JP2911506B2 - Treatment method for fluorine-containing wastewater - Google Patents

Treatment method for fluorine-containing wastewater

Info

Publication number
JP2911506B2
JP2911506B2 JP32471689A JP32471689A JP2911506B2 JP 2911506 B2 JP2911506 B2 JP 2911506B2 JP 32471689 A JP32471689 A JP 32471689A JP 32471689 A JP32471689 A JP 32471689A JP 2911506 B2 JP2911506 B2 JP 2911506B2
Authority
JP
Japan
Prior art keywords
fluorine
water
comparative example
containing wastewater
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32471689A
Other languages
Japanese (ja)
Other versions
JPH03186393A (en
Inventor
卓 井上
義照 堀田
陽一郎 杉原
正博 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUNICHIKA KK
Original Assignee
YUNICHIKA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUNICHIKA KK filed Critical YUNICHIKA KK
Priority to JP32471689A priority Critical patent/JP2911506B2/en
Publication of JPH03186393A publication Critical patent/JPH03186393A/en
Application granted granted Critical
Publication of JP2911506B2 publication Critical patent/JP2911506B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,フツ素含有排水の処理方法に関するもので
ある。
Description: TECHNICAL FIELD The present invention relates to a method for treating fluorine-containing wastewater.

(従来の技術) 従来,各種金属表面処理工場,アルミニウム電解精錬
工場,リン酸肥料製造工場,窯業工場,塵芥焼却工場,
半導体製造工場,プリント基板製造工場,セラミックス
製造工場,産業廃棄物処理工場,廃棄物埋立処分地等,
フツ素関連工場から排出されるフツ素含有排水を処理す
る方法として,これらフツ素含有排水に,カルシウム化
合物,アルミニウム化合物,リン化合物等を1種以上加
えて,排水中のフツ素イオンを不溶化させた後,固液分
離して除去する方法が提案されている。
(Prior art) Conventionally, various metal surface treatment plants, aluminum electrolytic refining plants, phosphate fertilizer production plants, ceramic plants, waste incineration plants,
Semiconductor manufacturing plant, printed circuit board manufacturing plant, ceramics manufacturing plant, industrial waste treatment plant, waste landfill site, etc.
As a method of treating fluorine-containing wastewater discharged from a fluorine-related plant, one or more calcium compounds, aluminum compounds, phosphorus compounds, etc. are added to the fluorine-containing wastewater to insolubilize fluorine ions in the wastewater. After that, a method of removing by solid-liquid separation has been proposed.

例えば,特公昭60−117号公報には,硫酸バンド等の
アルミニウム化合物と水酸化カルシウム等のカルシウム
化合物の組合せによる方法,特開昭62−125894号公報に
は,塩化カルシウム等のカルシウム化合物とリン酸第2
カリウム等のリン化合物の組合せによる方法等が記載さ
れている。
For example, Japanese Patent Publication No. Sho 60-117 discloses a method using a combination of an aluminum compound such as a sulfuric acid band and a calcium compound such as calcium hydroxide, and JP-A No. 62-125894 discloses a method using a calcium compound such as calcium chloride and phosphorus. Acid second
A method using a combination of phosphorus compounds such as potassium is described.

(発明が解決しようとする課題) しかし,上記のような従来法では, 薬品使用量及びスラツジ生成量が多い, スラツジ埋立て後にフツ素が溶出する, 中和に要するアルカリ性薬品が多い, カルシウムスケールが発生する, リン規制値をオーバーする, 装置及び操作が複雑で,フツ素を低濃度まで完全に除
去できない, 等の問題点があつた。
(Problems to be solved by the invention) However, in the above conventional methods, the amount of chemicals used and the amount of sludge generated are large, fluorine is eluted after landfilling sludge, there are many alkaline chemicals required for neutralization, and calcium scale There were problems such as the occurrence of phosphorus, exceeding the phosphorus regulation value, the complicated equipment and operation, and the inability to completely remove fluorine to low concentrations.

本発明は,上記のような問題点を解消することのでき
るフツ素含有排水の処理方法を提供することを目的とす
るものである。
An object of the present invention is to provide a method for treating fluorine-containing wastewater, which can solve the above problems.

(課題を解決するための手段) 本発明者らは,上記課題を解決するために鋭意研究の
結果,フツ素含有排水の処理に希土類化合物を中心とし
た水溶性組成物が利用できることを見出し,本発明に到
達した。
(Means for Solving the Problems) The present inventors have conducted intensive studies in order to solve the above problems, and as a result, have found that a water-soluble composition centering on a rare earth compound can be used for treating fluorine-containing wastewater. The present invention has been reached.

すなわち,本発明は,フツ素含有排水に,希土類化合
物,アルカリ土類金属化合物及びアルカリ金属化合物か
らなる水溶性組成物を加えて排水中のフツ素イオンを不
溶化させた後,固液分離することを特徴とするフツ素含
有排水の処理方法を要旨とするものである。
That is, the present invention relates to a method of adding a water-soluble composition comprising a rare earth compound, an alkaline earth metal compound and an alkali metal compound to a fluorine-containing wastewater to insolubilize the fluorine ions in the wastewater, followed by solid-liquid separation. The gist of the present invention is a method for treating fluorine-containing wastewater.

本発明に用いられる水溶性組成物は,希土類化合物,
アルカリ土類金属化合物及びアルカリ金属化合物からな
つており,その水溶性組成物の組成範囲としては,例え
ば希土類化合物として100〜250g/lの範囲が,アルカリ
土類金属化合物として1〜10g/lの範囲が,アルカリ金
属化合物として1〜10g/lの範囲が適当であり,その水
溶性組成物のpHとして0〜5が適当である。
The water-soluble composition used in the present invention comprises a rare earth compound,
It is composed of an alkaline earth metal compound and an alkali metal compound. The composition range of the water-soluble composition is, for example, 100 to 250 g / l as a rare earth compound and 1 to 10 g / l as an alkaline earth metal compound. The range is suitably from 1 to 10 g / l as the alkali metal compound, and the pH of the water-soluble composition is suitably from 0 to 5.

本発明に用いられる希土類化合物としては,例えばセ
リウム,ランタン,ネオジム,プラセオジム,サマリウ
ム,ユーロピウム,ガドリニウム,テルビウム,ジスプ
ロジウム,ホルミウム,エルビウム,ツリウム,イツテ
ルビウム,ルテシウム,イツトリウムの塩化物,硫酸
塩,硝酸塩,酢酸塩があげられ,これらを一種又は二種
以上用いればよい。
Examples of the rare earth compound used in the present invention include cerium, lanthanum, neodymium, praseodymium, samarium, europium, gadolinium, terbium, disprosium, holmium, erbium, thulium, ytterbium, lutesium, yttrium chloride, sulfate, and nitrate. , Acetates, and these may be used alone or in combination of two or more.

本発明に用いられるアルカリ土類金属化合物として
は,カルシウム,マグネシウム,バリウムの塩化物,硫
酸塩,硝酸塩,酢酸塩があげられ,これらを一種又は二
種以上用いればよい。
Examples of the alkaline earth metal compound used in the present invention include calcium, magnesium, and barium chlorides, sulfates, nitrates, and acetates, and one or more of these may be used.

本発明に用いられるアルカリ金属化合物としては,リ
チウム,ナトリウム,カリウムの塩化物,硫酸塩,硝酸
塩,酢酸塩があげられ,これらを一種又は二種以上用い
ればよい。
Examples of the alkali metal compound used in the present invention include chlorides, sulfates, nitrates and acetates of lithium, sodium and potassium, and one or more of these may be used.

本発明でフツ素含有排水を処理するには,まずフツ素
含有排水に,希土類化合物,アルカリ土類金属化合物及
びアルカリ金属化合物からなる水溶性組成物を加えて排
水中のフツ素イオンを不溶化させることが必要である。
そのためには,例えばフツ素濃度や共存物質等,フツ素
排水の性状によっても変わるが,通常,フツ素含有排水
1に対して上記水溶性組成物を300〜3000mg注入すれ
ばよい。そのときの反応時間としては,約5〜20分間が
適当であり,また,反応時のpHとしては,5〜9の範囲が
好ましく,特に6〜8の範囲が好ましい。また,フツ素
含有排水のpHや無機凝集剤を加えたときのpHが上記範囲
外のときは,塩酸等の通常の酸性薬品,カセイソーダ等
の通常のアルカリ性薬品を加えて上記のpH範囲に調整す
るとよい。さらに温度としては,例えば5〜40℃が適当
である。
To treat the fluorine-containing wastewater in the present invention, first, a water-soluble composition comprising a rare earth compound, an alkaline earth metal compound and an alkali metal compound is added to the fluorine-containing wastewater to insolubilize the fluorine ions in the wastewater. It is necessary.
For this purpose, 300 to 3000 mg of the above water-soluble composition may be usually injected into the fluorine-containing wastewater 1 although it varies depending on the properties of the fluorine wastewater, such as the fluorine concentration and coexisting substances. The reaction time at that time is suitably about 5 to 20 minutes, and the pH during the reaction is preferably in the range of 5 to 9, particularly preferably in the range of 6 to 8. If the pH of the fluorine-containing wastewater or the pH when an inorganic coagulant is added is outside the above range, adjust the pH to the above range by adding a normal acidic chemical such as hydrochloric acid or a normal alkaline chemical such as caustic soda. Good to do. Further, as the temperature, for example, 5 to 40 ° C. is appropriate.

次に,上記で生成させた不溶化物を固液分離すること
が必要である。そのためには,例えば,沈澱,浮上,脱
水,濾過等で行えばよい。このときに水溶性組成物を加
えて生成せしめた不溶化物は凝集してフロツク状で,固
液分離しやすいものであるが,必要に応じて硫酸バンド
や塩化第2鉄等通常の無機凝集剤又はアクリル系ポリマ
ー等の高分子凝集剤を併用して,さらに凝集性を高めて
もよい。
Next, it is necessary to carry out solid-liquid separation of the insolubilized substance produced above. For that purpose, for example, precipitation, floating, dehydration, filtration and the like may be performed. At this time, the insolubilized product formed by adding the water-soluble composition is agglomerated and flocculent, and is easily separated into solid and liquid. If necessary, a conventional inorganic flocculant such as a sulfate band or ferric chloride may be used. Alternatively, a coagulant may be further enhanced by using a polymer coagulant such as an acrylic polymer in combination.

また,本発明においては,他の石灰凝集法,硫酸バン
ド凝集法,フルオロアパタイト凝集法,イオン交換樹脂
吸着法,キレート樹脂吸着法等と組合せて固液分離して
もよい。
In the present invention, solid-liquid separation may be performed in combination with other methods such as lime agglomeration, sulfate band agglomeration, fluorapatite agglomeration, ion exchange resin adsorption, and chelate resin adsorption.

(作用) 本発明によると,水溶性組成物を加えたとき排水中の
フツ素と不溶化物を生成せしめるのは,水溶性組成物の
うち希土類化合物と,アルカリ土類金属化合物であつ
て,特にアルカリ土類金属化合物を除く希土類化合物に
よる不溶化効果が大きく,他のアルカリ土類金属化合物
と,アルカリ金属化合物とは,上記希土類化合物の不溶
化効果をさらに大きくする作用があるものと考えられ
る。
(Action) According to the present invention, when a water-soluble composition is added, fluorine and insolubilized matter in the wastewater are formed by a rare-earth compound and an alkaline-earth metal compound in the water-soluble composition. It is considered that the insolubilizing effect of the rare earth compound other than the alkaline earth metal compound is large, and the other alkaline earth metal compound and the alkali metal compound have an action of further increasing the insolubilizing effect of the rare earth compound.

(実施例) 次に,実施例及び比較例によつて本発明を具体的に説
明する。
(Examples) Next, the present invention will be specifically described with reference to Examples and Comparative Examples.

実施例1,比較例1 懸濁物質120mg/l,フツ素92.1mg/l,アルミニウム48mg/
lを含有し,pH2.1のアルミニウム金属表面処理工場から
排出される排水1に,塩化セリウム143g/l,塩化ネオ
ジム47g/l,塩化プラセオジム14g/l,塩化サマリウム1g/
l,塩化カルシウム5g/l及び塩化ナトリウム5g/lを含有
し,pHが3.2の水溶性組成物を2000mg注入し,5分間攪拌し
た後,pHを測定をすると,pHは2.4であつた。
Example 1, Comparative Example 1 Suspended substance 120 mg / l, fluorine 92.1 mg / l, aluminum 48 mg / l
l, wastewater 1 discharged from an aluminum metal surface treatment plant with a pH of 2.1 contains 143 g / l of cerium chloride, 47 g / l of neodymium chloride, 14 g / l of praseodymium chloride, and 1 g of samarium chloride.
2000 mg of a water-soluble composition containing 3.2 g of calcium chloride, 5 g / l of calcium chloride and 5 g / l of sodium chloride and having a pH of 3.2 was injected, stirred for 5 minutes, and the pH was measured to be 2.4.

これをさらに攪拌しながら24%(重量%を表す,以下
同様)カセイソーダ溶液4100mg/lを注入してpH7.0に調
整し,約200mlの加圧水にて浮上分離させた。
While stirring the solution, 4100 mg / l of a caustic soda solution of 24% (expressed by weight, hereinafter the same) was injected to adjust the pH to 7.0, and the mixture was floated and separated with about 200 ml of pressurized water.

分離させた処理水中のフツ素濃度をJIS K0102による
ランタン−アリザリンコンプレキソン吸光光度法にて分
析した。
The concentration of fluorine in the separated treated water was analyzed by lanthanum-alizarin complexone spectrophotometry according to JIS K0102.

なお,比較のため,水溶性組成物の成分中,塩カルシ
ウムと塩化ナトリウムを含有しないものを用いた以外
は,上記と全く同様に処理した(比較例1)。
For comparison, the same treatment as above was carried out except that a component not containing calcium salt and sodium chloride was used in the components of the water-soluble composition (Comparative Example 1).

その結果,処理水中のフツ素濃度は,実施例1が6.90
mg/lで,比較例1が16.3mg/lであり,実施例1の方が明
らかに優れていることが判明した。
As a result, the fluorine concentration in the treated water was 6.90 in Example 1.
Comparative Example 1 was 16.3 mg / l at mg / l, and it was found that Example 1 was clearly superior.

実施例2,比較例2,3 懸濁物質5mg/l,フツ素16.3mg/l,銅0.64mg/l,ナトリウ
ム61mg/l等を含有し,pH7.5のプリント基板製造工場から
排出される排水1に,酢酸ランタン121g/l,硫酸ユー
ロピウム32g/l,硝酸カドリニウム13g/l,塩化テルビウム
2g/l,硫酸ジスプロジウム1g/l,硝酸カルシウム5g/l,硝
酸マグネシウム3g/l,硫酸カリウム3g/l及び酢酸リチウ
ム2g/lを含有し,pHが4.3の水溶性組成物を1000mg注入し
て10分間攪拌し,次いで,塩化第2鉄300mgを注入して1
0分間攪拌した後,pHを測定すると,pHは3.5であつた。こ
れを攪拌しながら24%カセイソーダ溶液250mgを注入し
てpH7.0に調整した後,ポリアクリルアミドのアニオン
系高分子凝集剤(ユニチカ社製)2mgを注入した。
Example 2, Comparative Examples 2 and 3, containing 5 mg / l of a suspended substance, 16.3 mg / l of fluorine, 0.64 mg / l of copper, 61 mg / l of sodium, etc., and is discharged from a printed circuit board manufacturing plant of pH 7.5. In wastewater 1, lanthanum acetate 121 g / l, europium sulfate 32 g / l, cadmium nitrate 13 g / l, terbium chloride
1000 mg of a water-soluble composition containing 2 g / l, disprosium sulfate 1 g / l, calcium nitrate 5 g / l, magnesium nitrate 3 g / l, potassium sulfate 3 g / l, and lithium acetate 2 g / l and having a pH of 4.3 was injected. For 10 minutes, then inject 300 mg of ferric chloride and add 1
After stirring for 0 min, the pH was measured to be 3.5. While stirring the mixture, 250 mg of a 24% sodium hydroxide solution was injected to adjust the pH to 7.0, and then 2 mg of a polyacrylamide anionic polymer flocculant (manufactured by Unitika) was injected.

次に,30分間静置して沈澱させた後,遠心脱水機(東
京理化器械社製)を用いて2000rpmの条件下で固液分離
させた。分離させた処理水中のフツ素濃度を実施例1と
同様の方法で分析した。
Next, the mixture was allowed to stand for 30 minutes to precipitate, and then subjected to solid-liquid separation using a centrifugal dehydrator (manufactured by Tokyo Rikakikai Co., Ltd.) at 2,000 rpm. The fluorine concentration in the separated treated water was analyzed in the same manner as in Example 1.

なお,比較のため,上記の水溶性組成物を注入しなか
つた以外は,全く同様に処理した(比較例2)。
For comparison, the same treatment was performed except that the water-soluble composition was not injected (Comparative Example 2).

さらに,上記の水溶性組成物の代わりに水酸化カルシ
ウムを用いた以外は,全く同様に処理した(比較例
3)。
Further, the same treatment was performed except that calcium hydroxide was used instead of the above water-soluble composition (Comparative Example 3).

その結果,処理水中のフツ素濃度は,実施例2が0.40
mg/lで,比較例2が14.8mg/lで,比較例3が12.8mg/lで
あり,実施例2に比べて比較例2はほとんど効果がな
く,比較例3は効果が非常に小さく,また,スラツジ生
成量は,実施例2が340mgで,比較例3が710mgで,実施
例2に比べて比較例3は2倍以上多く,さらには処理水
中の残存カルシウム濃度は,実施例2が65mg/lで,比較
例3が520mg/lで,実施例2に比べて比較例3は非常に
高濃度であり,各装置にカルシウムスケール付着の可能
性が大きいことが判明した。
As a result, the fluorine concentration in the treated water was 0.40 in Example 2.
mg / l, Comparative Example 2 was 14.8 mg / l, Comparative Example 3 was 12.8 mg / l, Comparative Example 2 had little effect compared to Example 2, and Comparative Example 3 had very little effect. The sludge production amount was 340 mg in Example 2, 710 mg in Comparative Example 3, more than twice as much in Comparative Example 3 as in Example 2, and the residual calcium concentration in the treated water was as high as in Example 2. Was 65 mg / l, Comparative Example 3 was 520 mg / l, and Comparative Example 3 had a much higher concentration than Example 2, indicating that the possibility of calcium scale adhesion to each device was large.

なお,スラツジを30日間放置した後,環境庁告示第13
号による検出試験を行った結果,フツ素の溶出値は,実
施例2が不検出で,比較例3が3.9mg/lで,実施例2に
比べて比較例3はフツ素が溶出することが判明した。
After leaving the sludge for 30 days, the Environment Agency Notification 13
As a result of conducting a detection test using the test sample, the elution value of fluorine was not detected in Example 2 and was 3.9 mg / l in Comparative Example 3, indicating that fluorine was eluted in Comparative Example 3 compared to Example 2. There was found.

実施例3,比較例4 懸濁物質290mg/l,フツ素34.1mg/l,ナトリウム6100mg/
l,カルシウム22mg/l,アルミニウム35mg/l等を含有し,oH
が8.9のゴミ焼却工場から排出される洗煙排水1に,
硝酸イツトリウム110g/l,硫酸ホルミウム6g/l,塩化エル
ビウム5g/l,酢酸ツリウム5g/l,硝酸イツテルビウム5g/
l,塩化ルテシウム5g/l,塩化バリウム5g/l及び塩化リチ
ウム5g/lを含有し,pHが3.1の水溶性組成物を2000mg注入
して15分間攪拌した。
Example 3, Comparative Example 4 Suspended substance 290 mg / l, fluorine 34.1 mg / l, sodium 6100 mg / l
l, calcium 22 mg / l, aluminum 35 mg / l, etc.
Sewage from the 8.9 waste incineration plant
110 g / l yttrium nitrate, 6 g / l holmium sulfate, 5 g / l erbium chloride, 5 g / l thulium acetate, 5 g / ytterbium nitrate
l, lutetium chloride 5 g / l, barium chloride 5 g / l and lithium chloride 5 g / l, 2000 mg of a water-soluble composition with a pH of 3.1 was injected and stirred for 15 minutes.

次に,塩化第2鉄100mgを注入して15分攪拌した後,pH
を測定すると,pHは7.0であつた。これを攪拌しながらポ
リアクリルアミドのアニオン系高分子凝集剤(ユニチカ
社製)2mgを注入し,30分間静置して沈澱させた後,濾布
を用いた遠心濾過機(東京理化器械社製)で2000rpmの
条件下にて固液分離させた。分離させた処理水中のフツ
素濃度を実施例1と同様の方法で分析した。
Next, after injecting 100 mg of ferric chloride and stirring for 15 minutes,
When measured, the pH was 7.0. While stirring this, 2 mg of polyacrylamide anionic polymer flocculant (manufactured by Unitika) was injected, allowed to stand for 30 minutes to precipitate, and then a centrifugal filter using a filter cloth (manufactured by Tokyo Rikakiki Co., Ltd.) To perform solid-liquid separation under the condition of 2000 rpm. The fluorine concentration in the separated treated water was analyzed in the same manner as in Example 1.

なお,比較のため,水溶性組成物の代わりに硫酸バン
ドを注入し,塩化第2鉄を注入せずに24%カセイソーダ
水溶液2200mgを注入してpH7.0に調整した以外は,上記
と全く同様に処理した(比較例4)。
For comparison, exactly the same as above except that a sulfuric acid band was injected instead of the water-soluble composition, and 2200 mg of a 24% aqueous sodium hydroxide solution was injected without adjusting the ferric chloride to adjust the pH to 7.0. (Comparative Example 4).

その結果,処理水中のフツ素濃度は,実施例3が5.76
mg/l,比較例4が16.2mg/lで,実施例3に比べて比較例
4は効果がなく,スラツジ生成量も実施例3が490mg,比
較例4が760mgで,実施例3に比べて1.5倍以上多く,ま
た,24%カセイソーダ溶液使用量が,実施例3では0mgで
あるのに対し,比較例6は2200mgで,実施例3に比べて
比較例4は非常に大きいことが,それぞれ判明した。
As a result, the fluorine concentration in the treated water was 5.76 in Example 3.
mg / l, Comparative Example 4 was 16.2 mg / l, Comparative Example 4 had no effect compared to Example 3, and sludge production was 490 mg in Example 3 and 760 mg in Comparative Example 4, which was smaller than Example 3. The amount of 24% sodium hydroxide solution used in Example 3 was 0 mg, whereas that of Comparative Example 6 was 2200 mg, and that of Comparative Example 4 was much larger than that of Example 3. Each turned out.

なお,実施例2と同様にしてスラツジからのフツ素溶
出値を試験した結果,実施例3は不検出,比較例6は5.
7mg/lで,実施例3に比べて比較例6はフツ素が溶出す
ることが判明した。
In addition, as a result of testing the fluorine elution value from the sludge as in Example 2, Example 3 was not detected, and Comparative Example 6 was 5.
At 7 mg / l, it was found that fluorine was eluted in Comparative Example 6 as compared with Example 3.

実施例4 懸濁物質21mg/l,フツ素1960mg/l,カルシウム820mg/l,
ナトリウム52mg/l等を含有し,pH1.1のセラミツクス製造
工場から排出される排水10lに,まず,水酸化カルシウ
ム40gを注入して20分間攪拌した後,pHを測定すると,pH
は1.4であり,これを攪拌しながら24%カセイソーダ溶
液103gを注入してpH7.0に調整した。さらに攪拌しなが
らポリアクリルアミドのアニオン系高分子凝集剤(ユニ
チカ社製)30mgを注入し,1時間静置して沈澱させた後,
デカンテーシヨンにて上澄み水(この上澄み水を第1凝
沈上澄み水という)を分離した。この第1凝沈上澄み水
中のフツ素濃度を実施例1と同様の方法で分析した。
Example 4 21 mg / l suspended material, 1960 mg / l fluorine, 820 mg / l calcium,
First, 40 g of calcium hydroxide was injected into 10 liters of wastewater discharged from a ceramics manufacturing plant containing 52 mg / l of sodium and having a pH of 1.1, and the mixture was stirred for 20 minutes.
The pH was adjusted to 1.4 by injecting 103 g of a 24% sodium hydroxide solution with stirring. While stirring, 30 mg of a polyacrylamide anionic polymer flocculant (manufactured by Unitika) was injected, and allowed to stand for 1 hour to precipitate.
The supernatant water (this supernatant water is referred to as first coagulation supernatant water) was separated by decantation. The fluorine concentration in the first coagulated supernatant water was analyzed in the same manner as in Example 1.

次に,第1凝沈上澄み水9lに,実施例1と同じ水溶性
組成物13.5gを注入して20分間攪拌した後,pHを測定する
と,pHは,5.8であつた。これを攪拌しながら24%カセイ
ソーダ溶液1260mgを注入してpH7.0に調整した。さらに
攪拌しながらポリアクリルアミドのアニオン系高分子凝
集剤(ユニチカ社製)27mgを注入し,1時間静置して沈澱
させた後,濾紙で濾過して固液分離して濾過水を得た
(この濾過水を第2凝集濾過水という)。この第2凝集
濾過水中のフツ素濃度を実施例1と同様の方法で分析し
た。
Next, 13.5 g of the same water-soluble composition as in Example 1 was poured into 9 l of the first coagulation supernatant water, and the mixture was stirred for 20 minutes. The pH was measured to be 5.8. While stirring, 1260 mg of a 24% sodium hydroxide solution was injected to adjust the pH to 7.0. Further, 27 mg of an anionic polyacrylamide polymer flocculant (manufactured by Unitika) was injected with stirring, allowed to stand for 1 hour to precipitate, and then filtered through filter paper to obtain solid-liquid separation (filtrated water). This filtered water is referred to as second aggregated filtered water). The fluorine concentration in the second flocculated filtered water was analyzed in the same manner as in Example 1.

さらに,第2凝集濾過水8lに,20%塩酸溶液140mgを注
入してpH4.0に調整した後,フツ素吸着樹脂ユニセレツ
クUR−3700(ユニチカ社製)30mlを充填した7mmφのカ
ラムに,定量ポンプにて下向流で2.5ml/minの流速で通
水し,フツ素を吸着除去して処理水を得た(この処理水
を吸着処理水という)。この吸着処理水中のフツ素濃度
を,通水量1ごとに実施例1と同様の方法で分析し
た。
Further, after injecting 140 mg of a 20% hydrochloric acid solution into 8 liters of the second flocculated filtered water to adjust the pH to 4.0, the solution was quantified into a 7 mmφ column filled with 30 ml of a fluorine-adsorbing resin Uniselect UR-3700 (manufactured by Unitika). Water was passed through the pump at a flow rate of 2.5 ml / min in a downward flow, and fluorine was adsorbed and removed to obtain treated water (this treated water was called adsorption treated water). The fluorine concentration in the water subjected to the adsorption treatment was analyzed in the same manner as in Example 1 for each water flow rate of 1.

それぞれの結果を第1表に示す。 Table 1 shows the results.

第1表の結果から明らかなごとく,他の処理方法と組
合せて行うことにより,各処理方法の特徴を活用して,
効率的かつ完全にフツ素含有排水を処理することができ
る。
As is evident from the results in Table 1, by performing in combination with other processing methods, the characteristics of each processing method were utilized.
Fluorine-containing wastewater can be treated efficiently and completely.

すなわち,第1の水酸化カルシウムによる処理方法
は,排水中のフツ素を高濃度から中濃度に除去するのに
適しており,第2の水溶性組成物による方法は,排水中
のフツ素を中濃度から低濃度に除去するのに適してい
る。また,第3のフツ素吸着樹脂による方法は,排水中
のフツ素を低濃度から完全に除去するのに適している。
これらの方法を巧みに組合せて行うことにより,高濃度
のフツ素を完全に除去できるだけでなく,薬品使用量,
スラツジ量,ランニングコストの低減等も可能となる。
That is, the first treatment with calcium hydroxide is suitable for removing fluorine from waste water from a high concentration to a medium concentration, and the method using the second water-soluble composition removes fluorine from waste water. Suitable for removing medium to low concentrations. Further, the third method using a fluorine-adsorbing resin is suitable for completely removing fluorine from wastewater from a low concentration.
By skillfully combining these methods, high-concentration fluorine can not only be completely removed,
The sludge amount and running cost can be reduced.

(発明の効果) 本発明によれば,フツ素含有排水を,従来の凝集処理
法に比べて,低濃度まで除去することができ,薬品量及
び種類も少なくし,スラツジ量の発生も少なくなるとと
もにスラツジからフツ素が溶出しにくくすることが可能
となる。また,本発明によれば,リン化合物やカルシウ
ム化合物を使用しないため,リン規制やカルシウムスケ
ールの問題がなく,さらに他の処理方法と組合せて効率
的かつ完全にフツ素を除去することができる。
(Effects of the Invention) According to the present invention, fluorine-containing wastewater can be removed to a lower concentration than conventional coagulation treatment methods, the amount of chemicals and types are reduced, and the generation of sludge is reduced. At the same time, it is possible to make it difficult for fluorine to elute from the sludge. Further, according to the present invention, since no phosphorus compound or calcium compound is used, there is no problem of phosphorus regulation and calcium scale, and furthermore, fluorine can be efficiently and completely removed in combination with another treatment method.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−132993(JP,A) 特開 昭51−107662(JP,A) (58)調査した分野(Int.Cl.6,DB名) C02F 1/58 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-59-132993 (JP, A) JP-A-51-107662 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C02F 1/58

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】フツ素含有排水に,希土類化合物,アルカ
リ土類金属化合物及びアルカリ金属化合物からなる水溶
性組成物を加えて排水中のフツ素イオンを不溶化させた
後,固液分離することを特徴とするフツ素含有排水の処
理方法。
(1) A water-soluble composition comprising a rare earth compound, an alkaline earth metal compound and an alkali metal compound is added to a fluorine-containing wastewater to insolubilize the fluorine ions in the wastewater, followed by solid-liquid separation. A method for treating fluorine-containing wastewater.
JP32471689A 1989-12-13 1989-12-13 Treatment method for fluorine-containing wastewater Expired - Lifetime JP2911506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32471689A JP2911506B2 (en) 1989-12-13 1989-12-13 Treatment method for fluorine-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32471689A JP2911506B2 (en) 1989-12-13 1989-12-13 Treatment method for fluorine-containing wastewater

Publications (2)

Publication Number Publication Date
JPH03186393A JPH03186393A (en) 1991-08-14
JP2911506B2 true JP2911506B2 (en) 1999-06-23

Family

ID=18168911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32471689A Expired - Lifetime JP2911506B2 (en) 1989-12-13 1989-12-13 Treatment method for fluorine-containing wastewater

Country Status (1)

Country Link
JP (1) JP2911506B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042041A (en) * 2002-07-08 2004-02-12 Asahi Glass Co Ltd Method of refining by-product salt, by-product salt, and snow melting agent
JP2006231163A (en) * 2005-02-23 2006-09-07 Kurita Water Ind Ltd Method of treating rare earth element-containing waste water

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100347601B1 (en) * 1997-12-17 2003-03-06 주식회사 포스코 Method for treating fluoride wastewater
KR100435475B1 (en) * 1999-12-27 2004-06-10 주식회사 포스코 A Solution for Removing Fluorine Ion Having Simultaneous Removal Effect of COD and CN and A Treatment Method of Wastewater Using It
JP3635643B2 (en) * 2003-03-24 2005-04-06 西山ステンレスケミカル株式会社 Waste liquid treatment method
JP5608352B2 (en) * 2009-03-31 2014-10-15 Dowaエコシステム株式会社 Methods for insolubilizing hazardous substances

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004042041A (en) * 2002-07-08 2004-02-12 Asahi Glass Co Ltd Method of refining by-product salt, by-product salt, and snow melting agent
JP4525014B2 (en) * 2002-07-08 2010-08-18 旭硝子株式会社 By-product salt purification method, by-product salt and snow melting agent
JP2006231163A (en) * 2005-02-23 2006-09-07 Kurita Water Ind Ltd Method of treating rare earth element-containing waste water
JP4525380B2 (en) * 2005-02-23 2010-08-18 栗田工業株式会社 Treatment method of wastewater containing rare earth

Also Published As

Publication number Publication date
JPH03186393A (en) 1991-08-14

Similar Documents

Publication Publication Date Title
US5266210A (en) Process for removing heavy metals from water
AU724510B2 (en) A process for treating arsenic-containing waste water
JP2911506B2 (en) Treatment method for fluorine-containing wastewater
JP4293520B2 (en) Fluorine ion removal method and remover
EP0460203B1 (en) Method for recovering metals from waste liquors
US20080028811A1 (en) Use of Partly Pre-Hydrated Lime for Separating a Mixture of Solid/Liquid Matters, Method for Treating Sludge and Purified Sludge Obtained by Said Method
JP3334786B2 (en) Treatment method for wastewater containing insoluble and soluble lead, chromium and zinc
JP4014276B2 (en) Treatment method for boron-containing wastewater
JPH0128635B2 (en)
JP2975571B2 (en) How to remove heavy metals from sludge
JP2923212B2 (en) Wastewater treatment method
JP4559755B2 (en) Wastewater treatment method
JPS60248288A (en) Treatment of waste water from mine
JP2004000963A (en) Treatment method of boron-containing drainage, and medicament used for the same
JP2002153866A (en) Method for treating waste water containing dioxin
CN111072123A (en) Method for removing complex lead by ferrous phosphate under anoxic condition
JP2003320376A (en) Treatment method for fluorine-containing wastewater and chemical agent used therein
JP2003245674A (en) Treatment method for waste water containing harmful metal ion and fluoride ion, and its treatment agent
JPH1110170A (en) Treatment process for antimony containing solution
JP3378362B2 (en) Wastewater treatment method
WO1994018126A1 (en) Process for removing heavy metal ions from water
KR0140316B1 (en) Process for the treatment of acid waste solutions containing fluorine and heavy metals
Licsko et al. Heavy metal removal in the presence of colloid-stabilizing organic material and complexing agents
JPS6055197B2 (en) Wastewater treatment method
JP3346708B2 (en) Treatment method of boron-containing wastewater

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100409

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11