JPS60248288A - Treatment of waste water from mine - Google Patents

Treatment of waste water from mine

Info

Publication number
JPS60248288A
JPS60248288A JP10272284A JP10272284A JPS60248288A JP S60248288 A JPS60248288 A JP S60248288A JP 10272284 A JP10272284 A JP 10272284A JP 10272284 A JP10272284 A JP 10272284A JP S60248288 A JPS60248288 A JP S60248288A
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
heavy metals
waste water
alkali
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10272284A
Other languages
Japanese (ja)
Inventor
Shigeyoshi Kobayashi
小林 重義
Sadao Okado
貞男 岡戸
Yoshikazu Yamada
山田 賀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP10272284A priority Critical patent/JPS60248288A/en
Publication of JPS60248288A publication Critical patent/JPS60248288A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To render the waste water from mines harmless by allowing magnesium hydroxide and other alkalis to react with the waste water from mines contg. heavy metals. CONSTITUTION:Magnesium hydroxide and other alkalis such as slaked lime and calcium carbonate are allowed to react with the acidic waste water from mines contg. heavy metals such as copper and arsenic, and the heavy metals are precipitated as hydroxides and removed. The waste water is simultaneously neutralized. The strongly acidic waste water from mines contg. heavy metals can be made harmless in this way.

Description

【発明の詳細な説明】 本発明は鉱山排水の処理方法、特に重金属を含む強酸性
の鉱山排水を無害化する方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating mine drainage, particularly a method for detoxifying strongly acidic mine drainage containing heavy metals.

鉱山排水、特に廃鉱となった鉱山からは常時かなりの量
の排水が排出され、これには、例えば鉄、マンガン、亜
鉛、カドミウム、銅、鉛、クロム等の有害重金属が硫酸
塩の形で数種乃至多種、比較的多量に含まれている。こ
れら排水はこれ全そのまま放流する事は環境上の観点か
ら詐されず、重金I!4を基準値以Fとなる様に除去し
、又排水も中和されなければならない。
A considerable amount of wastewater is always discharged from mines, especially from abandoned mines, and this contains many harmful heavy metals such as iron, manganese, zinc, cadmium, copper, lead, and chromium in the form of sulfates. Contained in relatively large amounts in many species. From an environmental point of view, discharging all of these wastewater as is is not deceiving, and is a heavy waste! 4 must be removed so that the F value is below the standard value, and the wastewater must also be neutralized.

従来かかる手段としては、消石灰を単独で用いて重金属
を水酸化物として沈降除去すると共に中和する方法、或
は消石灰と共にp′に1gl1整剤及び沈降助剤として
炭酸カルシウムを併用する方法が知られ、又行なわれて
いる。
Conventionally, such means include a method in which slaked lime is used alone to precipitate and remove heavy metals as hydroxides and neutralized, or a method in which slaked lime is used together with calcium carbonate as a 1gl1 regulating agent and a settling aid for p'. It has been done and is being done again.

しかしながらこれらの方法は、鉱山排水の殆んどのもの
が酸性源として硫酸根を多量に含有している為、カルシ
ウム系処理剤を用いる限り大量の石膏が副生ずる。石膏
自体は無害ではあるが、これを放流すると日日の問題が
生じ、やはり環境基準を著しく超えたものとなって許さ
れない。
However, these methods produce a large amount of gypsum as a by-product as long as a calcium-based treatment agent is used, since most of the mine drainage contains a large amount of sulfate radicals as an acid source. Although gypsum itself is harmless, releasing it into the water causes problems every day, and it significantly exceeds environmental standards, which is unacceptable.

この為、石膏をフィルター等によって分離せしめる必要
があるが、石膏は含水率が高く(85〜90%)処理容
量が膨大なものとなり、取り扱い上有利なものとは言い
難い欠点がある。
For this reason, it is necessary to separate the gypsum using a filter or the like, but gypsum has a high moisture content (85 to 90%) and requires a huge amount of processing capacity, making it difficult to handle.

本発明音はかかる欠点を除去し、重金属を有効に排水中
から沈降分離し、且硫酸根をも有効に中和し、しかも關
生物による二次公害の発生をも生じない処理手段として
、重金属の沈降剤及び排水の中和剤として水酸化マグネ
シウムを採用する手段を先に提案した。これは所期の目
的を十分達成し得る手段であるが、本発明番は更に検討
を進めた処、水酸化マグネシウムと共に他のアルカリを
併用−すると、重金属の沈降速度が大となり、又得られ
た沈降物の含水量が比較的小であり、脱水分iが更に容
易になることを見出した。
The sound of the present invention eliminates such drawbacks, effectively separates heavy metals from wastewater by sedimentation, effectively neutralizes sulfuric acid radicals, and does not cause secondary pollution caused by related organisms. We have previously proposed a method of employing magnesium hydroxide as a sedimentation agent and a neutralizing agent for wastewater. Although this is a means that can sufficiently achieve the intended purpose, the present invention has been further investigated and found that when other alkalis are used together with magnesium hydroxide, the sedimentation rate of heavy metals increases, and the obtained It has been found that the water content of the sediment is relatively small, making dehydration easier.

かくして本発明は、重金属を含む酸性の鉱山排水に対し
、水酸化マグネシウムと、他のアルカリを併用し、反応
せしめて重金属を水酸化物として沈降除去せしめると共
に、排水を中和することを%徴とする鉱山排水の処理方
法を提供するにある。
Thus, the present invention is characterized in that magnesium hydroxide and other alkalis are used in combination with acidic mine drainage containing heavy metals, and the heavy metals are precipitated and removed as hydroxides, and the drainage is neutralized. The purpose of the present invention is to provide a method for treating mine wastewater.

本発明において鉱山排水中に含まれる重金II4は、酸
性液中でイオン化されており、且中性乃至アルカリ性に
おいて水酸化物の沈澱を生成するものならいかなるもの
でも処理可能である。かかる重金属としては、例えば銅
、ヒ素、鉄、亜鉛、マンガン1カドンウム、鉛、水銀、
クロム、ニッケル等を挙げることが出来る。
In the present invention, the heavy metal II4 contained in mine drainage is ionized in an acidic solution, and can be treated with any substance that produces hydroxide precipitates in neutral to alkaline conditions. Such heavy metals include, for example, copper, arsenic, iron, zinc, manganese, cadmium, lead, mercury,
Examples include chromium and nickel.

又、酸性の鉱山排水は、その殆んどのものが硫酸根に基
因するものであるが、他の酸が混入していても差し支え
ない。
In addition, most of the acidic mine drainage is caused by sulfate radicals, but there is no problem even if other acids are mixed in.

この様な排水に対し、用いられる水酸化マグネシウムの
量は、排水中に含まれる重金属のW1類及び酸性の度合
等により厳密には決定されるが、一般に排水の中和に要
するアルカリ当量の90〜50%を採用するのが適幽で
ある。使用量が前記範囲に満たない場合には、生成する
重金属水酸化物沈澱の締りが悪く、含水率が高く生成沈
澱物量が増大するので好ましくな9゜水酸化マグネシウ
ムの使用態様に特に限定はなく、乾燥品或は例えば海水
水マグの様にスラリー状で得られたものをそのまま用い
ることが出来る。
The amount of magnesium hydroxide used for such wastewater is strictly determined by the W1 class heavy metals contained in the wastewater and the degree of acidity, but generally it is 90% of the alkali equivalent required to neutralize the wastewater. It is best to adopt ~50%. If the amount used is less than the above range, the heavy metal hydroxide precipitate produced will be poorly compacted and the water content will be high, increasing the amount of precipitate produced.Therefore, there is no particular limitation on the preferred mode of use of 9° magnesium hydroxide. , a dried product or a product obtained in the form of a slurry, such as a seawater mug, can be used as is.

また併用されるアルカリとしては、消石灰、炭酸カルシ
ウム、酸化カルシウム、水酸化ナトリウム、炭酸ナトリ
ウム、重炭酸ナトリウムであり、これらは適宜一種又は
数種全使用することができる。しかし、排水中の硫酸根
濃度が高い場合には、消石灰、炭酸カルシウムなどのカ
ルシウムアルカリは、難溶性の石膏沈澱を副生じ、沈澱
物量が増大するので、石膏の副生がない水酸化ナトリウ
ムなどのナトリウムアルカリが好筐しい。
Examples of alkali used in combination include slaked lime, calcium carbonate, calcium oxide, sodium hydroxide, sodium carbonate, and sodium bicarbonate, and one or more of these may be used as appropriate. However, when the concentration of sulfate radicals in wastewater is high, calcium alkalis such as slaked lime and calcium carbonate produce poorly soluble gypsum precipitate as a by-product, increasing the amount of precipitate. Sodium alkali is preferred.

これらアルカリの使用量は、排水を中和するに要する全
アルカリ量の10〜50%用いるのが適尚である。
The appropriate amount of these alkalis to be used is 10 to 50% of the total amount of alkalis required to neutralize the waste water.

前記範囲を逸脱すると本発明の目的である重金属水酸化
物の好ましい沈降性と低い含水率が効果的に達成されな
くなる虞れがあるので好ましくない。
If it deviates from the above range, it is not preferable because the desirable sedimentation properties and low water content of heavy metal hydroxides, which are the objectives of the present invention, may not be effectively achieved.

排水への水酸化マグネシウムと他の併用するアルカリの
添加方法は、水酸化マグネシウムを併用するアルカリと
同時に添加反応、或いは、併用するアルカリを添加反応
させた後に水酸化マグネシウムを添加反応させるのが好
ましい。水酸化マグネシウムを添加反応させた後に併用
するアルカリを添加反応させた場合には、水酸化マグネ
シウムを用いた効果が十分に得られない虞れがあるので
好ましくない。
Regarding the method of adding magnesium hydroxide and other alkalis to the wastewater, it is preferable to add and react magnesium hydroxide at the same time as the alkali to be used together, or to add and react magnesium hydroxide after adding and reacting the alkali to be used in combination. . If an alkali used in combination is added and reacted after magnesium hydroxide is added, the effect of using magnesium hydroxide may not be sufficiently obtained, which is not preferable.

本発明方法を採用する場合には、短時間に重金属水酸化
物の沈降が実質的完全に進行し、しかもこれをフィルタ
ーにかけて濾過する場合には含水率を70%以下に丁げ
られる為処理操作も比較的容易である。又、硫酸根はマ
グネシウムと反応して硫酸マグネシウムが生成されるが
、これは溶解度が大な為、通常の鉱山排水処理において
はこれが沈澱物として生成することはなく、又無壺であ
る為、直ちに放流することが可能となる利点がある。
When the method of the present invention is adopted, the precipitation of heavy metal hydroxides progresses substantially completely in a short period of time, and when the heavy metal hydroxides are filtered, the water content can be reduced to 70% or less. is also relatively easy. In addition, sulfate radicals react with magnesium to produce magnesium sulfate, but due to its high solubility, it does not form as a precipitate in normal mine drainage treatment, and since it is pot-free, It has the advantage that it can be immediately discharged.

次に本発明を実施例により説明する。Next, the present invention will be explained by examples.

実施例1 重金属として銅15 pI)m、鉄501)1)m、亜
鉛61)l)mを含み、さらにアルきニウム41 pp
m、硫酸根850ppmを含むpH2,7の鉱山排水5
!に、水酸化マグネシウムx、6g(中和に要するアル
カリ当量の80%に相当)と消石灰0.5g(中和に要
するアルカリ当量の20チに相当)を同時に10優スラ
リー液として加えた。
Example 1 Contains as heavy metals copper 15 pI)m, iron 501)1)m, zinc 61)l)m, and furthermore aluminum 41 pp
Mine drainage water with a pH of 2.7 containing 850 ppm of sulfate roots 5
! 6 g of magnesium hydroxide x (corresponding to 80% of the alkali equivalent required for neutralization) and 0.5 g of slaked lime (corresponding to 20% of the alkali equivalent required for neutralization) were simultaneously added as a 10% slurry liquid.

アルカリ添加後40分攪拌し、生成した沈澱物全児全に
凝縮させた。
After adding the alkali, the mixture was stirred for 40 minutes and the resulting precipitate was completely condensed.

上げ液を分析した結果を衣1に示す。又生成した沈澱物
の全量を通気度50 crA/ Qm2分atmの濾布
を用いた濾過面積20備2の小型フィルタープレス濾過
機でゲージ圧3 K9 / cm2の圧力で濾過した結
果、濾布上に残ったケーキ量は8,3gで、このケーキ
の含水率は68%であった。
The results of analyzing the raised liquid are shown in Figure 1. In addition, the entire amount of the generated precipitate was filtered at a gauge pressure of 3 K9/cm2 using a small filter press filtration machine with a filtration area of 20 x 2 using a filter cloth with an air permeability of 50 crA/Qm2 minutes atm. The amount of cake remaining was 8.3 g, and the moisture content of this cake was 68%.

表 1 実施例2 実施例1で用いた鉱山排水5.l/に、水酸化マグネシ
ウム1. o g(中和に要するアルカリ当量の50%
に相当)と消石灰1. a g(中和に安するアルカリ
当量の50チに相当)を同時に10%スラリー液として
加え、実施例1と同一の装置を用い、同一の方法で排水
の処理、沈澱物の濾過を行なった。
Table 1 Example 2 Mine drainage used in Example 15. 1/l of magnesium hydroxide. o g (50% of the alkali equivalent required for neutralization)
) and slaked lime 1. a g (equivalent to 50 g of alkali equivalent for neutralization) was added as a 10% slurry liquid at the same time, and using the same equipment as in Example 1, the wastewater was treated and the precipitate was filtered in the same manner. .

上澄液の分析結果を表2に示す。又濾過後のケーキ量は
9.0gで、このケーキの含水率は69チであった。
Table 2 shows the analysis results of the supernatant. The amount of cake after filtration was 9.0 g, and the moisture content of this cake was 69 g.

表 2 実施例3 実施例1で用いた鉱山排水5!に、水酸化マグネシウム
0.6 g(中和に要するアルカリ当量の30%に相当
)と消石灰1.8 g (中和に便するアルカリ当量の
70チに相当)を同時に10チスラリー液として加え、
実施例1と同一の装置t−用い、同一の方法で排水の処
理、沈澱物の濾過を行なった。
Table 2 Example 3 Mine drainage used in Example 1 5! 0.6 g of magnesium hydroxide (equivalent to 30% of the alkali equivalent required for neutralization) and 1.8 g of slaked lime (equivalent to 70 g of the alkali equivalent required for neutralization) were added simultaneously as a 10% slurry solution.
Using the same apparatus as in Example 1, the waste water was treated and the precipitate was filtered in the same manner.

上澄液の分析結果を表3に示す。また濾過後のケーキ蓋
は9.8gで、このケーキの含水率は69チであった。
Table 3 shows the analysis results of the supernatant. The cake lid after filtration weighed 9.8 g, and the moisture content of this cake was 69 g.

表 3 実施例4 実施例1で用いた鉱山排水5!に、水酸化マグネシウム
1. a g (中和に要するアルカリ当量の80俤に
相当)と水酸化ナトリウム0.5g(中オロに要するア
ルカリ当量の20優に相当)を同時に10チ液として加
え、実施例1と同一の装置を用い、同一の方法で排水の
処理、沈澱物の濾過を行なった。
Table 3 Example 4 Mine drainage used in Example 1 5! , magnesium hydroxide 1. a g (equivalent to 80 yen of the alkali equivalent required for neutralization) and 0.5 g of sodium hydroxide (equivalent to 20 yen of the alkali equivalent required for neutralization) were added simultaneously as 10% solution, using the same apparatus as in Example 1. The wastewater was treated and the precipitate was filtered using the same method.

上澄液の分析結果を表4VC示す。又濾過後のケーキ量
は8.5gで、このケーキの含水率は68チであった。
The analysis results of the supernatant are shown in Table 4VC. The amount of cake after filtration was 8.5 g, and the moisture content of this cake was 68 g.

(9) 表 4 比較例1 実施例1で用いた鉱山排水5!に、水酸化マグネシウム
2.5gを10チスラリー液として加え、実施例】と同
一の装置を用い、同一の方法で排水の処理、沈澱物の濾
過を行ない、上澄液の分析結果が表5に示すようになる
迄65分間の攪拌凝集を要した。
(9) Table 4 Comparative Example 1 Mine drainage used in Example 1 5! 2.5 g of magnesium hydroxide was added as a 10-thi slurry solution, and the wastewater was treated and the precipitate was filtered in the same manner as in Example using the same equipment. The analysis results of the supernatant liquid are shown in Table 5. It took 65 minutes of agitation and coagulation to achieve the results shown.

又濾過後のケーキ′tは8、Ogで、このケーキの含水
率は72チであった。
The weight of the cake after filtration was 8.0 g, and the moisture content of this cake was 72 g.

比較例2 実施例1で用いた鉱山排水5!に消石灰2.5gを10
チスラリー液として加え、実施例1と同一の装置を用い
、同一の方法で排水の処理、沈澱物の濾過を行なつ(:
1+O) た。上澄液の分析結果を表6に示す。又濾過後のケーキ
量は21.3gで、このケーキの含水率は88%であっ
た。
Comparative Example 2 Mine drainage used in Example 1 5! Add 2.5g of slaked lime to 10
Add it as a slurry solution, use the same equipment as in Example 1, and treat the wastewater and filter the precipitate in the same manner (:
1+O) Ta. Table 6 shows the analysis results of the supernatant. The amount of cake after filtration was 21.3 g, and the moisture content of this cake was 88%.

表 5 表 6 (11)Table 5 Table 6 (11)

Claims (5)

【特許請求の範囲】[Claims] (1) 重金属を含む酸性の鉱山排水に対し、水酸化マ
グネシウムと、水酸化マグネシウム以外のアルカリを反
応せしめて重金属を水酸化物として沈澱除去すると共に
、排水を中和することを特徴とする鉱山排水の処理方法
(1) A mine characterized by reacting magnesium hydroxide with an alkali other than magnesium hydroxide against acidic mine drainage containing heavy metals to precipitate and remove the heavy metals as hydroxides and neutralizing the drainage. How to treat wastewater.
(2) 重金属は銅、ヒ素、鉄、亜鉛、マンガン、カド
ミウム、鉛、水銀、クロム、ニッケルである請求の範囲
(1)の方法。
(2) The method according to claim (1), wherein the heavy metals are copper, arsenic, iron, zinc, manganese, cadmium, lead, mercury, chromium, and nickel.
(3)酸性の鉱山排水は、硫酸根が含有されている請求
の範囲(1)の方法。
(3) The method according to claim (1), wherein the acidic mine drainage contains sulfate radicals.
(4) 水酸化マグネシウムと併用されるアルカリは消
石灰、炭酸カルシウム、酸化カルシウム、水酸化ナトリ
ウム、炭酸ナトリウム、重炭酸ナトリウムから選ばれた
少なくとも一つである請求の範囲(1)の方法。
(4) The method according to claim (1), wherein the alkali used in combination with magnesium hydroxide is at least one selected from slaked lime, calcium carbonate, calcium oxide, sodium hydroxide, sodium carbonate, and sodium bicarbonate.
(5) 水酸化マグネシウムと併用されるアルカリの量
は、排水を中和するに要する全アルカリ量の10〜50
チである請求の範囲(1)の方法。
(5) The amount of alkali used together with magnesium hydroxide is 10 to 50% of the total amount of alkali required to neutralize wastewater.
The method according to claim (1), which is:
JP10272284A 1984-05-23 1984-05-23 Treatment of waste water from mine Pending JPS60248288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10272284A JPS60248288A (en) 1984-05-23 1984-05-23 Treatment of waste water from mine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10272284A JPS60248288A (en) 1984-05-23 1984-05-23 Treatment of waste water from mine

Publications (1)

Publication Number Publication Date
JPS60248288A true JPS60248288A (en) 1985-12-07

Family

ID=14335156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10272284A Pending JPS60248288A (en) 1984-05-23 1984-05-23 Treatment of waste water from mine

Country Status (1)

Country Link
JP (1) JPS60248288A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157090A (en) * 1988-12-09 1990-06-15 Kurita Water Ind Ltd Treatment of heavy metal-containing waste water
JP2002035765A (en) * 2000-07-21 2002-02-05 Japan Organo Co Ltd Method for removing target component from water to be treated and crystallization apparatus
JP2004049952A (en) * 2002-07-16 2004-02-19 Ube Material Industries Ltd Treatment method for acidic wastewater
US6949197B2 (en) * 2003-06-06 2005-09-27 Rmt, Inc. Situ neutralization of subsurface acidic pore water
JP5607787B1 (en) * 2013-05-27 2014-10-15 吉澤石灰工業株式会社 Acid wastewater treatment method
JP2017192871A (en) * 2016-04-18 2017-10-26 宇部興産株式会社 Acidic water neutralizer, and neutralizing method of acidic water
CN113072211A (en) * 2021-04-01 2021-07-06 云南黄金矿业集团股份有限公司 Method for treating high-arsenic ferrate wastewater and recovering copper and iron

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157090A (en) * 1988-12-09 1990-06-15 Kurita Water Ind Ltd Treatment of heavy metal-containing waste water
JP2002035765A (en) * 2000-07-21 2002-02-05 Japan Organo Co Ltd Method for removing target component from water to be treated and crystallization apparatus
JP2004049952A (en) * 2002-07-16 2004-02-19 Ube Material Industries Ltd Treatment method for acidic wastewater
US6949197B2 (en) * 2003-06-06 2005-09-27 Rmt, Inc. Situ neutralization of subsurface acidic pore water
JP5607787B1 (en) * 2013-05-27 2014-10-15 吉澤石灰工業株式会社 Acid wastewater treatment method
JP2017192871A (en) * 2016-04-18 2017-10-26 宇部興産株式会社 Acidic water neutralizer, and neutralizing method of acidic water
CN113072211A (en) * 2021-04-01 2021-07-06 云南黄金矿业集团股份有限公司 Method for treating high-arsenic ferrate wastewater and recovering copper and iron

Similar Documents

Publication Publication Date Title
AU724510B2 (en) A process for treating arsenic-containing waste water
US4025430A (en) Removal of metal ions from waste water
CN101962239A (en) Method for purifying titanium white wastewater
JPS56121685A (en) Treatment of liquid containing iron ion and manganese ion
JPS60248288A (en) Treatment of waste water from mine
JP5607787B1 (en) Acid wastewater treatment method
CN103189318A (en) Purification material for toxic matter-containing water and production method for same
US4519921A (en) Methods for removing pollutants from water and waste water and for reducing sludge resistance to dewatering
JPS6225439B2 (en)
JP3355281B2 (en) Treatment agent and treatment method for metal-containing acidic wastewater
JPH10128396A (en) Treatment of arsenic-containing sludge
JP2911506B2 (en) Treatment method for fluorine-containing wastewater
JP3709156B2 (en) Treatment method for fluorine-containing wastewater
JP2001252675A (en) Method for removing heavy metal ion in waste water
JP2548096B2 (en) Method of treating wastewater containing cadmium
JP3733452B2 (en) Waste disposal method
JPS6310995B2 (en)
JPS6051593A (en) Treatment of heavy metal-containing mine waste water
JP3480021B2 (en) How to recover zinc
JPS6022990A (en) Treatment of waste water from mine
RU2751783C2 (en) Method for waste water purification from heavy metal ions
JPS60139388A (en) Treatment of mine waste water
JPS60137490A (en) Treatment of mine waste water containing heavy metal
JPH057879A (en) Treatment of waste water containing heavy metal
JPS6022991A (en) Treatment of waste water from mine