JP3829364B2 - Wastewater aggregation treatment method - Google Patents

Wastewater aggregation treatment method Download PDF

Info

Publication number
JP3829364B2
JP3829364B2 JP16318996A JP16318996A JP3829364B2 JP 3829364 B2 JP3829364 B2 JP 3829364B2 JP 16318996 A JP16318996 A JP 16318996A JP 16318996 A JP16318996 A JP 16318996A JP 3829364 B2 JP3829364 B2 JP 3829364B2
Authority
JP
Japan
Prior art keywords
membrane
tank
wastewater
flux
flocculant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16318996A
Other languages
Japanese (ja)
Other versions
JPH105763A (en
Inventor
忠 高土居
清仁 近沢
武 佐藤
直樹 松渓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP16318996A priority Critical patent/JP3829364B2/en
Publication of JPH105763A publication Critical patent/JPH105763A/en
Application granted granted Critical
Publication of JP3829364B2 publication Critical patent/JP3829364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は排水の凝集処理方法に係り、特に、排水に凝集剤を加えて凝集槽で凝集反応を行った後膜分離装置で固液分離するに当り、膜の透過流束(フラックス)の安定化を図る排水の凝集処理方法に関する。
【0002】
【従来の技術】
排水に無機系凝集剤を添加して固液分離する凝集処理技術では、一般に、固液分離手段として沈殿法や加圧浮上法が適用されている。このうち、沈殿法を適用した凝集処理法では、フッ素含有排水の処理に当り、非重合性アルミニウム化合物を添加して凝集処理した後沈殿分離し、分離汚泥を凝集工程へ返送して、得られる汚泥の脱水性を改善する方法が提案されている。
【0003】
一方、排水の除濁を目的として、排水に必要に応じてPAC(ポリ塩化アルミニウム)、硫酸バンド(Al2 (SO4 3 )、塩化第二鉄(FeCl3 )等の凝集剤を添加して膜分離処理する方法がある。また、この方法をフッ素含有排水の処理に適用した例として、フッ素含有排水にカルシウム化合物及び/又はアルミニウム化合物を添加して凝集処理した後、膜分離処理する方法において、膜分離装置の濃縮水の一部を凝集工程に返送することにより、膜のスケール障害を防止する方法が提案されている(特公平7−53276号公報)。
【0004】
【発明が解決しようとする課題】
従来、排水の凝集処理において、固液分離手段として膜分離処理を採用した場合、膜のフラックス低下が著しく、フラックスの回復のための薬品洗浄頻度が高いことから、薬品洗浄コストの高騰、装置稼動効率の低下などの問題があった。
【0005】
前述の如く、固液分離手段として沈殿処理を採用したものにおいて、得られる汚泥の脱水性の向上を図る技術や、固液分離手段として膜分離処理を採用したものであっても、特公平7−53276号公報の如く、膜のスケール障害を防止するための技術は提案されているが、膜のフラックスの安定化についての検討はなされていないのが現状である。
【0006】
本発明は上記従来の実情に鑑みてなされたものであり、排水に凝集剤を加えて凝集槽で凝集反応を行った後膜分離装置で固液分離するに当り、膜のフラックスを安定化して、薬品洗浄頻度を低減する排水の凝集処理方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の排水の凝集処理方法は、排水に凝集剤を加えて凝集槽で凝集反応を行った後膜分離装置で固液分離する排水の凝集処理方法において、凝集剤として鉄塩を用いると共に、膜分離装置の濃縮液の一部を、前記凝集槽内のSS濃度が0.5〜7%となるように該凝集槽に返送することを特徴とする。
【0008】
本発明では、凝集剤として鉄塩を用いることにより、水酸化鉄粒子の晶析作用という良好な凝集効果で分離性に優れた凝集汚泥を得ることができ、これにより膜のフラックスの低下を防止することができる。
【0009】
また、この凝集槽内のSS濃度が0.5〜6.5%となるように膜分離装置の濃縮液の一部を返送することにより、膜分離装置の膜面に付着した汚泥によるケーキ抵抗が小さいものとなり、また、膜面の汚泥付着量を抑制して逆洗操作のみで容易に剥離除去できるようになる。このため、膜分離装置の膜フラックスの低下が防止され、フラックスが安定に維持されるようになり、薬品洗浄頻度は大幅に低減される。
【0010】
【発明の実施の形態】
以下に図面を参照して本発明の実施の形態を詳細に説明する。
【0011】
図1〜3は本発明の排水の凝集処理方法の実施の形態を示す系統図である。図1〜3において、1は凝集槽、2は循環槽、3はポンプ、4は膜モジュール、5は逆洗用加圧ポット、6はコンプレッサ、7は膜浸漬槽である。
【0012】
本発明の排水の凝集処理方法は、排水に凝集剤を加えて凝集槽で凝集反応を行った後膜分離装置で固液分離するに当り、凝集剤として鉄塩を用いると共に、膜分離装置の濃縮液の一部を凝集槽内のSS濃度が0.5〜7%となるように凝集槽に返送するものであるが、具体的には、次のような方法を採用することができる。
【0013】
▲1▼ 図1に示す如く、原水を凝集槽1に導入し、鉄塩を添加して凝集反応させ、凝集槽1の流出液を循環槽2を経てポンプ3により膜モジュール4に送給して膜分離し、透過水を逆洗用加圧ポット5を経て処理水として系外に排出し、濃縮液を循環槽2に循環し、この循環槽2内の液を水中ポンプ(図示せず)で凝集槽1に返送する。
【0014】
▲2▼ 図2に示す如く、原水を凝集槽1に導入し、鉄塩を添加して凝集反応させ、凝集槽1の流出液を循環槽2を経てポンプ3により膜モジュール4に送給して膜分離し、透過水を逆洗用加圧ポット5を経て処理水として系外に排出し、濃縮液の一部を凝集槽1に返送し、残部を循環槽2に返送する。
【0015】
▲3▼ 図3に示す如く、膜モジュール4を膜浸漬槽7に浸漬したものを用い、原水を凝集槽1に導入し、鉄塩を添加して凝集反応させ、凝集槽1の流出液を膜浸漬槽7に導入し、膜モジュール4の透過水を処理水として取り出し、この膜浸漬槽7内の液を水中ポンプ(図示せず)で凝集槽1に返送する。
【0016】
本発明において、凝集剤として用いる鉄塩としては、塩化第二鉄(FeCl3 )、硫酸第二鉄(Fe2 (SO4 3 )、硫酸第一鉄(FeSO4 )等を用いることができる。これらの鉄塩の添加量は原水に対してFe換算で10〜500mg/Lとするのが好ましい。
【0017】
本発明においては、凝集剤としてこれらの鉄塩を単独で用いても良く、アルミニウム塩等の他の凝集剤を併用添加しても良い。この場合、アルミニウム塩としては、塩化アルミニウム(AlCl3 )、硫酸バンド(Al2 (SO4 3 )、その他、水酸化アルミニウム(Al(OH)3 )又は酸化アルミニウム(Al2 3 )を塩酸(HCl)又は硫酸(H2 SO4 )で溶解したものを用いても良い。なお、Al3+として解離しないPACは本発明に好適ではない。
【0018】
アルミニウム塩を併用する場合、その添加量はAl換算で原水に対して5〜100mg/Lとするのが好ましい。
【0019】
原水の凝集処理に当っては、必要に応じて水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化カルシウム(Ca(OH)2 )、酸化カルシウム(CaO)、水酸化アンモニウム(NH4 OH)等のアルカリ、又は、HCl、H2 SO4 、硝酸(HNO3 )等の鉱酸を添加して、pHを6.0〜11程度に調整する。
【0020】
本発明においては、凝集槽1内のSS濃度が0.5〜6.5%となるように、膜モジュール4の濃縮液の一部、具体的には、図1に示す如く濃縮液が循環される循環槽2内液の一部、図2に示す如く膜モジュール4からの濃縮液の一部、或いは、図3に示す如く膜浸漬槽7内液の一部、を凝集槽1に返送する。
【0021】
凝集槽1内のSS濃度が0.5%未満では、ケーキ抵抗の大きい汚泥が生成し、6.5%を超えると膜面のケーキ付着厚みが増し、逆洗操作のみではケーキの剥離が不十分となり、いずれの場合も、膜のフラックス低下速度が大きくなる。好ましい凝集槽1内のSS濃度は1.0〜2.0%である。このようなSS濃度とするための膜モジュール4の濃縮液の返送量は、一般に、原水流量の0.5〜3.0倍である。
【0022】
循環槽2又は膜浸漬槽7は、そのSS濃度が1〜5%となるように、適宜槽底部より汚泥を抜き出す。このSS濃度が1%未満では処理水量が低下し、5%を超えると膜フラックスが低下し易くなる。
【0023】
本発明において、膜モジュール4の分離膜としては、MF(精密濾過)膜又はUF(限外濾過)膜が好適に使用される。膜の材質や形式には特に制限はなく、図3に示すような浸漬膜を用いることもできる。この場合には、循環槽が膜浸漬槽を兼ねることとなり、循環ポンプは不要となる。
【0024】
膜分離条件としては、例えば、図1,2に示すようなクロスフロー濾過においては、膜モジュール内流速が0.5〜3.0m/sとなるようにするのが好ましい。
【0025】
また、膜モジュールは所定時間の濾過処理の後、透過水(処理水)を逆流させて定期的に逆洗を行うのが好ましく、逆洗は、5〜500分の濾過に対して1回の頻度で3〜30秒間、逆洗用加圧ポット5内の透過水をコンプレッサ6で1〜3kg/cm2 に加圧して膜モジュール4に逆流させて行うのが好ましい。
【0026】
このような本発明の方法は、有機性又は無機性の濁質を含み、特に、鉄や亜鉛等の重金属イオンを含む排水の凝集処理に好適であり、定期的な凝集を行うことで、長期にわたり薬品洗浄を行うことなく、膜フラックスを安定に維持することができる。
【0027】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0028】
実施例1
図1に示す方法に従って、排煙脱硫排水を除く石炭火力発電所の一般排水(pH:2.9、SS:32mg/L、CODMn:3.8mg/L、Al:3.6mg/L、F:0.3mg/L、T−P:1.8mg/L)を原水として凝集処理を行った。
【0029】
装置各部の仕様、運転条件は次の通りである。
【0030】
原水流量:200L/day
凝集槽容量:20L
凝集剤:FeCl3
凝集剤添加量:50mg/L(Fe換算)
凝集槽pH:7.0(NaOHで調整)
凝集槽SS濃度:1.0%(循環槽内液を200L/dayで返送)
循環槽容量:20L
循環槽SS濃度:2%
膜モジュール:内径5.5mm、表面積0.036m2 MF膜使用
膜モジュールへの流量:2.0m/s
透過水量:5.0m3 /m2 ・day
なお、膜モジュールは、15分に5秒の頻度で、透過水を2kg/cm2 に昇圧して逆流させることにより逆洗した。
【0031】
循環水側平均圧力(A)と透過水側圧力(B)との差を0.5kg/cm2 に換算(圧力値に比例)し、循環水温度25℃に粘性換算して求めたフラックスを基準換算フラックス(WWF)とし、基準換算フラックスの経時変化を表1に示した。この基準換算フラックスと運転日数との関係から1日当りのフラックス低下速度(mdd)を求め、結果を表1に示した。
【0032】
また、各運転日数毎に循環槽底部から取り出した液を1日静置した後の全容量に対する沈降汚泥容量の割合(%)をスラッジ容量(SV)として求め、結果を表1に併記した。
【0033】
比較例1
実施例1において、凝集剤としてFeCl3 の代りにPACをAl換算で50mg/L添加したこと以外は同様にして、基準換算フラックス及びスラッジ容量の経時変化とフラックス低下速度を求め、結果を表1に示した。
【0034】
【表1】

Figure 0003829364
【0035】
表1より、凝集剤としてFeCl3 を用いた実施例1では、PACを用いた比較例1よりも分離性、沈降性の良い圧密化された汚泥が得られ、これによりフラックス低下速度も小さくなっていることがわかる。
【0036】
実施例2〜6、比較例2〜4
図1に示す方法に従って、研究所排水(pH:4.2、SS:20mg/L)を原水として凝集処理を行った。
【0037】
装置各部の仕様、運転条件は次の通りである。
【0038】
原水流量:200L/day
凝集槽容量:20L
凝集剤:FeCl3
凝集剤添加量:100mg/L(Fe換算)
凝集槽pH:7.0(NaOHで調整)
凝集槽SS濃度:表2に示す(循環槽内液を原水量に対して表2に示す割合で返送)
循環槽容量:20L
循環槽SS濃度:7%
膜モジュール:内径5.5mm、表面積0.036m2 MF膜使用
膜モジュールへの流量:2.0m/s
透過水量:5.0m3 /m2 ・day
なお、膜モジュールは、15分に5秒の頻度で、透過水を2kg/cm2 に昇圧して逆流させることにより逆洗した。
【0039】
各例において、基準換算フラックス(WWF)及びフラックス低下速度(mdd)を実施例1と同様にして求め、結果を表2に示した。
【0040】
比較例5
実施例2において、凝集槽を省略し、循環槽に直接原水を導入すると共にFeCl3 及びNaOHを添加したこと以外は同様に処理を行い(ただし、循環槽内SS濃度は7.0%)、同様に基準換算フラックス(WWF)及びフラックス低下速度(mdd)を求め、結果を表2に示した。
【0041】
【表2】
Figure 0003829364
【0042】
表2より次のことが明らかである。
【0043】
即ち、凝集槽内SS濃度が0.2%以下の比較例2,3及び凝集槽を省略した比較例5ではフラックス低下速度が大きい。これは凝集槽内SS濃度が小さいと膨張した汚泥になり、膜面に付着したケーキの剥離が逆洗流では不十分なためであり、また、循環槽を省略すると膜面から膜内部でSSが析出し、逆洗流でのケーキ剥離が不十分なためであると考えられる。
【0044】
また、凝集槽内SS濃度を6.8%とした比較例4でも、膜面のケーキ付着厚みが増すために、やはり、フラックス低下速度が大きくなる。
【0045】
これに対して、凝集槽を設け、凝集槽内SS濃度が0.5〜6.5%、特に1.0〜2.0%とした実施例では、フラックス低下速度が小さく、逆洗のみでフラックスを安定に維持できる。
【0046】
実施例7、比較例6,7
実施例1で原水としたものと同様の石炭火力発電所の一般排水を原水としたこと以外は、実施例2、比較例2,3と同様にして処理を行い、同様にフラックス低下速度を求め、結果を表3に示した。
【0047】
この結果からも、凝集槽SS濃度を0.5%以上とすることで、フラックス低下速度を小さくすることができることがわかる。
【0048】
【表3】
Figure 0003829364
【0049】
【発明の効果】
以上詳述した通り、本発明の排水の凝集処理方法によれば、排水に凝集剤を加えて凝集槽で凝集反応を行った後膜分離装置で固液分離するに当り、膜のフラックスを安定化して、薬品洗浄頻度を低減することができる。このため、薬品洗浄のための薬剤コストを低減すると共に、膜の予備個数の低減を図ることができる。また、装置稼動効率が向上することで、排水の貯水槽容量を縮小することができ、設備費が安価となる。
【図面の簡単な説明】
【図1】本発明の排水の凝集処理方法の実施の形態を示す系統図である。
【図2】本発明の排水の凝集処理方法の別の実施の形態を示す系統図である。
【図3】本発明の排水の凝集処理方法の更に別の実施の形態を示す系統図である。
【符号の説明】
1 凝集槽
2 循環槽
3 ポンプ
4 膜モジュール
5 逆洗用加圧ポット
6 コンプレッサ
7 膜浸漬槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for aggregating wastewater, and in particular, stabilizing the permeation flux (flux) of the membrane in solid-liquid separation with a membrane separator after agglomeration reaction is performed in a coagulation tank after adding a coagulant to the wastewater. The present invention relates to a method for agglomeration treatment of wastewater.
[0002]
[Prior art]
In the agglomeration processing technology in which an inorganic flocculant is added to wastewater to perform solid-liquid separation, a precipitation method or a pressure flotation method is generally applied as a solid-liquid separation means. Of these, the agglomeration method using the precipitation method is obtained by treating the fluorine-containing wastewater with the addition of a non-polymerizable aluminum compound, agglomeration treatment, precipitation separation, and returning the separated sludge to the agglomeration step. A method for improving the dewaterability of sludge has been proposed.
[0003]
On the other hand, for the purpose of clarification of waste water, flocculants such as PAC (polyaluminum chloride), sulfuric acid band (Al 2 (SO 4 ) 3 ), ferric chloride (FeCl 3 ) are added to the waste water as necessary. There is a method of membrane separation treatment. In addition, as an example in which this method is applied to the treatment of fluorine-containing wastewater, in a method in which a calcium compound and / or an aluminum compound is added to the fluorine-containing wastewater and agglomeration treatment is performed, the membrane separation treatment is performed. A method has been proposed in which part of the film is returned to the agglomeration process to prevent film scale failure (Japanese Patent Publication No. 7-53276).
[0004]
[Problems to be solved by the invention]
Conventionally, when membrane separation treatment is used as a solid-liquid separation method in wastewater agglomeration treatment, the flux of the membrane is drastically reduced and the frequency of chemical washing for recovering the flux is high. There were problems such as reduced efficiency.
[0005]
As described above, even if the precipitation treatment is adopted as the solid-liquid separation means, the technology for improving the dewatering property of the obtained sludge and the membrane separation treatment as the solid-liquid separation means are used. As described in Japanese Patent Publication No. 53276, a technique for preventing the scale failure of the film has been proposed, but the present situation is that the stabilization of the film flux has not been studied.
[0006]
The present invention has been made in view of the above-described conventional situation, and after adding a flocculant to wastewater and performing agglomeration reaction in a coagulation tank, solid-liquid separation is performed in a membrane separation device, and the membrane flux is stabilized. An object of the present invention is to provide a method for aggregating wastewater to reduce the frequency of chemical cleaning.
[0007]
[Means for Solving the Problems]
The wastewater agglomeration treatment method of the present invention uses an iron salt as a flocculant in the wastewater agglomeration treatment method in which a flocculant is added to the wastewater and the agglomeration reaction is performed in the agglomeration tank, followed by solid-liquid separation with a membrane separator. A part of the concentrated liquid of the membrane separator is returned to the coagulation tank so that the SS concentration in the coagulation tank is 0.5 to 7%.
[0008]
In the present invention, by using an iron salt as an aggregating agent, it is possible to obtain an agglomerated sludge having excellent separability due to a good aggregating effect of crystallization of iron hydroxide particles, thereby preventing a decrease in membrane flux. can do.
[0009]
Moreover, the cake resistance by the sludge adhering to the membrane surface of the membrane separation apparatus is returned by returning a part of the concentrate of the membrane separation apparatus so that the SS concentration in the coagulation tank is 0.5 to 6.5%. In addition, the amount of sludge adhering to the membrane surface can be suppressed and the film can be easily peeled and removed only by backwashing operation. For this reason, the fall of the membrane flux of a membrane separation apparatus is prevented, a flux comes to be maintained stably, and chemical cleaning frequency is reduced significantly.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0011]
1 to 3 are system diagrams showing an embodiment of the method for aggregating wastewater of the present invention. 1-3, 1 is a coagulation tank, 2 is a circulation tank, 3 is a pump, 4 is a membrane module, 5 is a pressure pot for backwashing, 6 is a compressor, and 7 is a membrane immersion tank.
[0012]
The wastewater agglomeration treatment method of the present invention uses an iron salt as a flocculant when a flocculant is added to wastewater and agglomeration reaction is carried out in a coagulation tank, followed by solid-liquid separation with a membrane separator. A part of the concentrated liquid is returned to the coagulation tank so that the SS concentration in the coagulation tank is 0.5 to 7%. Specifically, the following method can be employed.
[0013]
(1) As shown in FIG. 1, raw water is introduced into a coagulation tank 1, iron salt is added to cause coagulation reaction, and the effluent from the coagulation tank 1 is sent to a membrane module 4 by a pump 3 through a circulation tank 2. The membrane is separated, and the permeate is discharged out of the system as treated water through the backwashing pressure pot 5, the concentrated liquid is circulated to the circulation tank 2, and the liquid in the circulation tank 2 is submerged by a submersible pump (not shown). ).
[0014]
(2) As shown in FIG. 2, raw water is introduced into the coagulation tank 1 and iron salt is added to cause coagulation reaction, and the effluent from the coagulation tank 1 is sent to the membrane module 4 by the pump 3 through the circulation tank 2. Then, the permeated water is discharged out of the system as treated water through the backwashing pressure pot 5, a part of the concentrated liquid is returned to the coagulation tank 1, and the remaining part is returned to the circulation tank 2.
[0015]
(3) As shown in FIG. 3, by using a membrane module 4 immersed in a membrane immersion tank 7, raw water is introduced into the aggregation tank 1, iron salt is added to cause an aggregation reaction, and the effluent from the aggregation tank 1 is discharged. It introduce | transduces into the film | membrane soaking tank 7, The permeated water of the membrane module 4 is taken out as process water, and the liquid in this film | membrane soaking tank 7 is returned to the coagulation tank 1 with a submersible pump (not shown).
[0016]
In the present invention, ferric chloride (FeCl 3 ), ferric sulfate (Fe 2 (SO 4 ) 3 ), ferrous sulfate (FeSO 4 ), and the like can be used as the iron salt used as the flocculant. . The addition amount of these iron salts is preferably 10 to 500 mg / L in terms of Fe with respect to the raw water.
[0017]
In the present invention, these iron salts may be used alone as a flocculant, or other flocculants such as aluminum salts may be added in combination. In this case, aluminum chloride (AlCl 3 ), sulfuric acid band (Al 2 (SO 4 ) 3 ), aluminum hydroxide (Al (OH) 3 ), or aluminum oxide (Al 2 O 3 ) is hydrochloric acid as the aluminum salt. Those dissolved in (HCl) or sulfuric acid (H 2 SO 4 ) may be used. A PAC that does not dissociate as Al 3+ is not suitable for the present invention.
[0018]
When using together aluminum salt, it is preferable that the addition amount shall be 5-100 mg / L with respect to raw | natural water in conversion of Al.
[0019]
In the raw water flocculation treatment, sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2 ), calcium oxide (CaO), ammonium hydroxide (NH 4 ) are used as necessary. OH) or a mineral acid such as HCl, H 2 SO 4 or nitric acid (HNO 3 ) is added to adjust the pH to about 6.0 to 11.
[0020]
In the present invention, a part of the concentrated liquid in the membrane module 4, specifically, the concentrated liquid is circulated as shown in FIG. 1 so that the SS concentration in the coagulation tank 1 is 0.5 to 6.5%. Part of the liquid in the circulation tank 2 to be returned, part of the concentrated liquid from the membrane module 4 as shown in FIG. 2, or part of the liquid in the membrane immersion tank 7 as shown in FIG. To do.
[0021]
When the SS concentration in the agglomeration tank 1 is less than 0.5%, sludge having a large cake resistance is generated, and when it exceeds 6.5%, the cake adhesion thickness on the film surface is increased. In any case, the flux reduction rate of the film increases. A preferable SS concentration in the aggregation tank 1 is 1.0 to 2.0%. The return amount of the concentrated solution of the membrane module 4 for achieving such SS concentration is generally 0.5 to 3.0 times the raw water flow rate.
[0022]
The circulation tank 2 or the membrane immersion tank 7 appropriately extracts sludge from the bottom of the tank so that the SS concentration becomes 1 to 5%. If the SS concentration is less than 1%, the amount of treated water decreases, and if it exceeds 5%, the membrane flux tends to decrease.
[0023]
In the present invention, an MF (microfiltration) membrane or a UF (ultrafiltration) membrane is preferably used as the separation membrane of the membrane module 4. There is no restriction | limiting in particular in the material and form of a film | membrane, An immersion film as shown in FIG. 3 can also be used. In this case, the circulation tank also serves as the membrane immersion tank, and the circulation pump becomes unnecessary.
[0024]
As the membrane separation conditions, for example, in the cross flow filtration as shown in FIGS. 1 and 2, it is preferable that the flow rate in the membrane module is 0.5 to 3.0 m / s.
[0025]
In addition, it is preferable that the membrane module is periodically backwashed with permeated water (treated water) after a predetermined time of filtration treatment, and backwashing is performed once for 5 to 500 minutes of filtration. It is preferable that the permeated water in the backwashing pressure pot 5 is pressurized to 1 to 3 kg / cm 2 by the compressor 6 to flow back to the membrane module 4 at a frequency of 3 to 30 seconds.
[0026]
Such a method of the present invention includes an organic or inorganic turbidity, and is particularly suitable for agglomeration treatment of wastewater containing heavy metal ions such as iron and zinc. The membrane flux can be stably maintained without chemical cleaning.
[0027]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0028]
Example 1
According to the method shown in FIG. 1, general wastewater from a coal-fired power plant excluding flue gas desulfurization wastewater (pH: 2.9, SS: 32 mg / L, COD Mn : 3.8 mg / L, Al: 3.6 mg / L, F: 0.3 mg / L, TP: 1.8 mg / L) was used as a raw water for aggregation treatment.
[0029]
The specifications and operating conditions of each part of the equipment are as follows.
[0030]
Raw water flow rate: 200L / day
Coagulation tank capacity: 20L
Flocculant: FeCl 3
Flocculant addition amount: 50 mg / L (Fe conversion)
Coagulation tank pH: 7.0 (adjusted with NaOH)
Aggregation tank SS concentration: 1.0% (The liquid in the circulation tank is returned at 200 L / day)
Circulation tank capacity: 20L
Circulation tank SS concentration: 2%
Membrane module: inner diameter 5.5 mm, surface area 0.036 m 2 Flow rate to membrane module using MF membrane: 2.0 m / s
Permeated water volume: 5.0 m 3 / m 2 · day
The membrane module was backwashed by increasing the pressure of the permeate to 2 kg / cm 2 and backflowing at a frequency of 5 seconds every 15 minutes.
[0031]
The flux obtained by converting the difference between the circulating water side average pressure (A) and the permeated water side pressure (B) to 0.5 kg / cm 2 (proportional to the pressure value) and converting the viscosity to the circulating water temperature of 25 ° C. Table 1 shows the change over time of the reference converted flux (WWF). The flux reduction rate (mdd) per day was determined from the relationship between this reference converted flux and the number of operating days, and the results are shown in Table 1.
[0032]
Moreover, the ratio (%) of the sedimentation sludge capacity | capacitance with respect to the total capacity | capacitance after leaving the liquid taken out from the circulation tank bottom part for every operation days for one day as a sludge capacity | capacitance (SV) was shown, and the result was written together in Table 1.
[0033]
Comparative Example 1
In Example 1, except that 50 mg / L of PAC was added in terms of Al instead of FeCl 3 as a flocculant, the change with time of the standard conversion flux and sludge capacity and the rate of flux decrease were obtained, and the results are shown in Table 1. It was shown to.
[0034]
[Table 1]
Figure 0003829364
[0035]
From Table 1, in Example 1 using FeCl 3 as a flocculant, consolidated sludge having better separability and settling than that in Comparative Example 1 using PAC is obtained, and this reduces the rate of flux reduction. You can see that
[0036]
Examples 2-6, Comparative Examples 2-4
In accordance with the method shown in FIG. 1, flocculation treatment was performed using laboratory wastewater (pH: 4.2, SS: 20 mg / L) as raw water.
[0037]
The specifications and operating conditions of each part of the equipment are as follows.
[0038]
Raw water flow rate: 200L / day
Coagulation tank capacity: 20L
Flocculant: FeCl 3
Addition amount of flocculant: 100 mg / L (Fe conversion)
Coagulation tank pH: 7.0 (adjusted with NaOH)
Aggregation tank SS concentration: Shown in Table 2 (return the liquid in the circulation tank at the rate shown in Table 2 with respect to the amount of raw water)
Circulation tank capacity: 20L
Circulation tank SS concentration: 7%
Membrane module: inner diameter 5.5 mm, surface area 0.036 m 2 Flow rate to membrane module using MF membrane: 2.0 m / s
Permeated water volume: 5.0 m 3 / m 2 · day
The membrane module was backwashed by increasing the pressure of the permeate to 2 kg / cm 2 and backflowing at a frequency of 5 seconds every 15 minutes.
[0039]
In each example, the standard conversion flux (WWF) and the flux reduction rate (mdd) were determined in the same manner as in Example 1, and the results are shown in Table 2.
[0040]
Comparative Example 5
In Example 2, the coagulation tank was omitted, the raw water was directly introduced into the circulation tank and the same treatment was performed except that FeCl 3 and NaOH were added (however, the SS concentration in the circulation tank was 7.0%), Similarly, the standard conversion flux (WWF) and the flux reduction rate (mdd) were determined, and the results are shown in Table 2.
[0041]
[Table 2]
Figure 0003829364
[0042]
From Table 2, the following is clear.
[0043]
That is, in Comparative Examples 2 and 3 in which the SS concentration in the coagulation tank is 0.2% or less and in Comparative Example 5 in which the coagulation tank is omitted, the flux reduction rate is large. This is because when the SS concentration in the coagulation tank is small, the sludge expands and the cake adhering to the film surface is insufficient for backwash flow. This is thought to be due to the precipitation of the cake and insufficient cake peeling in the backwash flow.
[0044]
Further, in Comparative Example 4 in which the SS concentration in the coagulation tank is 6.8%, the cake adhesion thickness on the film surface is increased, so that the flux decreasing rate is also increased.
[0045]
On the other hand, in an example in which a coagulation tank is provided and the SS concentration in the coagulation tank is 0.5 to 6.5%, particularly 1.0 to 2.0%, the flux reduction rate is small, and only by backwashing Flux can be maintained stably.
[0046]
Example 7, Comparative Examples 6 and 7
The same treatment as in Example 2 and Comparative Examples 2 and 3 was performed except that the general waste water from the coal-fired power plant similar to that used in Example 1 was used as raw water, and the flux reduction rate was similarly obtained. The results are shown in Table 3.
[0047]
Also from this result, it can be seen that the flux lowering rate can be reduced by setting the concentration of the aggregation tank SS to 0.5% or more.
[0048]
[Table 3]
Figure 0003829364
[0049]
【The invention's effect】
As described in detail above, according to the method for aggregating wastewater of the present invention, a flocculant is added to the wastewater, agglomeration reaction is performed in the agglomeration tank, and then solid-liquid separation is performed in the membrane separation apparatus, the membrane flux is stabilized. The frequency of chemical cleaning can be reduced. For this reason, while reducing the chemical | medical agent cost for chemical | medical agent washing | cleaning, it can aim at reduction of the reserve number of films | membranes. Moreover, since the apparatus operating efficiency is improved, the capacity of the drainage water tank can be reduced, and the equipment cost is reduced.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an embodiment of a method for aggregating wastewater according to the present invention.
FIG. 2 is a system diagram showing another embodiment of the waste water aggregation treatment method of the present invention.
FIG. 3 is a system diagram showing still another embodiment of the method for aggregating wastewater according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Coagulation tank 2 Circulation tank 3 Pump 4 Membrane module 5 Pressurization pot 6 for backwashing Compressor 7 Membrane immersion tank

Claims (1)

排水に凝集剤を加えて凝集槽で凝集反応を行った後膜分離装置で固液分離する排水の凝集処理方法において、
凝集剤として鉄塩を用いると共に、膜分離装置の濃縮液の一部を、前記凝集槽内のSS濃度が0.5〜6.5%となるように該凝集槽に返送することを特徴とする排水の凝集処理方法。
In the flocculation treatment method for wastewater, after adding a flocculant to the wastewater and performing agglomeration reaction in the agglomeration tank, solid-liquid separation with a membrane separator,
The iron salt is used as a flocculant, and a part of the concentrate of the membrane separator is returned to the flocculant so that the SS concentration in the flocculant is 0.5 to 6.5%. Waste water flocculation method.
JP16318996A 1996-06-24 1996-06-24 Wastewater aggregation treatment method Expired - Fee Related JP3829364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16318996A JP3829364B2 (en) 1996-06-24 1996-06-24 Wastewater aggregation treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16318996A JP3829364B2 (en) 1996-06-24 1996-06-24 Wastewater aggregation treatment method

Publications (2)

Publication Number Publication Date
JPH105763A JPH105763A (en) 1998-01-13
JP3829364B2 true JP3829364B2 (en) 2006-10-04

Family

ID=15768966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16318996A Expired - Fee Related JP3829364B2 (en) 1996-06-24 1996-06-24 Wastewater aggregation treatment method

Country Status (1)

Country Link
JP (1) JP3829364B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004216207A (en) * 2003-01-09 2004-08-05 Kuraray Co Ltd Wastewater treatment method
JP2006043616A (en) * 2004-08-06 2006-02-16 Kobelco Eco-Solutions Co Ltd Water treatment method and water treatment apparatus
JP4712665B2 (en) * 2006-10-05 2011-06-29 野村マイクロ・サイエンス株式会社 Pure water production method and pure water production apparatus
JP4806426B2 (en) * 2008-03-18 2011-11-02 日本碍子株式会社 Method and apparatus for detoxifying heavy metal ions simultaneously with inorganic suspended particles
JP5906892B2 (en) * 2012-03-29 2016-04-20 栗田工業株式会社 Calcium / magnesium-containing water treatment method and treatment apparatus

Also Published As

Publication number Publication date
JPH105763A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
US5378366A (en) Hot lime precipitation of arsenic from wastewater or groundwater
JPH03118897A (en) Treatment of fluoride-containing water
JP3871749B2 (en) Treatment method of flue gas desulfurization waste water
JP3829364B2 (en) Wastewater aggregation treatment method
JPH0714512B2 (en) Treatment method of wastewater containing heavy metals
JPH10272494A (en) Treatment of organic waste water containing salts of high concentration
JP3319053B2 (en) Treatment method for fluoride-containing water
JPS59189987A (en) Circulative use of waste water used for grinding silicon wafer
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
US5338457A (en) Removal of aluminum and sulfate ions from aqueous solutions
JPH1199389A (en) Treatment of water containing organic component and manganese
JPH0366036B2 (en)
JPH10180008A (en) Membrane separation device
JP4261857B2 (en) Method for recovering and using valuable metals in metal-containing wastewater
JP2003340450A (en) Method and system for treating heavy metal-containing waste water
JP2010089051A (en) Method and apparatus for treating water containing phosphoric acid, nitric acid and organic acid
JP7149129B2 (en) Silica-containing water treatment method and treatment apparatus
JP3111508B2 (en) Treatment method for wastewater containing heavy metals
JP3697800B2 (en) Wastewater treatment method
JP3546906B2 (en) Thermal power plant wastewater treatment equipment
JP3622407B2 (en) Water treatment method
JP4061671B2 (en) Thermal power plant wastewater treatment method
CN111051253A (en) Apparatus and method for treating silica-containing water
JP3630126B2 (en) Method of treating water containing fluorine and manganese ions
JPH0985262A (en) Treatment of fluorine-containing waste water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140721

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees