such as NaOH or Ca (OH) 2 is added as a regulator. In the present invention, the problem of scale disorder has been solved, and there is no fear of scale disorder occurring as in the conventional sulfuric acid band method, so Ca (O 2) is used as a pH adjuster.
It is advantageous to use H) 2 .

【0019】カルシウム化合物及び硫酸を添加してpH
を6〜8に調整することにより、原水中のフッ化物イオ
ンが固体化される。即ち、カルシウム化合物によりフッ
化物イオンはCaF2 として析出する。この際、反応槽
1には、硫酸が添加されているため、反応槽1内の溶解
カルシウム濃度は低くなり、スケール障害は防止され
る。
PH by adding calcium compound and sulfuric acid
By adjusting to 6-8, the fluoride ion in the raw water is solidified. That is, fluoride ions are precipitated as CaF 2 by the calcium compound. At this time, since sulfuric acid is added to the reaction tank 1, the concentration of dissolved calcium in the reaction tank 1 becomes low, and scale failure is prevented.

【0020】反応槽1におけるカルシウム化合物の添加
量は、通常の場合、原水中のフッ化物イオンに対して
0.5〜3倍当量程度とするのが好ましい。通常、排煙
脱硫排水等にはカルシウム化合物が含まれており、これ
らを含めて上記の範囲とすれば良い。
In the usual case, the addition amount of the calcium compound in the reaction vessel 1 is preferably about 0.5 to 3 times the equivalent of the fluoride ion in the raw water. Usually, the flue gas desulfurization wastewater contains a calcium compound, and the above range may be included including these.

【0021】また、硫酸の添加量は、原水水質や添加す
るカルシウム化合物の量によっても異なる。従って、
の注入量は定量注入でも良いが、後述の配管21より
得られる処理水のカルシウム濃度を測定し、その測定値
に基いて注入量を設定するのが好ましい、この際、硫酸
を自動注入する場合には、処理水のカルシウム濃度をI
CP、イオンメーター等で測定し、その数値をシーケン
サー、パソコン等に入力して薬注ポンプを作動させるよ
うにすれば良い。このような自動注入方式を採用するこ
とにより、カルシウム濃度の変動に良好に対応すること
ができ、常に安定した処理を行なうことが可能とされ
る。
The amount of sulfuric acid added also depends on the quality of the raw water and the amount of calcium compound added. Therefore, sulfur
The injection amount of the acid may be fixed amount injection, but it is preferable to measure the calcium concentration of the treated water obtained from the pipe 21 described later and set the injection amount based on the measured value. In this case, sulfuric acid is used. In the case of automatic injection of
It suffices to measure with a CP, an ion meter or the like and input the numerical value into a sequencer, a personal computer or the like to operate the chemical injection pump. By adopting such an automatic injection method, it is possible to respond favorably to changes in calcium concentration, and it is possible to always perform stable treatment.

【0022】なお、この反応槽1における反応時間は、
通常の場合、30分以上とする。即ち、反応槽1内の反
応液から十分に析出物が生成するに要する時間、特に石
膏生成反応に要する時間は約30分程度であるため、ス
ケール障害の防止の面から、反応槽1における反応時間
は30分以上とするのが好ましい。
The reaction time in this reaction tank 1 is
Normally, it should be 30 minutes or longer. That is, since it takes about 30 minutes to sufficiently form the precipitate from the reaction solution in the reaction tank 1, particularly for the gypsum-forming reaction, the reaction in the reaction tank 1 is prevented from the viewpoint of preventing scale failure. The time is preferably 30 minutes or more.

【0023】反応槽1で得られた懸濁液は、次いで配管
13を経て循環槽2に導入する。
The suspension obtained in the reaction tank 1 is then introduced into the circulation tank 2 via the pipe 13.

【0024】循環槽2には後段の膜分離装置3から配管
15を経て排出される濃縮水が配管16を経て導入され
ている。この循環槽2内の、反応槽1からの懸濁液と膜
分離装置3の濃縮液とは、ポンプ6を備える配管14を
経て、膜分離装置3に導入し、分離膜3Aにて膜分離処
理する。
Concentrated water discharged from the membrane separator 3 at the subsequent stage through the pipe 15 is introduced into the circulation tank 2 through the pipe 16. The suspension from the reaction tank 1 and the concentrated liquid of the membrane separation device 3 in the circulation tank 2 are introduced into the membrane separation device 3 via a pipe 14 equipped with a pump 6, and separated by a separation membrane 3A. To process.

【0025】なお、循環槽2の汚泥滞留時間は1〜20
時間程度となるように設定するのが好ましい。また、循
環槽2には、経時的にSSが濃縮、蓄積されるため、こ
のSSを含む汚泥は必要に応じて槽下部より配管17よ
り系外へ排出する。
The sludge retention time in the circulation tank 2 is 1 to 20.
It is preferable to set it so that it is about time. Further, since SS is concentrated and accumulated in the circulation tank 2 over time, sludge containing this SS is discharged from the lower part of the tank to the outside of the system through the pipe 17 as needed.

【0026】膜分離装置3の分離膜3Aとしては精密濾
過(MF)膜又は限外濾過(UF)膜を用いるのが好ま
しい。MF膜を用いる場合、その孔径が大きく1μm以
上であるとフッ化物を含有する析出物が透過する場合が
ある。従って、MF膜としては孔径0.5μm以下のも
のを用いるのが好ましい。このような膜分離装置3で
は、液中の未反応のカルシウム化合物は膜透過されずに
濃縮水中に残留して、循環槽2に返送されることとな
り、これらは循環槽2にてフッ化物イオンの固定化機能
を発揮するため、極めて有利である。
As the separation membrane 3A of the membrane separation device 3, it is preferable to use a microfiltration (MF) membrane or an ultrafiltration (UF) membrane. When the MF membrane is used, if the pore size is large and 1 μm or more, the precipitate containing fluoride may permeate. Therefore, it is preferable to use an MF film having a pore size of 0.5 μm or less. In such a membrane separator 3, the unreacted calcium compound in the liquid is not permeated through the membrane, remains in the concentrated water, and is returned to the circulation tank 2. Since it exerts the immobilization function of, it is extremely advantageous.

【0027】なお、逆浸透(RO)膜はCa2+、F
SO4 2- の除去能力を有し、膜面の濃度分極によりスケ
ールが生成するため、本発明には好ましくない。
The reverse osmosis (RO) membrane is composed of Ca 2+ , F ,
It has the ability to remove SO 4 2− , and scale is generated by concentration polarization of the film surface, which is not preferable in the present invention.

【0028】膜分離装置3の濃縮水は、前述の如く、配
管15、16を経て循環槽2に循環される。なお、本発
明においては、この濃縮水の一部を反応槽1に反送して
も良い(配管18)。濃縮水の一部を反応槽1に反送す
ることにより、濃縮水中のSSが種晶となる晶析効果
で、反応槽1内のカルシウム濃度がより一層低減され、
スケールの生成はより一層確実に防止される。また、濃
縮水中にはCa(OH)2 等のスラッジが膜透過されず
に反送されるため、これらがフッ化物イオンの吸着能を
発揮する。このような効果により、処理効率は一層向上
し、安定処理が可能となる。なお、濃縮水の一部を反応
槽1に返送する場合、硫酸の添加箇所から離れた部位に
注入することが重要である。
The concentrated water of the membrane separator 3 is circulated to the circulation tank 2 via the pipes 15 and 16 as described above. In the present invention, a part of this concentrated water may be sent back to the reaction tank 1 (pipe 18). By sending a part of the concentrated water back to the reaction tank 1, the calcium concentration in the reaction tank 1 is further reduced by the crystallization effect that SS in the concentrated water becomes a seed crystal.
The formation of scale is prevented more reliably. Further, since sludge such as Ca (OH) 2 is sent back to the concentrated water without being permeated through the membrane, these exert the adsorbing ability of fluoride ions. With such an effect, the processing efficiency is further improved, and stable processing is possible. In addition, when returning a part of concentrated water to the reaction tank 1, it is important to inject | pouring into the site | part away from the addition site of sulfuric acid .

【0029】一方、膜分離装置3の透過水は、配管19
より抜き出し、必要に応じてNaOH、HCl等のpH
調整剤を配管20より添加してpH調整した後、吸着材
4Aを充填した吸着塔4へ導入して吸着処理する。
On the other hand, the permeated water of the membrane separation device 3 is the pipe 19
More, and if necessary, pH of NaOH, HCl, etc.
After the adjusting agent is added from the pipe 20 to adjust the pH, the adjusting agent is introduced into the adsorption tower 4 filled with the adsorbent 4A for adsorption treatment.

【0030】この吸着塔4の吸着材4Aとしては、膜分
離装置3の透過水になお残留しているフッ化物イオンを
吸着除去するフッ素吸着材又はCOD成分を吸着除去す
るCOD吸着材等を用いることができる。従って、配管
20からのpH調整剤によるpH調整は、吸着塔4の吸
着材4Aの種類に応じて最適なpHに調整することが必
要とされ、例えば、吸着塔4の吸着材4Aがフッ化物イ
オン吸着材であればpHは3〜7程度に、COD吸着材
であればpHは2〜9程度に調整するのが好ましい。
As the adsorbent 4A of the adsorption tower 4, a fluorine adsorbent for adsorbing and removing fluoride ions still remaining in the permeated water of the membrane separator 3 or a COD adsorbent for adsorbing and removing COD components is used. be able to. Therefore, the pH adjustment by the pH adjusting agent from the pipe 20 needs to be adjusted to the optimum pH according to the type of the adsorbent 4A of the adsorption tower 4, and for example, the adsorbent 4A of the adsorption tower 4 is a fluoride. The pH is preferably adjusted to about 3 to 7 for the ion adsorbent and about 2 to 9 for the COD adsorbent.

【0031】なお、フッ化物イオン吸着材としては、ト
リチウム,ジルコニウム,チタニウム又はハフニウム型
カチオン交換樹脂、強,弱酸性カチオン交換樹脂、ハロ
アルキルシラン系吸着樹脂、弱塩基性アニオン交換樹
脂、希土類金属水和酸化物型キレート樹脂、Al塩型キ
レート樹脂等の吸着樹脂、その他活性アルミナ、マグネ
シア系吸着剤等が挙げられる。また、COD吸着材とし
ては、ゲル型又はMR型弱,中,強塩基性アニオン交換
樹脂等のCOD吸着樹脂、その他活性炭等が挙げられ
る。
As the fluoride ion adsorbent, tritium, zirconium, titanium or hafnium type cation exchange resin, strong or weakly acidic cation exchange resin, haloalkylsilane adsorbent resin, weakly basic anion exchange resin, rare earth metal hydration. Examples thereof include adsorption resins such as oxide type chelate resins and Al salt type chelate resins, as well as activated alumina and magnesia type adsorbents. Examples of the COD adsorbent include gel-type or MR-type weak, medium and strong basic anion exchange resins and other COD adsorption resins, and activated carbon.

【0032】このような吸着材4Aで吸着処理して得ら
れる処理水は配管21より系外へ排出する。
The treated water obtained by the adsorption treatment with the adsorbent 4A is discharged from the system through the pipe 21.

【0033】本発明において、原水のフッ化物及び硫酸
イオンを含有する水としては特に制限はないが、例えば
排煙脱硫及び/又は脱硝排水、アルミニウム電解精錬工
程排水、リン酸肥料の製造工程排水、シリコン等の電気
部品の洗浄工程、ウラン精錬工程、表面処理洗浄工程排
水等が挙げられる。
In the present invention, raw water fluoride and sulfuric acid
There are no particular limitations on the water containing ions, e.g., flue gas desulfurization and / or denitrification wastewater, aluminum electrolytic refining process wastewater, the manufacturing process wastewater phosphate fertilizer, the process of cleaning the electrical components such as silicon, uranium refining process, Surface treatment cleaning process drainage etc. are mentioned.

【0034】なお、第1図に示す例は本発明の一実施例
であって、本発明は何ら図示の方法に限定されるもので
はない。本実施例方法においては、硫酸を反応槽1に注
入しているが、これは、原水の導入管(第1図の配管1
0)に直接注入するようにしても良い。また、吸着塔4
における吸着処理は、上向流で処理しても下向流で処理
しても良いことは言うまでもないが、一般に、フッ化物
イオン吸着及びCOD吸着は下向流にて処理を行なう。
COD吸着処理後、更にフッ化物イオン吸着処理を行な
っても良い。
The example shown in FIG. 1 is an embodiment of the present invention, and the present invention is not limited to the illustrated method. In the method of this embodiment, sulfuric acid is injected into the reaction tank 1, which is an inlet pipe for raw water (pipe 1 in FIG. 1).
0) may be directly injected. Also, the adsorption tower 4
Needless to say, the adsorption treatment may be performed in an upward flow or a downward flow, but in general, fluoride ion adsorption and COD adsorption are performed in a downward flow.
Fluoride ion adsorption treatment may be further performed after the COD adsorption treatment.

【0035】以下、具体的な実施例及び比較例について
説明する。実施例1第1図に示す方法に従って、下記水
質の合成排煙脱硫排水について処理を行なった。原水水質 pH :1.4 Ca :450mg/l Al :240mg/l Fe :50mg/l F :210mg/l SO4 2-:5700mg/l Cl :4000mg/l 反応槽1に原水を8.5l/hrの割合で導入すると共
に、Ca(OH)2びH 2 SO4 を下記割合で添加
し、pHを7に調整し、30分間撹拌して反応させた。
反応により得られた懸濁液を循環槽2に導入し、濃縮水
の(SS濃度:4重量%)循環分と共に、下記仕様の膜
分離装置3に供給して膜分離処理した。
Specific examples and comparative examples will be described below. Example 1 A synthetic flue gas desulfurization wastewater having the following water quality was treated according to the method shown in FIG. Raw water quality pH: 1.4 Ca: 450 mg / l Al: 240 mg / l Fe: 50 mg / l F: 210 mg / l SO 4 2- : 5700 mg / l Cl: 4000 mg / l Raw water in the reaction tank 1 8.5 l / is introduced at a rate of hr, it was added Ca (OH) 2beauty H 2 SO 4 at the following ratio, to adjust the pH to 7, followed by reaction under stirring for 30 minutes.
The suspension obtained by the reaction was introduced into the circulation tank 2 and was supplied to the membrane separation device 3 having the following specifications together with the circulating content of concentrated water (SS concentration: 4% by weight) for membrane separation treatment.

【0036】反応槽 10重量%Ca(OH)2 添加量: 0.5l/hr 5重量%H2 SO4 添加量: 0.2l/hr pH:7循環槽 濃縮水循環量:原水の60倍量 滞留時間:10時間膜分離装置 分離膜:精密濾過膜(ポリスルホン膜) 公称孔径0.2μm 膜分離処理で得られた透過水をH2 SO4 でpH3.0
に調整した後、含水酸化セリウム型キレート樹脂を充填
した吸着塔4に下向流にてSV20hr-1で通水して吸
着処理した。
Reaction tank 10% by weight Ca (OH) 2 addition amount: 0.5 l / hr 5% by weight H 2 SO 4 addition amount: 0.2 l / hr pH: 7 Circulation tank concentrated water circulation amount: 60 times amount of raw water Residence time: 10 hours Membrane separation device Separation membrane: Microfiltration membrane (polysulfone membrane) Nominal pore size 0.2 μm Permeate obtained by membrane separation treatment with H 2 SO 4 at pH 3.0
After the adjustment, the water was passed through the adsorption tower 4 filled with the hydrated cerium oxide type chelate resin with SV of 20 hr −1 in a downward flow for adsorption treatment.

【0037】このような条件で200時間運転したとこ
ろ、処理水(吸着処理水)中のフッ化物濃度は常時1m
g/l以下で安定している上に、吸着塔内における析出
物など、異物の発生は全く見られなかった。因みに、反
応槽1の流出液中のカルシウムイオン濃度は1100〜
1200mg/lであった。
When operated for 200 hours under such conditions, the concentration of fluoride in the treated water (adsorbed treated water) was always 1 m.
In addition to being stable at g / l or less, generation of foreign matters such as precipitates in the adsorption tower was not observed at all. By the way, the calcium ion concentration in the effluent of the reaction tank 1 is 1100 to
It was 1200 mg / l.

【0038】比較例1 実施例1に記載した運転に続いて、反応槽1にH2 SO
4 を加えずに運転をしたところ、10時間程度でキレー
ト樹脂充填吸着塔4の被処理水入口(上方)に白い析出
物が認められ始め、更に20時間経過した時点で吸着塔
4内の差圧が異常に上昇し、実質的に通水運転をするこ
とが不可能となった。
Comparative Example 1 Following the operation described in Example 1, H 2 SO was added to reaction vessel 1.
When operated without adding 4 , white precipitates began to be observed at the treated water inlet (upper side) of the chelate resin-filled adsorption tower 4 in about 10 hours, and after a further 20 hours, the difference in the adsorption tower 4 was increased. The pressure rose abnormally, making it virtually impossible to run water.

【0039】この間の処理水中のフッ化物濃度は1mg
/l以下を維持したが、反応槽1の流出液中のカルシウ
ムイオン濃度は1400〜1600mg/lを示した。
During this period, the concentration of fluoride in the treated water was 1 mg.
/ L or less was maintained, but the calcium ion concentration in the effluent of the reaction tank 1 was 1400 to 1600 mg / l.

【0040】[0040]

【発明の効果】以上詳述した通り、本発明のフッ化物含
有水の処理方法によれば、反応槽内の溶解カルシウム濃
度が低減されることから、スケール障害が防止されい
る。また、同時に処理水のカルシウム濃度も低減される
ことから、後工程の軟化処理等で使用する軟化剤添加量
を大幅に低減することができる。このため薬剤コストも
低廉化される。
As described in detail above, according to the method for treating fluoride-containing water of the present invention, the concentration of dissolved calcium in the reaction tank is reduced, so that scale failure is prevented. Further, since the calcium concentration of the treated water is also reduced at the same time, the addition amount of the softening agent used in the softening treatment or the like in the subsequent step can be significantly reduced. Therefore, the drug cost can be reduced.

【0041】従って、本発明の方法によれば、安定かつ
効率的に高水質の処理水を低コストで得ることが可能と
される。
Therefore, according to the method of the present invention, it is possible to stably and efficiently obtain treated water of high water quality at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1図は本発明のフッ化物含有水の処理方法の
処理方法の一実施例を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a treatment method of a fluoride-containing water treatment method of the present invention.

【符号の説明】[Explanation of symbols]

1 反応槽 2 循環槽 3 膜分離装置 4 吸着塔 1 Reaction tank 2 Circulation tank 3 Membrane separation device 4 Adsorption tower

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 5/08 C02F 5/08 9/00 502 9/00 502E 502H 503 503G 504 504B (56)参考文献 特開 平3−118897(JP,A) 特開 昭51−81789(JP,A) 特開 昭62−168508(JP,A) 特開 昭63−31505(JP,A)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C02F 5/08 C02F 5/08 9/00 502 9/00 502E 502H 503 503G 504 504B (56) Reference Reference JP-A-3-118897 (JP, A) JP-A-51-81789 (JP, A) JP-A-62-168508 (JP, A) JP-A-63-31505 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フッ化物及び硫酸イオンを含有する水に
カルシウム化合物を加え、pHを6〜8に調整して得ら
れた懸濁液を循環槽に導入する反応工程、 循環槽から導入された液を膜分離処理して透過液と濃縮
液とに分離する膜分離工程、 膜分離工程から排出される濃縮液を前記循環槽に循環す
る循環工程、及び、 透過液を吸着処理して処理水を得る吸着工程、 によりフッ化物含有水を処理する方法であって、 前記反応工程に硫酸添加することを特徴とするフッ化
物含有水の処理方法。
1. A reaction step in which a calcium compound is added to water containing a fluoride and a sulfate ion to adjust the pH to 6 to 8 and a suspension obtained is introduced into a circulation tank, which is introduced from the circulation tank. Membrane separation process for separating the liquid into a permeate and a concentrated liquid by a membrane separation process, a circulation process for circulating the concentrated liquid discharged from the membrane separation process to the circulation tank, and a treated water by absorbing the permeated liquid. adsorption process obtaining a method of processing a fluoride-containing water, the method of treating a fluoride-containing water, characterized that you adding sulfuric acid to the reaction step.
JP3147188A 1991-06-19 1991-06-19 Fluoride-containing water treatment method Expired - Fee Related JP2503806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3147188A JP2503806B2 (en) 1991-06-19 1991-06-19 Fluoride-containing water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3147188A JP2503806B2 (en) 1991-06-19 1991-06-19 Fluoride-containing water treatment method

Publications (2)

Publication Number Publication Date
JPH04371292A JPH04371292A (en) 1992-12-24
JP2503806B2 true JP2503806B2 (en) 1996-06-05

Family

ID=15424558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3147188A Expired - Fee Related JP2503806B2 (en) 1991-06-19 1991-06-19 Fluoride-containing water treatment method

Country Status (1)

Country Link
JP (1) JP2503806B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464874B1 (en) 1999-08-20 2002-10-15 Sharp Kabushiki Kaisha Waste water treatment method and waste water treatment apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3319053B2 (en) * 1993-08-04 2002-08-26 栗田工業株式会社 Treatment method for fluoride-containing water
TWI222428B (en) 1998-04-22 2004-10-21 Fujitsu Ltd Treatment process for fluorine-containing water
JP4878098B2 (en) * 2001-09-12 2012-02-15 奥多摩工業株式会社 Treatment method for fluorine-containing wastewater
JP4368249B2 (en) * 2004-06-01 2009-11-18 三洋電機株式会社 Treatment apparatus and treatment method of water to be treated using the same
JP4591170B2 (en) * 2004-11-15 2010-12-01 パナソニック株式会社 Fluorine-containing water treatment equipment
JP4633079B2 (en) * 2007-03-09 2011-02-16 三洋電機株式会社 Method and apparatus for treating fluorine-containing water
JP5393409B2 (en) * 2009-11-12 2014-01-22 三菱重工業株式会社 Waste water treatment apparatus and waste water treatment method
CN105540935A (en) * 2016-01-29 2016-05-04 铜陵有色金属集团股份有限公司铜冠冶化分公司 Method for removing fluorin ions, sulfate radical ions and iron ions from organic amine liquor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5925601B2 (en) * 1975-01-16 1984-06-19 荏原インフイルコ株式会社 Desalination method
US4963264A (en) * 1985-06-10 1990-10-16 The Standard Oil Company Process for selective dialysis using polymeric affinity adsorbents and size selective membranes
JPS62168508A (en) * 1986-01-20 1987-07-24 Fujitsu General Ltd Electrodialytic type apparatus for producing pure water
JPH0753276B2 (en) * 1989-10-03 1995-06-07 栗田工業株式会社 Fluoride-containing water treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6464874B1 (en) 1999-08-20 2002-10-15 Sharp Kabushiki Kaisha Waste water treatment method and waste water treatment apparatus

Also Published As

Publication number Publication date
JPH04371292A (en) 1992-12-24

Similar Documents

Publication Publication Date Title
EP0421399B2 (en) Method of treating fluoride-containing water
JP4880656B2 (en) Water treatment apparatus and water treatment method
JP2503806B2 (en) Fluoride-containing water treatment method
JP2000015269A (en) Treating method for fluorine-containing water
JP2001096281A (en) Method of recovering desalted water from fluorine- containing waste water
JP3319053B2 (en) Treatment method for fluoride-containing water
JP3334142B2 (en) Treatment method for fluorine-containing water
JP3227760B2 (en) Fluorine-containing water treatment method
JPH11188359A (en) Pure water producing apparatus
JPS59189987A (en) Circulative use of waste water used for grinding silicon wafer
JP3697800B2 (en) Wastewater treatment method
JP2010017631A (en) Method and apparatus for treating phosphoric acid-containing water
JPH1080684A (en) Device and method for treating boron-containing water
JP3622407B2 (en) Water treatment method
JP3203745B2 (en) Fluorine-containing water treatment method
JPH0315512B2 (en)
JP7168324B2 (en) Silica-containing water treatment apparatus and treatment method
JP3829364B2 (en) Wastewater aggregation treatment method
JP2003334566A (en) Method and device for treating drain containing fluorine
JP3252521B2 (en) Rinse wastewater treatment method
JP4370745B2 (en) Method for treating fluorine-containing water containing phosphate ions
JP2001246385A (en) Treatment process of water containing fluorine
JPH10249340A (en) Production of pure water
JP2003071470A (en) Method and apparatus for treating fluorine-containing water
JPH11221579A (en) Treatment of fluorine-containing water

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees