JPH0714512B2 - Treatment method of wastewater containing heavy metals - Google Patents

Treatment method of wastewater containing heavy metals

Info

Publication number
JPH0714512B2
JPH0714512B2 JP63311219A JP31121988A JPH0714512B2 JP H0714512 B2 JPH0714512 B2 JP H0714512B2 JP 63311219 A JP63311219 A JP 63311219A JP 31121988 A JP31121988 A JP 31121988A JP H0714512 B2 JPH0714512 B2 JP H0714512B2
Authority
JP
Japan
Prior art keywords
membrane
heavy metal
water
magnesium
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63311219A
Other languages
Japanese (ja)
Other versions
JPH02157090A (en
Inventor
勇 加藤
正明 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP63311219A priority Critical patent/JPH0714512B2/en
Publication of JPH02157090A publication Critical patent/JPH02157090A/en
Publication of JPH0714512B2 publication Critical patent/JPH0714512B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は重金属含有廃水の処理方法に係り、特に重金属
含有廃水から重金属を効率的に除去し、優れた処理水質
の処理水を得ることができる重金属含有廃水の処理方法
に関する。
Description: TECHNICAL FIELD The present invention relates to a method for treating heavy metal-containing wastewater, and particularly to efficiently remove heavy metals from heavy metal-containing wastewater to obtain treated water of excellent treated water quality. The present invention relates to a method for treating heavy metal-containing wastewater.

[従来の技術] 重金属含有廃水の処理法として、従来、水酸化カルシウ
ムなどのアルカリを添加して重金属を水酸化物の形で沈
殿分離する方法や、鉄塩、アルミニウム塩、マグネシウ
ム塩などを添加して共沈させる方法などが知られてい
る。例えば、特開昭61-192386号には、マグネシウム塩
を添加してpH10〜12で固液分離する方法が開示されてい
る。
[Prior Art] Conventionally, as a method for treating heavy metal-containing wastewater, a method of adding an alkali such as calcium hydroxide to precipitate and separate heavy metals in the form of hydroxide, or adding an iron salt, an aluminum salt, a magnesium salt, etc. Then, a method of co-precipitating is known. For example, JP-A-61-192386 discloses a method of adding a magnesium salt and performing solid-liquid separation at pH 10-12.

また、生成した不溶化物の分離法としては、沈殿、濾
過、限外濾過膜や逆浸透膜による膜分離などが知られて
いる。例えば、特公昭55-33953号には限外濾過膜による
分離法が開示されている。
Further, as a method for separating the produced insoluble matter, precipitation, filtration, membrane separation using an ultrafiltration membrane or a reverse osmosis membrane, etc. are known. For example, Japanese Examined Patent Publication No. 55-33953 discloses a separation method using an ultrafiltration membrane.

凝集沈殿法のみでは良好な処理水が得られない。厳しい
排水基準をクリヤーするため、一般には凝集沈殿後、濾
過器で濾過する方式が採用されている。
Good treated water cannot be obtained only by the coagulation-sedimentation method. In order to clear the strict effluent standard, a method of filtering with a filter after coagulation and sedimentation is generally adopted.

しかしながら、この方式では、通常、1〜2回/日程度
の逆洗が必要であり、廃水中にキレート剤が共存する場
合には、重金属が濾過器よりリークして処理効果が悪く
なるなどの問題があった。また、沈殿池の設置面積を必
要とし、しかも、装置の保守管理が非常に煩雑であると
いう欠点もある。
However, this method usually requires backwashing once or twice per day, and when a chelating agent coexists in wastewater, heavy metals leak from the filter and the treatment effect deteriorates. There was a problem. Further, there is a drawback that the installation area of the sedimentation tank is required and the maintenance of the apparatus is very complicated.

このような問題点を解決する方法として、孔径0.1〜1
μm程度の精密濾過膜(MF膜)で膜分離する方法を適用
する試みがなされている。
As a method for solving such a problem, the pore size is 0.1 to 1
Attempts have been made to apply a method of membrane separation with a microfiltration membrane (MF membrane) of about μm.

[発明が解決しようとする課題] しかしながら、MF膜による処理は、濾過速度が遅い、膜
が閉塞し易い等の欠点がある。
[Problems to be Solved by the Invention] However, the treatment with the MF membrane has drawbacks such as a low filtration rate and easy clogging of the membrane.

この原因としては種々挙げられるが、例えば次のような
ことが挙げられる。ジチオカルバメイト系の重金属捕集
剤あるいは硫化ソーダを使ったpH中性での凝集沈殿処理
水の膜濾過では、膜表面にバクテリアが発生し膜の閉塞
を起す。一方、バクテリヤ発生が困難であるカルシウム
塩と鉄塩を併用するアルカリ凝集沈殿法を採用した場合
は、膜表面でのCaCO3スケール発生による膜閉塞あるい
はコロイド状の重金属水酸化物により濾過速度の低下が
起こる。
There are various causes for this, for example, the following may be mentioned. Membrane filtration of the pH-neutralized coagulation-sedimentation-treated water using dithiocarbamate-based heavy metal scavenger or sodium sulfide causes bacteria to occur on the membrane surface and causes membrane clogging. On the other hand, when the alkaline coagulation sedimentation method that uses calcium salt and iron salt together, which is difficult to generate bacteria, is adopted, the filtration rate decreases due to membrane clogging due to CaCO 3 scale generation on the membrane surface or colloidal heavy metal hydroxide. Happens.

このようなことから、従来法において、MF膜を適用する
ことは実用上困難であった。
Therefore, it was practically difficult to apply the MF membrane in the conventional method.

本発明は上記従来の問題点を解決し、重金属含有廃水を
MF膜による膜処理を適用して効率的に処理し、優れた水
質の処理水を得ることができる重金属含有廃水の処理方
法に関する。
The present invention solves the above-mentioned conventional problems and eliminates wastewater containing heavy metals.
The present invention relates to a treatment method for heavy metal-containing wastewater, which can be efficiently treated by applying a membrane treatment with an MF membrane to obtain treated water of excellent water quality.

[発明が解決しようとする課題] 本発明の重金属含有廃水の処理方法は、重金属含有廃水
にマグネシウム化合物を添加した後、pHをアルカリ性に
調節し、生成した不溶化物を精密濾過膜(MF膜)で膜分
離することを特徴とする。
[Problems to be Solved by the Invention] A method for treating heavy metal-containing wastewater according to the present invention is a method in which a magnesium compound is added to heavy metal-containing wastewater, pH is adjusted to alkaline, and the produced insoluble matter is subjected to a microfiltration membrane (MF membrane). It is characterized in that the membrane is separated by.

以下に本発明を図面を参照して詳細に説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施の一例を示す系統図である。図
中、1は重金属含有廃水の導入管11及び薬剤の供給管12
を備えるpH調整槽、2は循環槽、3はMF膜3aを備えるMF
膜分離装置、4は逆洗水槽、5はpH計、6は循環ポンプ
であり、これらが、配管13,14,15で連結されている。16
は処理水の排水管である。
FIG. 1 is a system diagram showing an example of implementation of the present invention. In the figure, 1 is a heavy metal-containing wastewater introduction pipe 11 and a chemical supply pipe 12
PH adjusting tank equipped with 2; circulation tank 3; MF equipped with MF membrane 3a
Membrane separator 4, backwash water tank, 5 pH meter, 6 circulation pump, these are connected by pipes 13, 14, 15. 16
Is a drainage pipe for treated water.

本実施例においては、まず、pH調整槽1に導入管11より
重金属含有廃水を導入すると共に、供給管12よりマグネ
シウム化合物(例えばMg塩)及び必要に応じてpH調整剤
を供給してpHをアルカリ性に調節し、重金属含有廃水を
凝集処理する。凝集処理水は循環槽2を経て、配管13に
てポンプ6の動力でMF膜分離装置3に供給される。
In this embodiment, first, the heavy metal-containing wastewater is introduced into the pH adjusting tank 1 through the introduction pipe 11, and the magnesium compound (for example, Mg salt) and the pH adjusting agent are supplied through the supply pipe 12 to adjust the pH. It is adjusted to be alkaline and the heavy metal-containing wastewater is subjected to coagulation treatment. The coagulated water is supplied to the MF membrane separation device 3 through the circulation tank 2 and the power of the pump 6 through the pipe 13.

MF膜分離装置3にて、MF膜3aを通過した処理水は配管1
5、逆洗水槽4及び排出管16を経て系外に排出される。
一方、MF膜分離装置の濃縮水は配管14を経て循環槽2に
循環される。
In the MF membrane separator 3, the treated water that has passed through the MF membrane 3a is pipe 1
5, it is discharged to the outside of the system through the backwash water tank 4 and the discharge pipe 16.
On the other hand, the concentrated water of the MF membrane separator is circulated to the circulation tank 2 via the pipe 14.

本発明において、処理対象となる重金属含有廃水として
は、重金属イオンや、重金属とキレート剤との重金属錯
体等を含む廃水であり、例えばメッキ廃水などが挙げら
れる。重金属としては、銅、亜鉛、ニッケル、カドミウ
ム、マンガン、鉛、鉄等がある。また、キレート剤とし
てはクエン酸、酒石酸、グルコン酸、マロン酸、EDTA、
NTA等の有機酸、又はトリエタノールアミン等のアミン
類などがある。一般に、重金属錯体を含む廃水は酸性の
ものが多いが、本発明において、処理対象廃水のpHは特
に限定されない。
In the present invention, the heavy metal-containing wastewater to be treated is a wastewater containing heavy metal ions, a heavy metal complex of a heavy metal and a chelating agent, and examples thereof include plating wastewater. Heavy metals include copper, zinc, nickel, cadmium, manganese, lead and iron. Further, as the chelating agent, citric acid, tartaric acid, gluconic acid, malonic acid, EDTA,
Organic acids such as NTA, or amines such as triethanolamine. Generally, many wastewaters containing heavy metal complexes are acidic, but in the present invention, the pH of the wastewater to be treated is not particularly limited.

これらの廃水に添加するマグネシウム化合物としては、
酸化マグネシウム、水酸化マグネシウム、炭酸マグネシ
ウム、塩化マグネシウム、硫酸マグネシウムなどがあ
り、塩水精製、製塩の副産物である水酸化マグネシウム
又は塩化マグネシウムなど、マグネシウムを含む化合物
であればよい。これらのマグネシウム化合物は、原水が
酸性の場合は酸化マグネシウム、水酸化マグネシウム等
の固形のものを添加して溶解させることができるが、原
水が中性ないしアルカリ性の場合は塩化マグネシウム、
硫酸マグネシウム等の溶解性塩を添加するのが好まし
い。
As magnesium compounds added to these wastewaters,
There are magnesium oxide, magnesium hydroxide, magnesium carbonate, magnesium chloride, magnesium sulfate and the like, and any compound containing magnesium such as magnesium hydroxide or magnesium chloride which is a by-product of salt water purification and salt production may be used. These magnesium compounds can be dissolved by adding solid ones such as magnesium oxide and magnesium hydroxide when the raw water is acidic, but magnesium chloride when the raw water is neutral or alkaline,
It is preferable to add a soluble salt such as magnesium sulfate.

本発明の処理方法は、重金属含有廃水に上記マグネシウ
ム化合物を添加し、pHをアルカリ性、好ましくはpH10〜
12、より好ましくはpH10.5〜11.5に調整する。pHが10未
満であると不溶化物の生成効率が低く、また、pH12を超
えると不溶化物が分散すると共に、pH調整剤を多量に必
要とするようになり、不利である。なおここで、pH調整
に用いるpH調整剤としては、水酸化ナトリウム、消石灰
等のアルカリ剤が挙げられる。
The treatment method of the present invention comprises adding the above-mentioned magnesium compound to heavy metal-containing wastewater and adjusting the pH to alkaline, preferably pH 10 to 10.
The pH is adjusted to 12, more preferably pH 10.5-11.5. When the pH is less than 10, the insoluble product generation efficiency is low, and when the pH is more than 12, the insoluble product is dispersed and a large amount of a pH adjusting agent is required, which is disadvantageous. Here, examples of the pH adjusting agent used for pH adjustment include alkaline agents such as sodium hydroxide and slaked lime.

このようにして重金属含有廃水にマグネシウム化合物を
添加してpHをアルカリ性に調整することにより、重金属
が水酸化物として不溶性化し、過剰のマグネシウムも水
酸化物として不溶性化する。従って、この不溶化物をMF
膜で膜分離することにより極めて高水質の処理水が得ら
れる。
In this way, by adding a magnesium compound to the heavy metal-containing wastewater to adjust the pH to alkaline, the heavy metal becomes insoluble as a hydroxide, and excess magnesium becomes insoluble as a hydroxide. Therefore, this insoluble matter is MF
By performing membrane separation with a membrane, treated water of extremely high quality can be obtained.

なお、マグネシウム化合物の添加量はマグネシウム化合
物と重金属との反応当量ないしその2〜3倍過剰量とす
るのが適当であり、原水とする重金属含有廃水の重金属
濃度に応じて適宜決定される。なお、原水中の重金属量
は変動するので、過剰に添加して反応させるのが好まし
い。過剰に添加したマグネシウム化合物は汚泥として沈
殿するが、沈殿汚泥をpH9〜10に調整することにより、
沈殿したマグネシウムの70〜80%が溶解して回収でき、
再利用可能である。
The addition amount of the magnesium compound is appropriately a reaction equivalent amount of the magnesium compound and the heavy metal or a 2- to 3-fold excess amount thereof, and is appropriately determined according to the heavy metal concentration of the heavy metal-containing wastewater used as raw water. Since the amount of heavy metals in the raw water varies, it is preferable to add it in excess to react. The magnesium compound added in excess precipitates as sludge, but by adjusting the pH of the precipitated sludge to 9-10,
70-80% of the precipitated magnesium can be dissolved and recovered,
Can be reused.

本発明において、MF膜の材質としては特に限定されず、
その操作条件にも特に制限はない。MF膜の孔径は処理効
率、処理水質の向上の面から0.1〜1μm程度とするの
が好ましい。また、MF膜による膜分離方式についても特
に制限はなく、全量式、クロス・フロー式のいずれでも
良いが、膜分離装置への流入水の濁質濃度が高い場合に
は、膜面に対して平行に原水を流入させるクロス・フロ
ー式とするのが好ましい。クロス・フロー式によれば、
濁質濃度の高い原水であっても膜の目詰りを低減するこ
とができる。
In the present invention, the material of the MF film is not particularly limited,
There are also no particular restrictions on the operating conditions. The pore size of the MF membrane is preferably about 0.1 to 1 μm from the viewpoint of improving treatment efficiency and treated water quality. In addition, there is no particular limitation on the membrane separation method using the MF membrane, either a total volume type or a cross flow type may be used, but when the turbidity concentration of the inflow water to the membrane separation device is high, It is preferable to adopt a cross-flow type in which raw water flows in parallel. According to the cross flow formula,
It is possible to reduce the clogging of the membrane even in the case of raw water having a high suspended matter concentration.

なお、本発明の方法を実施する際、MF膜分離装置への通
水によりMF膜表面には不溶化物のケーキ層が形成され、
経時的に濾過速度が低下する。このため、一定時間毎に
逆洗水槽4から処理水を膜の透過側からMF膜分離装置3
に返送して逆洗を行なうのが好ましい。
When carrying out the method of the present invention, a cake layer of insoluble matter is formed on the MF membrane surface by passing water to the MF membrane separator,
The filtration rate decreases with time. Therefore, the treated water is supplied from the backwash water tank 4 from the permeation side of the membrane to the MF membrane separator 3 at regular intervals.
It is preferable to return it to and carry out backwashing.

[作用] 重金属含有廃水を高度処理する場合、通常、凝集沈殿工
程において鉄塩、アルミニウム塩等を共沈剤として添加
し、沈殿処理水を更に濾過処理する。この場合、鉄塩は
Fex(OH)y (3x-y)+の無機ポリマーを、またアルミニウム
塩はAlx(OH)y (3x-y)+の無機ポリマーを形成し、これが
共沈剤として作用する。
[Operation] When the heavy metal-containing wastewater is highly treated, iron salt, aluminum salt and the like are usually added as a coprecipitating agent in the coagulation-precipitation step, and the precipitation-treated water is further filtered. In this case, iron salt
The Fe x (OH) y (3x-y) + inorganic polymer and the aluminum salt form Al x (OH) y (3x-y) + inorganic polymer, which acts as a coprecipitant.

これに対して、本発明で用いるマグネシウム化合物で
は、Mgx(OH)y (2x-y)+の無機ポリマーが共沈剤となる
が、Mgx(OH)y (2x-y)+の無機ポリマーは、他の無機ポリ
マーに比べて、架橋の長さが短いため、粘性の低い汚泥
(不溶化物)が得られる。このため、汚泥の脱水効率が
高められ、脱水ケーキの含水率が低くなる。
In contrast, in the magnesium compound used in the present invention, although Mg x (OH) y (2x -y) + the inorganic polymer is a co-precipitant, Mg x (OH) y (2x -y) + inorganic Since the polymer has a shorter cross-linking length than other inorganic polymers, sludge (insoluble matter) having low viscosity can be obtained. For this reason, the sludge dewatering efficiency is increased, and the water content of the dehydrated cake is lowered.

一方、MF膜による膜分離において、濾過速度は汚泥の粘
性に影響され、粘性が増加すると濾過抵抗が大きくな
り、その結果、濾過速度は小さくなるが、本発明の方法
によれば、上述の如く、粘性の低い汚泥が形成され、高
い濾過速度が得られる。また、汚泥の粘着性が低いこと
から、逆洗も容易に行なえる。
On the other hand, in the membrane separation by the MF membrane, the filtration rate is affected by the viscosity of the sludge, and when the viscosity increases, the filtration resistance increases, and as a result, the filtration rate decreases, but according to the method of the present invention, as described above, A low-viscosity sludge is formed and a high filtration rate is obtained. Further, since the sludge has low tackiness, backwashing can be easily performed.

ところで、マグネシウム化合物は、重金属錯体に対して
も極めて有効である。即ち、マグネシウム化合物を添加
してpHをアルカリ性に調整することにより、次のような
反応機構にて重金属錯体も効率的に分解、不溶化され
る。
By the way, the magnesium compound is extremely effective also for a heavy metal complex. That is, by adding a magnesium compound and adjusting the pH to be alkaline, the heavy metal complex is efficiently decomposed and insolubilized by the following reaction mechanism.

X・M+Mg2+→X・Mg+M2+ X・Mg+M2++2(OH)-→ X・Mg+M(OH)2↓ (X:キレート剤、M:重金属) このようなことから、本発明の方法によれば、重金属錯
体をも効率的に処理し、著しく高い水質の処理水が得ら
れる。
X · M + Mg 2+ → X · Mg + M 2+ X · Mg + M 2+ +2 (OH) → X · Mg + M (OH) 2 ↓ (X: chelating agent, M: heavy metal) From the above, the method of the present invention According to the method, the heavy metal complex can be efficiently treated, and treated water having extremely high water quality can be obtained.

[実施例] 以下に実施例及び比較例を挙げて本発明をより具体的に
説明する。
[Examples] Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1 メッキ工場廃水(pH3.0,COD20ppm,Cu15.9ppm,Fe1.1pp
m)にMgSO4・7H2OをMgとして100ppm添加して、NaOHでpH
11とし第1図に示す方法で処理を行なった。なお、MF膜
は孔径0.2μのチューブ状のものを用いた。運転条件は
循環流量8.5l/min、汚泥濃度8000ppm、膜入口圧力2kg/c
m2とした。
Example 1 Plating factory wastewater (pH3.0, COD20ppm, Cu15.9ppm, Fe1.1pp
The MgSO 4 · 7H 2 O to m) by 100ppm added as Mg, pH with NaOH
11, and the treatment was performed by the method shown in FIG. The MF membrane used was a tube with a pore size of 0.2μ. Operating conditions are circulation flow rate 8.5 l / min, sludge concentration 8000 ppm, membrane inlet pressure 2 kg / c
m 2

処理結果を第1表に示す。The processing results are shown in Table 1.

第1表より明らかなように、濾過水量は安定しており、
処理水水質はCu、Fe共に0.1ppm未満と著しく優れてい
る。
As is clear from Table 1, the amount of filtered water is stable,
The quality of the treated water is excellent, with both Cu and Fe being less than 0.1 ppm.

比較例1 MgSO4・7H2Oの代りにFeCl3・6H2O 100ppm(Feとして)
を用いたこと以外は、実施例1と同様にして処理を行な
い、結果を第1表に示した。
Comparative Example 1 MgSO 4 · 7H 2 O FeCl 3 · 6H 2 O 100ppm instead of (as Fe)
The same processes as in Example 1 were carried out except that was used, and the results are shown in Table 1.

第1表より明らかなように、鉄塩法はMg塩凝集法に較べ
処理水がやや悪く濾過水量は約1/3であった。
As is clear from Table 1, compared with the Mg salt agglomeration method, the iron salt method was slightly inferior in treated water and the filtered water amount was about 1/3.

なお、この場合において鉄塩法の濾過水量が低かったの
は無機ポリマーの濾過特性の差に加えて、鉄塩法では微
量のコロイド状重金属が残留するが、これが膜を閉塞さ
せたためと推定される。
In addition, in this case, the amount of filtered water in the iron salt method was low, in addition to the difference in the filtration characteristics of the inorganic polymer, a small amount of colloidal heavy metal remained in the iron salt method, but it is presumed that this blocked the membrane. It

比較例2 実施例1と同じ廃水に対し、MgSO4・7H2OをMgとして100
ppmでpH11、又は、FeCl3・6H2OをFeとして100ppmでpH1
1、又はNaOHでpH11とした後、高分子凝集剤をそれぞれ1
ppm添加してフロックを生成させ、濾紙No.5Aで濾過を行
ない濾液の分析を行なった。結果を第2表に示す。
Comparative Example 2 For the same wastewater as in Example 1, MgSO 4 .7H 2 O was used as Mg to obtain 100
ppm at pH 11, or, at 100ppm of FeCl 3 · 6H 2 O as Fe pH 1
1, or after adjusting the pH to 11 with NaOH, add 1 each polymer flocculant
ppm was added to produce flocs, and the filtrate was analyzed by filtering with filter paper No. 5A. The results are shown in Table 2.

第2表より明らかなように、Mg塩法の場合は、凝集沈殿
後、濾過方式でMF膜処理と同等の処理水となるが、鉄塩
法はMF膜処理水に較べ劣る。NaOH法ではCuが残留するこ
とから供試水には分散剤又はキレート剤が存在すると推
定される。
As is clear from Table 2, in the case of the Mg salt method, the treated water after coagulation and sedimentation is the same as the MF membrane treated water by the filtration method, but the iron salt method is inferior to the MF membrane treated water. Since Cu remains in the NaOH method, it is presumed that a dispersant or a chelating agent is present in the sample water.

実施例2 電着塗装廃水(pH6.1,COD 138ppm,Zn 67.1ppm,Cu 2.89p
pm,Ni 8.44ppm,Fe 4.41ppm)にMgSO4・7H2O 200ppm(Mg
として)を添加して、NaOHでpH11とし、第1図に示した
方法で処理した。膜の仕様と運転条件は実施例1と同じ
とした。ただし、汚泥濃度は10000ppmとした。
Example 2 Electro-deposition coating wastewater (pH 6.1, COD 138 ppm, Zn 67.1 ppm, Cu 2.89p
pm, Ni 8.44ppm, Fe 4.41ppm) to MgSO 4 · 7H 2 O 200ppm ( Mg
) Was added to adjust the pH to 11 with NaOH, and the mixture was treated by the method shown in FIG. The specifications of the membrane and the operating conditions were the same as in Example 1. However, the sludge concentration was 10,000 ppm.

結果を第3表に示す。The results are shown in Table 3.

第3表に示すように、濾過水量は安定しており、処理水
Zn、Cu、Ni、Feは0.1ppm以下であった。
As shown in Table 3, the amount of filtered water is stable and
Zn, Cu, Ni and Fe were 0.1 ppm or less.

比較例3 廃水をFeCl3・6H2O 200ppm(Feとして)で凝集(pH11)
したこと以外は、実施例2と同様に運転した。
Comparative Example 3 Wastewater was coagulated with FeCl 3 6H 2 O 200ppm (as Fe) (pH 11)
The same operation as in Example 2 was performed except that the above was performed.

結果を第3表に示す。The results are shown in Table 3.

第3表に示すように、鉄塩凝集法はMg塩凝集法に比べて
処理水質がやや悪く、濾過水量は約1/2であった。
As shown in Table 3, the quality of treated water in the iron salt agglomeration method was slightly worse than that in the Mg salt agglomeration method, and the amount of filtered water was about 1/2.

比較例4 Mg塩を添加せず、廃水をNaOHでpH11.4にしたこと以外
は、実施例2と同様に運転した。結果を第3表に示す。
Comparative Example 4 The same operation as in Example 2 was performed except that the Mg salt was not added and the wastewater was adjusted to pH 11.4 with NaOH. The results are shown in Table 3.

第3表に示すように、NaOH法はMg塩凝集塩法に比べて処
理水質が悪く、濾過水量は約1/3であった。
As shown in Table 3, the treated water quality of the NaOH method was poorer than that of the Mg salt agglomerated salt method, and the amount of filtered water was about 1/3.

[発明の効果] 以上詳述した通り、本発明の重金属含有廃水の処理方法
によれば、 凝集沈殿後、濾過器にて濾過する方式に比べて、装
置の保守管理が容易である。
[Effects of the Invention] As described above in detail, according to the method for treating heavy metal-containing wastewater of the present invention, maintenance of the device is easier than the method of filtering with a filter after coagulation and sedimentation.

沈殿池を必要とせず、装置設置面積が約40%程度縮
小される。
No sedimentation basin is required, and the equipment installation area is reduced by about 40%.

Mg系無機ポリマーの優れた凝集効果により、脱水
性、分離性の良好な不溶化物が得られる。
Due to the excellent agglomeration effect of the Mg-based inorganic polymer, an insolubilized product with good dehydration and separability can be obtained.

より、MF膜の閉塞が防止され、濾過速度も高めら
れる。また、濾過水量(処理水量)も多い。
As a result, clogging of the MF membrane is prevented and the filtration rate is increased. Also, the amount of filtered water (the amount of treated water) is large.

重金属錯体の処理も可能とされる。 Treatment of heavy metal complexes is also possible.

等の効果が奏され、重金属含有廃水を、簡単な操作で、
効率的に処理し、著しく水質の高い高度処理水を、大量
にかつ迅速に回収することができる。
The effects such as
It is possible to efficiently and highly collect highly treated water of extremely high quality in a large amount and quickly.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施の一例を示す系統図である。 1……pH調整槽、2……循環槽、3……MF膜分離装置、
4……逆洗水槽。
FIG. 1 is a system diagram showing an example of implementation of the present invention. 1 ... pH adjusting tank, 2 ... Circulating tank, 3 ... MF membrane separator,
4 ... Backwash water tank.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重金属含有廃水にマグネシウム化合物を添
加した後、pHをアルカリ性に調節し、生成した不溶化物
を精密濾過膜で膜分離することを特徴とする重金属含有
廃水の処理方法。
1. A method for treating heavy metal-containing wastewater, which comprises adding a magnesium compound to heavy metal-containing wastewater, adjusting the pH to alkaline, and subjecting the produced insoluble matter to membrane separation with a microfiltration membrane.
JP63311219A 1988-12-09 1988-12-09 Treatment method of wastewater containing heavy metals Expired - Lifetime JPH0714512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63311219A JPH0714512B2 (en) 1988-12-09 1988-12-09 Treatment method of wastewater containing heavy metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63311219A JPH0714512B2 (en) 1988-12-09 1988-12-09 Treatment method of wastewater containing heavy metals

Publications (2)

Publication Number Publication Date
JPH02157090A JPH02157090A (en) 1990-06-15
JPH0714512B2 true JPH0714512B2 (en) 1995-02-22

Family

ID=18014536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63311219A Expired - Lifetime JPH0714512B2 (en) 1988-12-09 1988-12-09 Treatment method of wastewater containing heavy metals

Country Status (1)

Country Link
JP (1) JPH0714512B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104803514A (en) * 2015-04-23 2015-07-29 天津大学 Method for improving performance of membrane-process industrial water desalination device and prolonging membrane service life

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3842907B2 (en) * 1998-10-09 2006-11-08 新日本製鐵株式会社 Treatment of metal-containing wastewater and method for recovering valuable metals
JP4374636B2 (en) * 1999-01-11 2009-12-02 栗田工業株式会社 Treatment method of waste liquid containing heavy metal complex
JP4072323B2 (en) * 2001-04-27 2008-04-09 シャープ株式会社 Method for treating gallium arsenide-containing wastewater and apparatus for treating gallium arsenide-containing wastewater
JP4482488B2 (en) * 2005-05-20 2010-06-16 オルガノ株式会社 Method and apparatus for treating inorganic wastewater
CN101891280B (en) * 2010-05-14 2011-12-21 江西金达莱环保研发中心有限公司 Solid-liquid separation system for heavy metal wastewater treatment after chemical precipitation
WO2012098924A1 (en) * 2011-01-20 2012-07-26 三菱レイヨン株式会社 Wastewater treatment apparatus, wastewater treatment method, and wastewater treatment system
JP5884493B2 (en) * 2012-01-11 2016-03-15 栗田工業株式会社 Treatment method for wastewater containing heavy metals
JP6202239B2 (en) * 2012-05-25 2017-09-27 三菱ケミカル株式会社 Waste water treatment apparatus and waste water treatment method
JP6061024B2 (en) * 2014-02-27 2017-01-18 三菱レイヨン株式会社 Method and apparatus for treating wastewater containing heavy metals
CN107285531A (en) * 2017-08-15 2017-10-24 长沙紫宸科技开发有限公司 Domestic sewage of villages and small towns high effect cleaningization handles and recycled equipment
JP7008456B2 (en) * 2017-09-29 2022-01-25 Dowaテクノロジー株式会社 Treatment method and treatment equipment for the liquid to be treated

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248288A (en) * 1984-05-23 1985-12-07 Asahi Glass Co Ltd Treatment of waste water from mine
JPS61192386A (en) * 1985-02-22 1986-08-26 Kurita Water Ind Ltd Treatment of waste water containing heavy metal complex
JPS62252326A (en) * 1986-04-25 1987-11-04 Sumitomo Heavy Ind Ltd Removal of impurity from aqueous solution of ferrous salt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104803514A (en) * 2015-04-23 2015-07-29 天津大学 Method for improving performance of membrane-process industrial water desalination device and prolonging membrane service life

Also Published As

Publication number Publication date
JPH02157090A (en) 1990-06-15

Similar Documents

Publication Publication Date Title
US6582605B2 (en) Method of treating industrial waste waters
JP3909793B2 (en) Method and apparatus for treating organic wastewater containing high-concentration salts
US5346627A (en) Method for removing metals from a fluid stream
JP5471054B2 (en) Methods for recovering water and metals from plating cleaning wastewater
JP3842907B2 (en) Treatment of metal-containing wastewater and method for recovering valuable metals
JP5489982B2 (en) Pretreatment method for separation by reverse osmosis membrane of treated water
KR100347864B1 (en) System of treated for industrial wastewater
JPH0714512B2 (en) Treatment method of wastewater containing heavy metals
JPH10272495A (en) Treatment of organic waste water containing salts of high concentration
JPH10272494A (en) Treatment of organic waste water containing salts of high concentration
WO2002004360A9 (en) Method of treating semiconductor waste waters
JP3409322B2 (en) Pure water production method
JP2006224023A (en) Method and apparatus for treating heavy metal-containing waste water
JP3111508B2 (en) Treatment method for wastewater containing heavy metals
JPH10180008A (en) Membrane separation device
JP4261857B2 (en) Method for recovering and using valuable metals in metal-containing wastewater
JP3829364B2 (en) Wastewater aggregation treatment method
CN114538693A (en) Cleaning agent regeneration method for antirust surface cleaning process
JP2006263553A (en) Method for treating anionic organic material-containing waste water
JPH057881A (en) Treatment of waste water containing heavy metal
JP7149129B2 (en) Silica-containing water treatment method and treatment apparatus
JP7460004B1 (en) Fluorine-containing wastewater treatment equipment and method
JPS61143527A (en) Treatment of metal-containing water
CN218811061U (en) Aluminum oxidation wastewater treatment process equipment
JP4239326B2 (en) Insolubilized material separation method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080222

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 14