JP7149129B2 - Silica-containing water treatment method and treatment apparatus - Google Patents

Silica-containing water treatment method and treatment apparatus Download PDF

Info

Publication number
JP7149129B2
JP7149129B2 JP2018146901A JP2018146901A JP7149129B2 JP 7149129 B2 JP7149129 B2 JP 7149129B2 JP 2018146901 A JP2018146901 A JP 2018146901A JP 2018146901 A JP2018146901 A JP 2018146901A JP 7149129 B2 JP7149129 B2 JP 7149129B2
Authority
JP
Japan
Prior art keywords
water
silica
reverse osmosis
osmosis membrane
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018146901A
Other languages
Japanese (ja)
Other versions
JP2020018991A (en
Inventor
徹 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2018146901A priority Critical patent/JP7149129B2/en
Publication of JP2020018991A publication Critical patent/JP2020018991A/en
Application granted granted Critical
Publication of JP7149129B2 publication Critical patent/JP7149129B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Description

本発明は、シリカを含むシリカ含有水の処理方法および処理装置に関する。 TECHNICAL FIELD The present invention relates to a method and apparatus for treating silica-containing water containing silica.

近年では、工場等から排出される排水量をできる限り減らすことが行われており、逆浸透膜等を用いて排水を濃縮し、透過水を回収して排水を減容化する方法が取られている。水回収率はできる限り高める傾向にあり、中には、逆浸透膜の濃縮水をさらに逆浸透膜で処理したり、蒸発濃縮等の方法によって濃縮したりする方法が行われ、ほぼ全量を水回収し、不純物を固形化して排出するZLD(Zero Liquid Discharge)まで行われている工場等も増えている。 In recent years, efforts have been made to reduce the amount of wastewater discharged from factories, etc., as much as possible, and methods have been adopted to reduce the volume of wastewater by concentrating the wastewater using reverse osmosis membranes and recovering the permeated water. there is There is a tendency to increase the water recovery rate as much as possible. An increasing number of factories are even implementing ZLD (Zero Liquid Discharge) in which impurities are collected and solidified before being discharged.

このように、逆浸透膜装置や蒸発濃縮装置での濃縮倍率を高くすると、その分、排水中のシリカ等によるスケーリングのリスクが高くなる。スケールが発生すると、逆浸透膜が閉塞して透過水量が減少したり、蒸発濃縮の伝熱面がスケールで覆われて伝熱効率が低下したりする。 As described above, if the concentration ratio in the reverse osmosis membrane device or the evaporative concentration device is increased, the risk of scaling due to silica or the like in the waste water increases accordingly. When scale is generated, the reverse osmosis membrane is clogged and the amount of permeated water is reduced, or the heat transfer surface of evaporative concentration is covered with scale and the heat transfer efficiency is lowered.

そこで、逆浸透膜処理の前に排水中のシリカをできるだけ低減することが望ましい。シリカを含む排水を処理する方法として、特許文献1にあるように、アルカリ条件下で逆浸透膜に通水し、シリカの溶解度を高めて処理する方法がある。 Therefore, it is desirable to reduce silica in waste water as much as possible before reverse osmosis membrane treatment. As a method for treating silica-containing wastewater, there is a method in which water is passed through a reverse osmosis membrane under alkaline conditions to increase the solubility of silica, as described in Patent Document 1.

このアルカリ条件下で逆浸透膜に通水する方法では、シリカが濃縮された濃縮水が排出されるが、この濃縮水の処理方法については検討されていない。この濃縮水は、通常はそのまま産廃処理されるか、蒸発濃縮装置に導入して固形化して廃棄処分される。図2に従来のシリカ含有水の処理装置の概略構成を示すが、例えば、被処理水槽100からのシリカ含有水にアルカリを添加した後、逆浸透膜処理装置102において逆浸透膜処理し、その濃縮水を蒸発濃縮装置104において濃縮して固形化して廃棄処分する。しかし、この方法では、その蒸発エネルギーや、産廃処理のコストが大きいという課題がある。 In this method of passing water through a reverse osmosis membrane under alkaline conditions, silica-enriched concentrated water is discharged, but a treatment method for this concentrated water has not been studied. This concentrated water is usually treated as industrial waste as it is, or is introduced into an evaporative concentration apparatus, solidified, and disposed of. FIG. 2 shows a schematic configuration of a conventional silica-containing water treatment apparatus. For example, after adding an alkali to silica-containing water from a water tank 100 to be treated, reverse osmosis membrane treatment is performed in a reverse osmosis membrane treatment apparatus 102, The concentrated water is concentrated and solidified in the evaporative concentration device 104 for disposal. However, this method has the problem that the evaporation energy and the cost of industrial waste disposal are high.

特開2002-192152号公報Japanese Patent Application Laid-Open No. 2002-192152

本発明の目的は、シリカ含有水の逆浸透膜処理において、発生するシリカの濃縮水の量を低減し、処理コストを低減することができる、シリカ含有水の処理方法および処理装置を提供することにある。 An object of the present invention is to provide a method and apparatus for treating silica-containing water, which can reduce the amount of silica-concentrated water generated and reduce treatment costs in reverse osmosis membrane treatment of silica-containing water. It is in.

本発明は、シリカを含む被処理水をpH10以上で逆浸透膜に通水して濃縮水と透過水とを得る逆浸透膜処理工程と、得られた前記濃縮水に反応槽内で酸を添加することによってpHを5~9に調整した後、固液分離処理を行う固液分離処理工程と、前記固液分離処理工程で得られた固液分離水に酸を添加してpHを5以下に調整するか、またはアルカリを添加してpH10以上に調整した後、第2逆浸透膜に通水して第2濃縮水と第2透過水とを得る第2逆浸透膜処理工程と、前記第2濃縮水の1/2~9/10を前記反応槽に返送する返送工程と、を含む、シリカ含有水の処理方法である。 The present invention comprises a reverse osmosis membrane treatment step in which water to be treated containing silica is passed through a reverse osmosis membrane at a pH of 10 or higher to obtain concentrated water and permeated water, and acid is added to the obtained concentrated water in a reaction tank. After adjusting the pH to 5 to 9 by adding a second reverse osmosis membrane treatment step of obtaining a second concentrated water and a second permeated water by adjusting the pH to 10 or more by adding an alkali to the second reverse osmosis membrane, and then passing the water through the second reverse osmosis membrane; and a returning step of returning 1/2 to 9/10 of the second concentrated water to the reaction tank .

前記シリカ含有水の処理方法において、前記固液分離処理が、強アニオン性高分子凝集剤を用いる凝集沈殿処理であることが好ましい。 In the method for treating silica-containing water, the solid-liquid separation treatment is preferably coagulation sedimentation treatment using a strong anionic polymer flocculant.

また、本発明は、シリカを含む被処理水をpH10以上で逆浸透膜に通水して濃縮水と透過水とを得る逆浸透膜処理手段と、得られた前記濃縮水に反応槽内で酸を添加することによってpHを5~9に調整した後、固液分離処理を行う固液分離処理手段と、前記固液分離処理手段で得られた固液分離水に酸を添加してpHを5以下に調整するか、またはアルカリを添加してpH10以上に調整した後、第2逆浸透膜に通水して第2濃縮水と第2透過水とを得る第2逆浸透膜処理手段と、前記第2濃縮水の1/2~9/10を前記反応槽に返送する返送手段と、を備える、シリカ含有水の処理装置である。 Further, the present invention provides reverse osmosis membrane treatment means for obtaining concentrated water and permeated water by passing water to be treated containing silica at pH 10 or higher through a reverse osmosis membrane, and After adjusting the pH to 5 to 9 by adding an acid, a solid-liquid separation processing means for performing solid-liquid separation processing , and adding an acid to the solid-liquid separated water obtained by the solid-liquid separation processing means to adjust the pH is adjusted to 5 or less, or after adjusting the pH to 10 or more by adding an alkali, water is passed through the second reverse osmosis membrane to obtain the second concentrated water and the second permeated water. Second reverse osmosis membrane treatment means and a return means for returning 1/2 to 9/10 of the second concentrated water to the reaction tank .

前記シリカ含有水の処理装置において、前記固液分離処理が、強アニオン性高分子凝集剤を用いる凝集沈殿処理であることが好ましい。 In the apparatus for treating silica-containing water, the solid-liquid separation treatment is preferably coagulation sedimentation treatment using a strong anionic polymer flocculant.

本発明により、シリカ含有水の逆浸透膜処理において、発生するシリカの濃縮水の量を低減し、処理コストを低減することができる。 INDUSTRIAL APPLICABILITY According to the present invention, in the reverse osmosis membrane treatment of silica-containing water, the amount of silica-concentrated water generated can be reduced, and the treatment cost can be reduced.

本発明の実施形態に係るシリカ含有水の処理装置の一例を示す概略構成図である。1 is a schematic configuration diagram showing an example of a silica-containing water treatment apparatus according to an embodiment of the present invention; FIG. 従来のシリカ含有水の処理装置を示す概略構成図である。1 is a schematic configuration diagram showing a conventional silica-containing water treatment apparatus; FIG. 実施例1で用いた実験装置を示す概略構成図である。1 is a schematic configuration diagram showing an experimental apparatus used in Example 1. FIG. 比較例1で用いた実験装置を示す概略構成図である。2 is a schematic configuration diagram showing an experimental apparatus used in Comparative Example 1. FIG.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 An embodiment of the present invention will be described below. This embodiment is an example of implementing the present invention, and the present invention is not limited to this embodiment.

本発明の実施形態に係るシリカ含有水の処理装置の一例の概略を図1に示し、その構成について説明する。 An outline of an example of a silica-containing water treatment apparatus according to an embodiment of the present invention is shown in FIG. 1, and the configuration thereof will be described.

シリカ含有水の処理装置1は、シリカを含む被処理水をpH10以上で逆浸透膜に通水して濃縮水と透過水とを得る逆浸透膜処理手段として逆浸透膜処理装置12と、得られた濃縮水に反応槽14内で酸を添加した後、固液分離処理を行う固液分離処理手段として沈殿槽18と、を備える。シリカ含有水の処理装置1は、被処理水を貯留する被処理水槽10と、凝集槽16と、除濁装置20と、第2逆浸透膜処理手段として第2逆浸透膜処理装置22と、を備えてもよい。 The silica-containing water treatment apparatus 1 includes a reverse osmosis membrane treatment apparatus 12 as reverse osmosis membrane treatment means for obtaining concentrated water and permeated water by passing silica-containing water to be treated at pH 10 or higher through a reverse osmosis membrane. and a sedimentation tank 18 as solid-liquid separation processing means for performing solid-liquid separation processing after adding an acid to the concentrated water obtained in the reaction tank 14 . The silica-containing water treatment apparatus 1 includes a water tank to be treated 10 for storing water to be treated, a coagulation tank 16, a turbidity removal device 20, a second reverse osmosis membrane treatment device 22 as a second reverse osmosis membrane treatment means, may be provided.

図1のシリカ含有水の処理装置1において、被処理水槽10の出口と逆浸透膜処理装置12の入口とは、ポンプ24を介して配管28により接続されている。逆浸透膜処理装置12の透過水出口には、透過水配管32が接続され、濃縮水出口と反応槽14の濃縮水入口とは濃縮水配管30により接続されている。反応槽14の出口と凝集槽16の入口とは、配管34により接続され、凝集槽16の出口と沈殿槽18の入口とは、配管36により接続されている。沈殿槽18の下部の汚泥出口には、ポンプ26を介して配管48が接続され、上澄水出口と除濁装置20の入口とは、配管38により接続されている。除濁装置20の出口と第2逆浸透膜処理装置22の入口とは、配管40により接続されている。第2逆浸透膜処理装置22の第2透過水出口には、第2透過水配管42が接続され、第2濃縮水出口と反応槽14の第2濃縮水入口とは返送配管44により接続されている。返送配管44には、返送配管44から分岐して配管46が接続されている。配管28におけるポンプ24の後流側には、アルカリ添加手段としてアルカリ添加配管50が接続されている。反応槽14には、酸添加手段として酸添加配管52が接続されている。凝集槽16には、凝集剤添加手段として凝集剤添加配管54が接続されている。配管38には、酸またはアルカリ添加手段として酸/アルカリ添加配管56が接続されている。反応槽14および凝集槽16には、モータ等の回転駆動手段および撹拌羽根等を有する撹拌手段である撹拌装置58,60がそれぞれ設置されている。 In the silica-containing water treatment apparatus 1 of FIG. 1 , the outlet of the water tank 10 to be treated and the inlet of the reverse osmosis membrane treatment apparatus 12 are connected by a pipe 28 via a pump 24 . A permeated water pipe 32 is connected to the permeated water outlet of the reverse osmosis membrane treatment device 12 , and a concentrated water pipe 30 connects the concentrated water outlet and the concentrated water inlet of the reaction tank 14 . The outlet of the reaction tank 14 and the inlet of the coagulation tank 16 are connected by a pipe 34 , and the outlet of the coagulation tank 16 and the inlet of the sedimentation tank 18 are connected by a pipe 36 . A pipe 48 is connected to the sludge outlet at the bottom of the sedimentation tank 18 via a pump 26 , and a supernatant water outlet and the inlet of the clarifier 20 are connected by a pipe 38 . The outlet of the clarification device 20 and the inlet of the second reverse osmosis membrane treatment device 22 are connected by a pipe 40 . A second permeated water outlet of the second reverse osmosis membrane treatment device 22 is connected to a second permeated water pipe 42, and a return pipe 44 connects the second concentrated water outlet and the second concentrated water inlet of the reaction tank 14. ing. A pipe 46 is branched from the return pipe 44 and connected to the return pipe 44 . An alkali addition pipe 50 is connected to the pipe 28 downstream of the pump 24 as alkali addition means. An acid addition pipe 52 is connected to the reaction tank 14 as acid addition means. A coagulant addition pipe 54 is connected to the coagulant tank 16 as coagulant addition means. An acid/alkali addition pipe 56 is connected to the pipe 38 as acid or alkali addition means. The reaction tank 14 and the aggregation tank 16 are provided with stirring devices 58 and 60, which are stirring means having rotary driving means such as motors and stirring blades, respectively.

本実施形態に係るシリカ含有水の処理方法および処理装置1の動作について説明する。 The method for treating silica-containing water and the operation of the treatment apparatus 1 according to this embodiment will be described.

被処理水であるシリカ含有水は、必要に応じて被処理水槽10に貯留された後、ポンプ24により配管28を通して逆浸透膜処理装置12へ送液される。ここで、配管28におけるポンプ24の後流側において、アルカリがアルカリ添加配管50を通して添加され、pH10以上に調整される(アルカリ添加工程)。アルカリが添加されたシリカ含有水は、逆浸透膜処理装置12においてpH10以上で逆浸透膜に通水されて濃縮水と透過水とが得られる(逆浸透膜処理工程)。逆浸透膜処理で得られた透過水(シリカ含有量は、例えば、1mg/L未満)は、透過水配管32を通して排出され、濃縮水は、濃縮水配管30を通して反応槽14へ送液される。 The silica-containing water, which is the water to be treated, is stored in the water tank 10 to be treated as necessary, and then sent to the reverse osmosis membrane treatment device 12 through the pipe 28 by the pump 24 . Here, on the downstream side of the pump 24 in the pipe 28, alkali is added through the alkali addition pipe 50 to adjust the pH to 10 or more (alkali addition step). The alkali-added silica-containing water is passed through the reverse osmosis membrane at a pH of 10 or higher in the reverse osmosis membrane treatment device 12 to obtain concentrated water and permeated water (reverse osmosis membrane treatment step). Permeated water obtained by reverse osmosis membrane treatment (silica content is, for example, less than 1 mg/L) is discharged through permeated water pipe 32, and concentrated water is sent to reaction tank 14 through concentrated water pipe 30. .

反応槽14において、撹拌装置58により撹拌されながら、濃縮水に酸添加配管52を通して酸が添加される(酸添加工程)。酸が添加された酸添加水は、配管34を通して凝集槽16へ送液される。凝集槽16において、撹拌装置60により撹拌されながら、酸添加水に凝集剤添加配管54を通して凝集剤が添加され、凝集処理が行われる。凝集剤が添加された凝集水は、配管36を通して沈殿槽18へ送液され、沈殿槽18において固液分離が行われる(固液分離工程)。固液分離処理により得られた上澄水は、配管38を通して除濁装置20へ送液される。ここで、配管38において、酸またはアルカリが酸/アルカリ添加配管56を通して添加され、例えばpH5以下またはpH10以上に調整される(酸/アルカリ添加工程)。固液分離処理により得られた汚泥は、ポンプ26により配管48を通して排出される。除濁装置20において、除濁処理が行われた(除濁処理工程)後、配管40を通して第2逆浸透膜処理装置22へ送液される。第2逆浸透膜処理装置22においてpH5以下またはpH10以上で第2逆浸透膜に通水されて第2濃縮水と第2透過水とが得られる(第2逆浸透膜処理工程)。第2逆浸透膜処理で得られた第2透過水は、第2透過水配管42を通して処理水(シリカ含有量は、例えば、1mg/L未満)として排出され、第2濃縮水は、少なくとも一部が返送配管44を通して反応槽14へ返送され、一部は返送配管44、配管46を通して排出されてもよい。 In the reaction tank 14, an acid is added to the concentrated water through the acid addition pipe 52 while being stirred by the stirring device 58 (acid addition step). The acid-added water is sent to the aggregation tank 16 through the pipe 34 . In the flocculating tank 16, a flocculating agent is added to the acid-added water through the flocculating agent addition pipe 54 while being stirred by the stirring device 60, and flocculation treatment is performed. The flocculated water to which the flocculant has been added is sent to the sedimentation tank 18 through the pipe 36, and solid-liquid separation is performed in the sedimentation tank 18 (solid-liquid separation step). Supernatant water obtained by the solid-liquid separation process is sent to the turbidity removal device 20 through the pipe 38 . Here, in the pipe 38, acid or alkali is added through the acid/alkali addition pipe 56 to adjust the pH to, for example, 5 or less or 10 or more (acid/alkali addition step). Sludge obtained by the solid-liquid separation treatment is discharged through pipe 48 by pump 26 . After the turbidity removal process is performed in the turbidity removal apparatus 20 , the liquid is sent to the second reverse osmosis membrane treatment apparatus 22 through the pipe 40 . In the second reverse osmosis membrane treatment device 22, water is passed through the second reverse osmosis membrane at pH 5 or lower or pH 10 or higher to obtain a second concentrated water and a second permeated water (second reverse osmosis membrane treatment step). The second permeated water obtained by the second reverse osmosis membrane treatment is discharged as treated water (silica content is, for example, less than 1 mg / L) through the second permeated water pipe 42, and the second concentrated water is at least one A portion may be returned to the reaction vessel 14 through return line 44 and a portion may be discharged through return line 44 and line 46 .

本実施形態に係るシリカ含有水の処理方法および処理装置1では、シリカを含む被処理水にアルカリを添加してpH10以上に調整した後、逆浸透膜処理装置12において逆浸透膜に通水し、濃縮水と透過水を得る方法において、シリカが濃縮された濃縮水に、反応槽14内で酸を添加してシリカを析出させた後、固液分離処理を行ってシリカを固形物の汚泥として系外に排出する。これにより、発生するシリカの濃縮水の量が低減し、処理コストを低減することができる。シリカが濃縮された濃縮水に酸を添加してシリカを析出させた後、固液分離処理を行わない場合に比べて、発生するシリカの濃縮水の量を例えば1/10~1/20程度まで低減することができる。 In the method and apparatus 1 for treating silica-containing water according to the present embodiment, alkali is added to the water to be treated containing silica to adjust the pH to 10 or more, and then the water is passed through the reverse osmosis membrane in the reverse osmosis membrane treatment apparatus 12. In the method of obtaining concentrated water and permeated water, acid is added to the concentrated water in which silica is concentrated in the reaction tank 14 to precipitate silica, and then solid-liquid separation treatment is performed to remove silica from solid sludge. and discharged out of the system. As a result, the amount of silica-condensed water generated can be reduced, and the treatment cost can be reduced. After adding acid to concentrated silica-enriched water to deposit silica, the amount of silica-concentrated water generated is, for example, about 1/10 to 1/20 compared to the case where solid-liquid separation is not performed. can be reduced to

本実施形態に係るシリカ含有水の処理方法および処理装置1によってシリカが濃縮された濃縮水に酸を添加して固液分離処理を行うと、シリカの濃度が低い状態で固液分離処理する場合に比べて、マグネシウムの無機塩等のマグネシウム化合物やアルミニウムの無機塩等のアルミニウム化合物等の金属化合物の添加を行わなくてもよく、発生する汚泥の量が低減するほか、排液の塩濃度の上昇が少なくて済み、有利である。 When solid-liquid separation treatment is performed by adding acid to concentrated water in which silica is concentrated by the method and apparatus 1 for treating silica-containing water according to the present embodiment, solid-liquid separation treatment is performed in a state where the concentration of silica is low. Compared to , it is not necessary to add metal compounds such as magnesium compounds such as inorganic salts of magnesium and aluminum compounds such as inorganic salts of aluminum, and the amount of generated sludge is reduced. Advantageously, less lift is required.

処理対象となるシリカ含有水は、例えば、地下水、工業用水、工場排水等である。シリカ含有水中のシリカの量は、例えば、10~400mg/Lである。 Silica-containing water to be treated is, for example, groundwater, industrial water, factory wastewater, and the like. The amount of silica in the silica-containing water is, for example, 10-400 mg/L.

逆浸透膜処理工程におけるシリカ含有水のpHは、10以上であればよく、膜の耐久性等の点からpH10~11の範囲であることが好ましい。被処理水であるシリカ含有水は、逆浸透膜処理工程においてpH10以上で逆浸透膜に通水されればよく、被処理水であるシリカ含有水のpHが10以上である場合には、アルカリ添加工程は行わなくてもよい。 The pH of the silica-containing water in the reverse osmosis membrane treatment step may be 10 or higher, and is preferably in the range of pH 10 to 11 from the viewpoint of durability of the membrane. The silica-containing water to be treated may be passed through the reverse osmosis membrane at a pH of 10 or higher in the reverse osmosis membrane treatment step. The addition step may be omitted.

アルカリ添加工程で用いられるアルカリとしては、例えば、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化カルシウム(Ca(OH))等が挙げられる。これらのうち、薬品コスト等の点から水酸化ナトリウムが好ましい。 Examples of the alkali used in the alkali addition step include sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca(OH) 2 ), and the like. Of these, sodium hydroxide is preferred from the viewpoint of chemical cost and the like.

アルカリ添加工程におけるアルカリの添加は、図1のように配管28において行われてもよいし、被処理水槽10において行われてもよいし、被処理水槽10と逆浸透膜処理装置12との間にアルカリ添加槽を設け、アルカリ添加槽において行われてもよい。 Addition of alkali in the alkali addition step may be performed in the pipe 28 as shown in FIG. may be carried out in the alkali addition tank by providing an alkali addition tank.

アルカリ添加工程における温度は、特に制限はないが、例えば、15℃~30℃の範囲である。 The temperature in the alkali addition step is not particularly limited, but is, for example, in the range of 15°C to 30°C.

pH10以上のアルカリ性で逆浸透膜処理装置12において濃縮されてシリカを高濃度に含む濃縮水(シリカ含有量は、例えば、200~2000mg/L)に酸を添加してpHを下げると、シリカが固形化して析出する。シリカの溶解度はpH9以下で低下するが、pHを5未満まで下げると、シリカの析出速度が急激に遅くなって処理性が悪化するため、固液分離処理工程において濃縮水に反応槽14内で酸を添加することによってpHを5~9に調整することが好ましく、6~8に調整することがより好ましい。 When an acid is added to the concentrated water (the silica content is, for example, 200 to 2000 mg/L) that is alkaline with a pH of 10 or higher and contains a high concentration of silica in the reverse osmosis membrane treatment device 12, silica is removed. It solidifies and precipitates. The solubility of silica decreases at pH 9 or less. The pH is preferably adjusted to 5-9, more preferably 6-8, by adding acid.

酸添加工程で用いられる酸としては、例えば、塩酸、硫酸等が挙げられる。これらのうち、薬品コスト等の点から塩酸が好ましい。 Acids used in the acid addition step include, for example, hydrochloric acid and sulfuric acid. Of these, hydrochloric acid is preferred from the viewpoint of chemical cost and the like.

酸添加工程における酸の添加は、図1のように反応槽14において行われてもよいし、逆浸透膜処理装置12と凝集槽16とを接続する配管において行われてもよい。 Addition of acid in the acid addition step may be performed in the reaction tank 14 as shown in FIG.

酸添加工程における温度は、特に制限はないが、例えば、15℃~30℃の範囲である。 The temperature in the acid addition step is not particularly limited, but is, for example, in the range of 15°C to 30°C.

このシリカが析出した固形物を凝集沈殿等の方法によって固液分離処理することによって、シリカを固形物として除去することができる。 Silica can be removed as a solid matter by subjecting the solid matter from which silica precipitates to a solid-liquid separation treatment by a method such as coagulation sedimentation.

固液分離工程における固液分離方法としては、凝集沈殿処理、膜ろ過等の方法が用いられるが、膜の閉塞等のリスクがない等の点から凝集沈殿処理が好ましい。 As a solid-liquid separation method in the solid-liquid separation step, methods such as coagulation sedimentation treatment and membrane filtration are used, but coagulation sedimentation treatment is preferable because there is no risk of clogging of the membrane.

凝集沈殿処理は、例えば沈殿槽で自然沈降により固液分離を行う沈殿工程を含み、沈殿工程の前段で凝集剤を添加して凝集処理を行う凝集工程を含んでもよい。シリカを含む汚泥は凝集沈降性が悪いため、凝集沈殿処理において、必要に応じて、無機凝集剤や高分子凝集剤等の凝集剤を用いて凝集処理を行うことが好ましい。凝集工程は、無機凝集剤を用いて凝集を行う無機凝集工程と、高分子凝集剤を用いて凝集を行う高分子凝集工程とを含んでもよい。 The coagulation-sedimentation treatment includes, for example, a sedimentation step of performing solid-liquid separation by natural sedimentation in a sedimentation tank, and may include a coagulation step of adding a flocculating agent prior to the sedimentation step. Since sludge containing silica has poor flocculation and sedimentation properties, it is preferable to carry out flocculation treatment using a flocculant such as an inorganic flocculant or a polymer flocculant as necessary in the flocculation treatment. The aggregating step may include an inorganic aggregating step of aggregating using an inorganic aggregating agent and a polymer aggregating step of aggregating using a polymer aggregating agent.

凝集工程(無機凝集工程)で用いられる無機凝集剤としては、例えば、塩化第二鉄、ポリ硫酸第二鉄等の鉄系無機凝集剤、硫酸アルミニウム、ポリ塩化アルミニウム(PAC)等のアルミニウム系無機凝集剤等が挙げられる。 Examples of the inorganic flocculant used in the flocculation step (inorganic flocculation step) include iron-based inorganic flocculants such as ferric chloride and polyferric sulfate, and aluminum-based inorganic flocculants such as aluminum sulfate and polyaluminum chloride (PAC). flocculants and the like.

凝集工程(無機凝集工程)における無機凝集剤の添加量は、20~200mg/Lの範囲であることが好ましく、50~100mg/Lの範囲であることがより好ましい。凝集工程(無機凝集工程)における無機凝集剤の添加量が20mg/L未満であると、凝集反応が十分に進行しない場合があり、過剰に添加すると、薬品コスト等の点で不利になる場合がある。 The amount of inorganic flocculant added in the aggregation step (inorganic aggregation step) is preferably in the range of 20 to 200 mg/L, more preferably in the range of 50 to 100 mg/L. If the amount of the inorganic flocculant added in the flocculation step (inorganic flocculation step) is less than 20 mg/L, the flocculation reaction may not proceed sufficiently. be.

凝集工程(無機凝集工程)における反応温度は、特に制限はないが、例えば、15℃~30℃の範囲である。 The reaction temperature in the aggregation step (inorganic aggregation step) is not particularly limited, but is, for example, in the range of 15°C to 30°C.

凝集工程(高分子凝集工程)で用いられる高分子凝集剤としては、例えば、ポリアクリルアミド系、2-アクリロイルアミノ-2-メチルプロパンスルホン酸(AMPS)系等の強アニオン性高分子凝集剤、弱アニオン性高分子凝集剤、ノニオン性高分子凝集剤、メタクリレート系、アクリレート系等のカチオン性高分子凝集剤等が挙げられる。これらのうち、シリカの凝集性が良好である等の点から、強アニオン性高分子凝集剤が好ましく、強アニオン性高分子凝集剤とカチオン性高分子凝集剤とを併用してもよい。 Polymer flocculants used in the aggregation step (polymer aggregation step) include, for example, polyacrylamide-based, 2-acryloylamino-2-methylpropanesulfonic acid (AMPS)-based strong anionic polymer flocculants, weak Anionic polymer flocculants, nonionic polymer flocculants, cationic polymer flocculants such as methacrylates and acrylates, and the like are included. Among these, a strong anionic polymer flocculant is preferable from the viewpoint of good flocculation of silica, and a combination of a strong anionic polymer flocculant and a cationic polymer flocculant may be used.

凝集工程(高分子凝集工程)における高分子凝集剤の添加量は、0.5~5mg/Lの範囲であることが好ましく、1~2mg/Lの範囲であることがより好ましい。凝集工程(高分子凝集工程)における高分子凝集剤の添加量が0.5mg/L未満であると、凝集反応が十分に進行しない場合があり、過剰に添加すると、薬品コスト等の点で不利になる場合がある。 The amount of the polymer flocculant added in the aggregation step (polymer aggregation step) is preferably in the range of 0.5 to 5 mg/L, more preferably in the range of 1 to 2 mg/L. If the amount of the polymer flocculant added in the aggregation step (polymer aggregation step) is less than 0.5 mg/L, the aggregation reaction may not proceed sufficiently. may become

凝集工程(高分子凝集工程)における反応温度は、特に制限はないが、例えば、15℃~30℃の範囲である。 The reaction temperature in the aggregation step (polymer aggregation step) is not particularly limited, but is, for example, in the range of 15°C to 30°C.

固液分離処理の固液分離水、例えば凝集沈殿処理で得られる上澄水は、そのまま放流することが可能な場合は放流してもよいが、必要に応じて除濁装置20により除濁処理を行った後、第2逆浸透膜処理装置22による逆浸透膜処理(第2逆浸透膜処理)でさらに濃縮して、高度に処理された透過水(第2透過水)を得るとともに、減容化されることが好ましい。第2逆浸透膜処理を行わない場合に比べて、発生するシリカの濃縮水の量を例えば1/2~1/10程度までさらに低減することができる。固液分離処理の固液分離水をさらに水回収することによって、システムとしての水回収率を高めることができる。 The solid-liquid separated water in the solid-liquid separation process, for example, the supernatant water obtained in the coagulation sedimentation process, may be discharged if it can be discharged as it is, but if necessary, the turbidity removal process is performed by the turbidity removal device 20. After that, it is further concentrated by reverse osmosis membrane treatment (second reverse osmosis membrane treatment) by the second reverse osmosis membrane treatment device 22 to obtain highly treated permeated water (second permeated water), and the volume is reduced. It is preferred that the Compared to the case where the second reverse osmosis membrane treatment is not performed, the amount of concentrated silica water generated can be further reduced, for example, to about 1/2 to 1/10. By further recovering the solid-liquid separated water of the solid-liquid separation treatment, the water recovery rate of the system can be increased.

第2逆浸透膜処理を行う場合、凝集沈殿処理で得られる上澄水等の固液分離水はシリカが飽和しているため(シリカ含有量は、例えば、120mg/L)、そのまま濃縮するとシリカが析出して膜が閉塞する可能性がある。これを抑制するために、第2逆浸透膜処理の前段で酸を添加してpH5以下に調整することによって(酸/アルカリ添加工程)、シリカの析出速度を低下させ、シリカの析出を抑制して第2逆浸透膜処理で濃縮することができる。または、第2逆浸透膜処理の前段でアルカリを添加してpH10以上に調整することによって(酸/アルカリ添加工程)、シリカの溶解度を再度高め、シリカの析出を抑制して第2逆浸透膜処理で濃縮することができる。 When performing the second reverse osmosis membrane treatment, solid-liquid separation water such as supernatant water obtained by coagulation sedimentation treatment is saturated with silica (silica content is, for example, 120 mg / L). Precipitation may cause membrane clogging. In order to suppress this, acid is added before the second reverse osmosis membrane treatment to adjust the pH to 5 or less (acid/alkali addition step), thereby reducing the silica deposition rate and suppressing silica deposition. can be concentrated by a second reverse osmosis membrane treatment. Alternatively, by adding alkali in the preceding stage of the second reverse osmosis membrane treatment to adjust the pH to 10 or more (acid/alkali addition step), the solubility of silica is increased again, silica precipitation is suppressed, and the second reverse osmosis membrane Can be concentrated by processing.

酸/アルカリ添加工程で用いられる酸およびアルカリは、上述したものが挙げられる。 The acids and alkalis used in the acid/alkali addition step include those mentioned above.

酸/アルカリ添加工程における酸またはアルカリの添加は、図1のように配管38において行われてもよいし、沈殿槽18と除濁装置20との間に酸/アルカリ添加槽を設け、酸/アルカリ添加槽において行われてもよい。 The addition of acid or alkali in the acid/alkali addition step may be performed in the pipe 38 as shown in FIG. It may be carried out in an alkali addition tank.

酸/アルカリ添加工程における温度は、特に制限はないが、例えば、15℃~30℃の範囲である。 The temperature in the acid/alkali adding step is not particularly limited, but is, for example, in the range of 15°C to 30°C.

除濁装置20としては、例えば、限外ろ過膜(UF膜)を備える膜ろ過装置、砂ろ過装置、安全フィルタ等が挙げられる。 Examples of the clarification device 20 include a membrane filtration device having an ultrafiltration membrane (UF membrane), a sand filtration device, a safety filter, and the like.

第2逆浸透膜処理で用いられる第2逆浸透膜としては、シリカ阻止率が高い膜が好ましく、シリカ阻止率が99.0%以上の膜が好ましく、高圧型の逆浸透膜にすると、99.5%程度のシリカ阻止率が得られ、より好ましい。 The second reverse osmosis membrane used in the second reverse osmosis membrane treatment is preferably a membrane with a high silica rejection rate, preferably a membrane with a silica rejection rate of 99.0% or more. A silica rejection of about 0.5% is obtained, which is more preferable.

さらに、第2逆浸透膜処理の第2濃縮水(シリカ含有量は、例えば、100~300mg/L)の一部または全部を第2逆浸透膜処理の前段の工程、例えば、反応槽14に返送することにより、第2逆浸透膜処理で発生する第2濃縮水の量をさらに低減することができる。例えば、第2逆浸透膜処理で発生する第2濃縮水を第2逆浸透膜処理の後段の蒸発濃縮装置で蒸発濃縮処理を行う場合、蒸発濃縮装置に流入するシリカの負荷を低減し、蒸発濃縮を小型化または不要とすることができる。第2逆浸透膜処理の第2濃縮水を前段に返送しない場合に比べて、発生するシリカの濃縮水の量を例えば1/2~1/10程度までさらに低減することができる。 Furthermore, part or all of the second concentrated water (silica content is, for example, 100 to 300 mg / L) for the second reverse osmosis membrane treatment is added to the preceding step of the second reverse osmosis membrane treatment, for example, the reaction tank 14 By returning, the amount of the second concentrated water generated in the second reverse osmosis membrane treatment can be further reduced. For example, when the second concentrated water generated in the second reverse osmosis membrane treatment is subjected to evaporative concentration treatment in the evaporative concentration device in the latter stage of the second reverse osmosis membrane treatment, the load of silica flowing into the evaporative concentration device is reduced, and the evaporation Concentration can be miniaturized or eliminated. Compared to the case where the second concentrated water from the second reverse osmosis membrane treatment is not returned to the previous stage, the amount of generated silica concentrated water can be further reduced, for example, to about 1/2 to 1/10.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.

<比較例1>
図4に示すフローの実験設備にて、通水試験を行った。比較例1では、被処理水槽100において被処理水にアルカリとして水酸化ナトリウム水溶液を添加して被処理水のpHを10.7~11.0に調整し、逆浸透膜処理装置102において、4inch-逆浸透膜エレメント(日東電工製LFC-3)に通水し、透過水と濃縮水を得た。実験条件、結果は下記の通りである。
<Comparative Example 1>
A water flow test was conducted using the experimental equipment for the flow shown in FIG. In Comparative Example 1, in the water tank 100 to be treated, an aqueous sodium hydroxide solution was added as an alkali to the water to be treated to adjust the pH of the water to be treated to 10.7 to 11.0. - Water was passed through a reverse osmosis membrane element (Nitto Denko LFC-3) to obtain permeated water and concentrated water. Experimental conditions and results are as follows.

なお、水中のシリカ(SiO)の量は、吸光光度計(日立製作所製、U-2900)を用いて、JIS K 0101 モリブデン青吸光光度法で測定した。 The amount of silica (SiO 2 ) in water was measured by JIS K 0101 molybdenum blue spectrophotometry using an absorptiometer (Hitachi Ltd., U-2900).

[実験条件・結果]
・被処理水:工場放流水(シリカ含有)SiO=80mg/L、約1000L
・被処理水流量:155L/h
・透過水流量:140L/h
・濃縮水流量:720L/h(うち705L/hを被処理水槽100に循環、15L/hを後段へ送水)
・逆浸透膜入口流量:860L/h(循環水込み)
・濃縮水pH:10.8
・濃縮水シリカ濃度:788mg/L
・得られた濃縮水量:約100L
[Experimental conditions/results]
・Water to be treated: Factory effluent (containing silica) SiO 2 =80 mg/L, about 1000 L
・Water flow rate to be treated: 155L/h
・Permeate water flow rate: 140 L/h
Concentrated water flow rate: 720 L/h (of which 705 L/h is circulated to the water tank 100 to be treated, and 15 L/h is sent to the subsequent stage)
・Reverse osmosis membrane inlet flow rate: 860 L/h (including circulating water)
・Concentrated water pH: 10.8
・ Concentrated water silica concentration: 788 mg / L
・Amount of concentrated water obtained: about 100 L

<実施例1>
図3に示すフローの実験設備にて、通水試験を行った。実施例1では、比較例1にて作製した逆浸透膜処理の濃縮水を濃縮水槽62に貯留し、反応槽14にて酸として塩酸を添加してpH6~7に調整した後、凝集沈殿装置に通水した。沈殿槽18による沈殿後の上澄水を上澄水槽64に貯留し、アルカリとして水酸化ナトリウム水溶液を添加してpHを10.8に調整した後、除濁装置20(安全フィルタ)に通水して除濁し、第2逆浸透膜処理装置22において、4inch-逆浸透膜エレメント(日東電工製LFC-3)に通水し、第2透過水と第2濃縮水を得た。実験条件、結果は下記の通りである。
<Example 1>
A water flow test was conducted using the experimental equipment for the flow shown in FIG. In Example 1, the reverse osmosis membrane-treated concentrated water prepared in Comparative Example 1 was stored in the concentrated water tank 62, and after adjusting the pH to 6 to 7 by adding hydrochloric acid as an acid in the reaction tank 14, the coagulating sedimentation apparatus was added. was watered. The supernatant water after sedimentation by the sedimentation tank 18 is stored in the supernatant tank 64, and after adjusting the pH to 10.8 by adding an aqueous sodium hydroxide solution as an alkali, the water is passed through the turbidity removal device 20 (safety filter). and passed through a 4-inch reverse osmosis membrane element (Nitto Denko LFC-3) in the second reverse osmosis membrane treatment device 22 to obtain a second permeated water and a second concentrated water. Experimental conditions and results are as follows.

[実験条件・結果]
・凝集沈殿装置(反応槽14)の入口流量:100L/h
・強アニオン性(ポリアクリルアミド系)高分子凝集剤オルフロックOA-3H(オルガノ株式会社製):2mg/L添加
・沈殿後の上澄水シリカ濃度:110mg/L
・第2逆浸透膜処理の原水流量:186L/h
・第2逆浸透膜処理の第2透過水流量:140L/h
・第2逆浸透膜処理の第2濃縮水流量:720L/h(うち674L/hを上澄水槽64に循環、46L/hを後段へ送水)
・第2逆浸透膜入口流量:860L/h(循環水込み)
・第2濃縮水シリカ濃度:430mg/L
・得られた第2濃縮水量:約25L
[Experimental conditions/results]
・Inlet flow rate of coagulation sedimentation device (reaction tank 14): 100 L / h
・Strong anionic (polyacrylamide-based) polymer flocculant ORFLOC OA-3H (manufactured by Organo Co., Ltd.): 2 mg/L added ・Silica concentration in supernatant water after precipitation: 110 mg/L
・Raw water flow rate for second reverse osmosis membrane treatment: 186 L/h
・ Second permeate flow rate of second reverse osmosis membrane treatment: 140 L / h
・ Second concentrated water flow rate for second reverse osmosis membrane treatment: 720 L / h (674 L / h of which is circulated to the supernatant water tank 64 and 46 L / h is sent to the subsequent stage)
・Second reverse osmosis membrane inlet flow rate: 860 L/h (including circulating water)
・ Second concentrated water silica concentration: 430 mg / L
・ Obtained second concentrated water amount: about 25 L

実施例1では、シリカを含む被処理水をpH10以上で逆浸透膜に通水して得られた濃縮水に反応槽内で酸を添加した後、固液分離処理を行ってシリカを除去し、さらに第2逆浸透膜処理にて濃縮した。これにより、比較例1に比べ、システムから排出される濃縮水量が約100Lから約25Lと、約1/4になった。 In Example 1, silica-containing water to be treated was passed through a reverse osmosis membrane at a pH of 10 or higher, and an acid was added to the concentrated water obtained in the reaction tank, followed by solid-liquid separation treatment to remove silica. , and further concentrated by the second reverse osmosis membrane treatment. As a result, compared with Comparative Example 1, the amount of concentrated water discharged from the system was reduced from about 100 L to about 25 L, which is about 1/4.

このように、実施例の方法および装置により、シリカ含有水の逆浸透膜処理において、発生するシリカの濃縮水の量を低減し、処理コストを低減することができた。 As described above, the method and apparatus of the example were able to reduce the amount of silica-concentrated water produced in the reverse osmosis membrane treatment of silica-containing water and reduce the treatment cost.

1 シリカ含有水の処理装置、10,100 被処理水槽、12,102 逆浸透膜処理装置、14 反応槽、16 凝集槽、18 沈殿槽、20 除濁装置、22 第2逆浸透膜処理装置、24,26 ポンプ、28,34,36,38,40,46,48 配管、30 濃縮水配管、32 透過水配管、42 第2透過水配管、44 返送配管、50 アルカリ添加配管、52 酸添加配管、54 凝集剤添加配管、56 酸/アルカリ添加配管、58,60 撹拌装置、62 濃縮水槽、64 上澄水槽、104 蒸発濃縮装置。 1 silica-containing water treatment apparatus, 10,100 water tank to be treated, 12,102 reverse osmosis membrane treatment apparatus, 14 reaction tank, 16 coagulation tank, 18 sedimentation tank, 20 turbidity removal apparatus, 22 second reverse osmosis membrane treatment apparatus, 24, 26 pump, 28, 34, 36, 38, 40, 46, 48 piping, 30 concentrated water piping, 32 permeated water piping, 42 second permeated water piping, 44 return piping, 50 alkali addition piping, 52 acid addition piping , 54 coagulant addition pipe, 56 acid/alkali addition pipe, 58, 60 stirring device, 62 concentration water tank, 64 supernatant water tank, 104 evaporative concentration device.

Claims (4)

シリカを含む被処理水をpH10以上で逆浸透膜に通水して濃縮水と透過水とを得る逆浸透膜処理工程と、
得られた前記濃縮水に反応槽内で酸を添加することによってpHを5~9に調整した後、固液分離処理を行う固液分離処理工程と、
前記固液分離処理工程で得られた固液分離水に酸を添加してpHを5以下に調整するか、またはアルカリを添加してpH10以上に調整した後、第2逆浸透膜に通水して第2濃縮水と第2透過水とを得る第2逆浸透膜処理工程と、
前記第2濃縮水の1/2~9/10を前記反応槽に返送する返送工程と、
を含むことを特徴とするシリカ含有水の処理方法。
A reverse osmosis membrane treatment step of passing water to be treated containing silica through a reverse osmosis membrane at a pH of 10 or higher to obtain concentrated water and permeated water;
A solid-liquid separation treatment step of performing a solid-liquid separation treatment after adjusting the pH to 5 to 9 by adding an acid to the obtained concentrated water in a reaction tank;
Acid is added to the solid-liquid separated water obtained in the solid-liquid separation treatment step to adjust the pH to 5 or less, or alkali is added to adjust the pH to 10 or more, and then water is passed through the second reverse osmosis membrane. a second reverse osmosis membrane treatment step of obtaining a second concentrated water and a second permeated water by
A returning step of returning 1/2 to 9/10 of the second concentrated water to the reaction tank;
A method for treating silica-containing water, comprising:
請求項1に記載のシリカ含有水の処理方法であって、
前記固液分離処理が、強アニオン性高分子凝集剤を用いる凝集沈殿処理であることを特徴とするシリカ含有水の処理方法。
The method for treating silica-containing water according to claim 1 ,
A method for treating silica-containing water, wherein the solid-liquid separation treatment is a coagulation sedimentation treatment using a strong anionic polymer flocculant.
シリカを含む被処理水をpH10以上で逆浸透膜に通水して濃縮水と透過水とを得る逆浸透膜処理手段と、
得られた前記濃縮水に反応槽内で酸を添加することによってpHを5~9に調整した後、固液分離処理を行う固液分離処理手段と、
前記固液分離処理手段で得られた固液分離水に酸を添加してpHを5以下に調整するか、またはアルカリを添加してpH10以上に調整した後、第2逆浸透膜に通水して第2濃縮水と第2透過水とを得る第2逆浸透膜処理手段と、
前記第2濃縮水の1/2~9/10を前記反応槽に返送する返送手段と、
を備えることを特徴とするシリカ含有水の処理装置。
a reverse osmosis membrane treatment means for passing silica-containing water to be treated at a pH of 10 or higher through a reverse osmosis membrane to obtain concentrated water and permeated water;
solid-liquid separation processing means for performing solid-liquid separation processing after adjusting the pH to 5 to 9 by adding acid to the obtained concentrated water in the reaction tank;
Acid is added to the solid-liquid separated water obtained by the solid-liquid separation treatment means to adjust the pH to 5 or less, or alkali is added to adjust the pH to 10 or more, and then the water is passed through the second reverse osmosis membrane. a second reverse osmosis membrane treatment means for obtaining a second concentrated water and a second permeated water by
return means for returning 1/2 to 9/10 of the second concentrated water to the reaction vessel;
An apparatus for treating silica-containing water, comprising:
請求項に記載のシリカ含有水の処理装置であって、
前記固液分離処理が、強アニオン性高分子凝集剤を用いる凝集沈殿処理であることを特徴とするシリカ含有水の処理装置。
The silica-containing water treatment apparatus according to claim 3 ,
An apparatus for treating silica-containing water, wherein the solid-liquid separation treatment is coagulation sedimentation treatment using a strong anionic polymer flocculant.
JP2018146901A 2018-08-03 2018-08-03 Silica-containing water treatment method and treatment apparatus Active JP7149129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018146901A JP7149129B2 (en) 2018-08-03 2018-08-03 Silica-containing water treatment method and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018146901A JP7149129B2 (en) 2018-08-03 2018-08-03 Silica-containing water treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JP2020018991A JP2020018991A (en) 2020-02-06
JP7149129B2 true JP7149129B2 (en) 2022-10-06

Family

ID=69587799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018146901A Active JP7149129B2 (en) 2018-08-03 2018-08-03 Silica-containing water treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP7149129B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115340226B (en) * 2022-06-29 2024-02-13 天津正达科技有限责任公司 Electric flocculation silicon removal system and method based on aluminum salt recycling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026543A (en) 2004-07-16 2006-02-02 Kurita Water Ind Ltd Apparatus and method for removing silica
WO2015002309A1 (en) 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment system, water treatment method, cooling facility and power generating facility

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156146A (en) * 1996-11-28 1998-06-16 Nitto Denko Corp Brine desalting method and device therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026543A (en) 2004-07-16 2006-02-02 Kurita Water Ind Ltd Apparatus and method for removing silica
WO2015002309A1 (en) 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment system, water treatment method, cooling facility and power generating facility

Also Published As

Publication number Publication date
JP2020018991A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP5489982B2 (en) Pretreatment method for separation by reverse osmosis membrane of treated water
AU2014235024B2 (en) Process for water treatment prior to reverse osmosis
CN105152414A (en) Reverse-osmosis concentrated water purifying treatment technology
JP7149129B2 (en) Silica-containing water treatment method and treatment apparatus
CN115557652B (en) Zinc-nickel-containing wastewater recycling treatment system and method
JPH0714512B2 (en) Treatment method of wastewater containing heavy metals
JP7212490B2 (en) Water treatment device and water treatment method
JP2021186793A (en) Water purification method and water purification apparatus
JP7137393B2 (en) Method and apparatus for treating water containing silica/hardness components
JP2007098270A (en) Method and apparatus for producing pure water
JP7228492B2 (en) Water treatment device and water treatment method
JP7108392B2 (en) Silica-containing water treatment apparatus and treatment method
JP5224380B2 (en) Manufacturing method of low grade Ni recycled sludge
TWI771476B (en) Processing device and processing method for silica-containing water
JPH10180008A (en) Membrane separation device
JP7168324B2 (en) Silica-containing water treatment apparatus and treatment method
JP3829364B2 (en) Wastewater aggregation treatment method
JP7460004B1 (en) Fluorine-containing wastewater treatment equipment and method
JP2003340450A (en) Method and system for treating heavy metal-containing waste water
JP7441108B2 (en) Water treatment method and water treatment equipment
JP7520764B2 (en) Water treatment method and apparatus
CN104724856A (en) Treating system and treating method for lead and zinc metallurgical off-gas acid-making wastewater
JP2005007246A (en) Treatment method for organic waste water
JP7168739B2 (en) Water treatment device and water treatment method
JP5874359B2 (en) Aggregation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220926

R150 Certificate of patent or registration of utility model

Ref document number: 7149129

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150