JP2004000963A - Treatment method of boron-containing drainage, and medicament used for the same - Google Patents

Treatment method of boron-containing drainage, and medicament used for the same Download PDF

Info

Publication number
JP2004000963A
JP2004000963A JP2003124485A JP2003124485A JP2004000963A JP 2004000963 A JP2004000963 A JP 2004000963A JP 2003124485 A JP2003124485 A JP 2003124485A JP 2003124485 A JP2003124485 A JP 2003124485A JP 2004000963 A JP2004000963 A JP 2004000963A
Authority
JP
Japan
Prior art keywords
boron
ion
rare earth
earth element
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003124485A
Other languages
Japanese (ja)
Other versions
JP4086297B2 (en
Inventor
Kenji Tatsumi
辰巳 憲司
Shinji Wada
和田 愼二
Yasuhiro Yugawa
湯川 恭啓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Mitsubishi Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Mitsubishi Corp
Priority to JP2003124485A priority Critical patent/JP4086297B2/en
Publication of JP2004000963A publication Critical patent/JP2004000963A/en
Application granted granted Critical
Publication of JP4086297B2 publication Critical patent/JP4086297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently removing dissolved boron from water to be treated and a boron removing agent used for the same. <P>SOLUTION: The dissolved boron is settled and separated as a hardly soluble substance by allowing a polyvalent anionic substance and rare earth element ions to exist in the dissolved boron-containing water to be treated, then adjusting its pH to 9 to 13. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、被処理水中に含まれる溶存ホウ素の除去方法および除去剤ならびに発生スラッジ量を低減するための方法に関するものである。
【0002】
【従来の技術】
ホウ素の排水基準は、海域以外に排出する場合、10ppmと定められている(平成13年7月1日に施行され、業種ごとに3年間の暫定基準が定められている)。従来、ホウ素含有水の処理方法としては、イオン交換樹脂により吸着させる方法や、硫酸アルミニウム及び水酸化カルシウムにより不溶性沈殿物とする方法等が知られているが、いずれも効率的な方法とはいえず、また、多量のスラッジを生成するという問題があった。
近年では、工業排水などによる環境汚染の問題の解決が重要視されていることから、ホウ素の有効な除去方法に対する要求も高い。
凝集沈殿法と陰イオン交換樹脂又はホウ素選択性イオン交換樹脂を組み合わせた方法が提案されている(特許文献1参照)が、凝集沈殿法の除去効率が悪いため後段の吸着樹脂に負荷が掛かり、そのためコストが掛かりすぎる問題と、吸着樹脂の再生液の処理の問題があり、実用には供されていない。さらに、低濃度のホウ素含有排水を希土類元素の含水酸化物を用いて処理する方法も提案されている(特許文献2参照)が、固体を用いるため処理性が悪く、処理に時間が掛かる等の問題があり実用には供されていない。
一方、ホウ素含有排水をホウ素選択吸着イオン交換樹脂等に一旦吸着させ、その濃縮された脱離液に、希土類元素イオン及び/又はIVB族元素イオンを放出する化合物を添加することにより、ホウ素を除去できることを見出した(特許文献3参照)。しかし、希土類元素イオン及び/又はIVB族元素イオンを放出する化合物を添加する方法は、低濃度のホウ素含有排水の処理には有効ではなく、一旦濃縮しなければならない。このため、新たに吸着装置を必要とし、さらに煩雑な吸着及び脱離の操作を必要とする。また、一般に希土類元素とホウ素が反応して生成するフロックは嵩高く、沈降性が良くない。
また、ホウ素含有排水を濃縮した後に、ランタン化合物からなるホウ素固定剤を添加して不溶性沈殿物を生成し、ホウ素を除去できることを見出した(特許文献4参照)。しかし、この方法も特許文献3と同様に、一旦濃縮しなければならないし、一般にランタンイオンとホウ素が反応して生成するフロックは嵩高く、沈降性が良くない。
【0003】
【特許文献1】
特開昭57−180493号公報
【特許文献2】
特公平3−22238号公報
【特許文献3】
特開平11−235595号公報
【特許文献4】
特開2000−263064号公報
【0004】
【発明が解決しようとする課題】
本発明は、被処理水中から溶存ホウ素を効率よく除去する方法を提供することを目的とする。また、それに用いるホウ素の除去剤を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、被処理水中に多価陰イオン性物質と希土類元素イオンを存在させた状態でpHを9〜13に調整することにより、被処理水中に溶存するホウ素を難溶性物質として沈殿分離させることができることを見い出し、この知見に基づき本発明を完成するに至った。
すなわち、本発明は、
(1)溶存ホウ素を含有する被処理水中に、多価陰イオン性物質と希土類元素イオンを存在させpHを9〜13において、該溶存ホウ素を難溶性物質として沈殿分離させることを特徴とするホウ素含有排水の処理方法、
(2)該多価陰イオンが硫酸イオンで、多価陰イオン性物質が水中で溶解して硫酸イオンを放出する硫酸化合物である(1)項記載の該溶存ホウ素を難溶性物質として沈殿分離させることを特徴とするホウ素含有排水の処理方法、
(3)該多価陰イオンが炭酸イオンで、多価陰イオン性物質が水中で溶解して炭酸イオンを放出する炭酸化合物である(1)項記載の該溶存ホウ素を難溶性物質として沈殿分離させることを特徴とするホウ素含有排水の処理方法、
(4)該多価陰イオンが陰イオン性高分子化合物である(1)項記載の該溶存ホウ素を難溶性物質として沈殿分離させることを特徴とするホウ素含有排水の処理方法、
(5)該陰イオン性高分子化合物が陰イオン性高分子凝集剤である(4)項に記載のホウ素含有排水の処理方法、
(6)無害性多価金属イオンを存在させる(1)〜(5)項記載のいずれか1項に記載の方法、
(7)該無害性多価金属イオンが、カルシウムイオン、マグネシウムイオン、鉄イオン又はアルミニウムイオンの少なくとも1種であることを特徴とする(6)項に記載のホウ素含有排水の処理方法、
(8)該希土類元素イオンが、希土類元素の酸化物、水酸化物、炭酸塩、リン酸塩、酢酸塩又はハロゲン化物の水溶液、塩酸溶液又は硫酸溶液として被処理水中に添加されることを特徴とする(1)〜(7)項のいずれか1項に記載のホウ素含有排水の処理方法、
(9)該溶存ホウ素を難溶性物質として沈殿分離させた後、処理によって発生したスラッジを原被処理水に返送することを特徴とする(1)〜(8)項のいずれか1項に記載のホウ素含有排水の処理方法、
(10)(1)〜(9)項のいずれか1項に記載の方法に使用される薬剤であって、希土類元素の酸化物、水酸化物、炭酸塩、リン酸塩、酢酸塩又はハロゲン化物の水溶液、塩酸溶液又は硫酸溶液からなる群から選択される少なくとも一種からなることを特徴とする薬剤、
(11)(1)〜(9)項のいずれか1項に記載の方法に使用される薬剤であって、供給される希土類元素イオンおよび硫酸イオンが薬剤として構成されるものであり、その薬剤が、(i)希土類元素の酸化物、水酸化物、炭酸塩、リン酸塩、酢酸塩又はハロゲン化物の水溶液、塩酸溶液又は硫酸溶液からなる群から選択される少なくとも一種と(ii)硫酸、硫酸塩水溶液又はそれらの混合物、との混合物からなることを特徴とする薬剤、
(12)(1)〜(9)項のいずれか1項に記載の方法に使用される薬剤であって、供給される希土類元素イオンおよび鉄イオンが薬剤として構成されるものであり、その薬剤が、(i)希土類元素の酸化物、水酸化物、炭酸塩、リン酸塩、酢酸塩又はハロゲン化物の水溶液、塩酸溶液又は硫酸溶液からなる群から選択される少なくとも一種と(ii)塩化第二鉄溶液、ポリ鉄水溶液又はそれらの混合物、との混合物からなることを特徴とする薬剤、および
(13)(1)〜(9)項のいずれか1項に記載の方法に使用される薬剤であって、供給される希土類元素イオンおよびアルミニウムイオンが薬剤として構成されるものであり、その薬剤が、(i)希土類元素の酸化物、水酸化物、炭酸塩、リン酸塩、酢酸塩又はハロゲン化物の水溶液、塩酸溶液又は硫酸溶液からなる群から選択される少なくとも一種と(ii)硫酸アルミニウム溶液、ポリ塩化アルミニウム溶液又はそれらの混合物、との混合物からなることを特徴とする薬剤
を提供するものである。
【0006】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明では、希土類元素イオンを被処理水中に存在させる。この希土類元素イオンがホウ素除去剤(以下、単に除去剤ともいう)としての役割を果たす。被処理水への添加する際の希土類元素イオンは本発明の目的を達成できればいかなる状態であってもよいが希土類元素含有溶液として添加するのが好ましく、希土類元素の酸化物、水酸化物、炭酸塩、リン酸塩、酢酸塩又はハロゲン化物の水溶液、塩酸溶液又は硫酸溶液として被処理水へ添加するのが好ましい。その濃度は特に限定されるものではないが、操作性を考慮すると、例えば希土類元素酸化物の塩酸溶液の場合は、塩酸溶液中の希土類元素を酸化物として好ましくは10〜40質量%、より好ましくは20〜35質量%である。
【0007】
希土類元素イオンの中でもランタンイオン、セリウムイオンの使用が好ましくランタンイオンの使用がより好ましい。
また、本発明において除去剤として用いる希土類元素含有溶液は、希土類元素の混合物の溶液もしくは、希土類元素の単独又は混合液の形態で用いることができる。ランタンとセリウム及びイッテルビウムの溶液の使用が好ましく、ランタンとセリウムとの溶液がより好ましい。好ましい具体例としては、ランタンとセリウムとイッテルビウムの塩酸溶液(濃度は酸化物として32.5質量%、その中の組成は、ランタン95質量%、セリウム4.9質量%、イッテルビウム0.1質量%)である。
【0008】
本発明の特徴の一つは、除去剤への希土類元素イオンの供給源として、高度に精製分離された高価な希土類化合物を用いることは必要ではないことである。すなわち、本発明で使用される除去剤(以下、除去剤[I]ともいう)は、精製された希土類元素で調製する必要はない。例えば、希土類元素を含有している鉱石から、礫、及び鉛等の重金属や放射性元素を除いたものを塩酸溶解させた後に粗精製したものを使用することができる。このときの塩酸濃度は、0.1〜12規定が好ましく、より好ましくは5〜12規定、さらに好ましくは8〜12規定であり、希土類元素イオンの濃度は特に限定されるものではないが、操作性を考慮すると、酸化物として好ましくは10〜60質量%、より好ましくは20〜60質量%、さらに好ましくは30〜50質量%である。溶解時間は、完全に溶解すればよく、特に限定されないが、0.5時間から2時間程度で十分である。
【0009】
本発明において、希土類元素イオンの添加量は、被処理水中のホウ素の濃度にもよるが、ホウ素1モル当たり、好ましくは0.05〜50モル、より好ましくは0.1〜30モル、さらに好ましくは0.5〜20モルである。
【0010】
本発明では、多価陰イオン性物質を併用する。多価陰イオン性物質を添加することによって、沈降性、脱水性のよい沈殿を生成し、沈殿を固液分離しやすくなる。多価陰イオン性物質としては、硫酸塩、炭酸塩、陰イオン性高分子凝集剤等が好ましく、これらを単独で用いても良いし、併せて用いても良い。硫酸塩としては、例えば硫酸ナトリウム、硫酸第一鉄、硫酸第二鉄等が挙げられる。炭酸塩としては炭酸ナトリウム、炭酸カリウム等が挙げられる。陰イオン性高分子凝集剤としては、例えばカルボキシメチルセルロースナトリウム、アルギン酸ナトリウム、ポリアクリル酸、アクリルアミドとアクリル酸との共重合体及び/その塩等のアニオン性有機系凝集剤が挙げられる。被処理水への添加量は、例えば硫酸塩や炭酸塩では、好ましくは0.01〜100mM、より好ましくは0.05〜50mM、さらに好ましくは0.1〜10mMである。高分子凝集剤では、好ましくは0.01〜20ppm、より好ましくは0.05〜20ppm、さらに好ましくは0.1〜10ppmである。
【0011】
本発明では用いられる多価陰イオンとしては、硫酸イオンが特に好ましい。硫酸イオンを併用する場合、前述のように硫酸塩を添加してもよいが、あらかじめ希土類元素イオンと硫酸イオンを含む処理剤として調製しておき、その処理剤をホウ素を含む被処理水に添加してもよい。処理剤を調製する方法としては、希土類元素の水溶液、塩酸溶液、硫酸溶液などと硫酸塩化合物を混合するなど、いずれの方法でも良いが、入手が容易な希土類の塩酸溶液と硫酸を混合して調製するのがより簡便である。好ましい具体例としては、ランタンとセリウムとイッテルビウムの塩酸溶液(特に具体例を挙げると濃度は酸化物として32.5質量%、その中の組成は、ランタン95質量%、セリウム4.9質量%、イッテルビウム0.1質量%)と硫酸(18M)の容積比90:1の混合溶液である。
【0012】
多価陰イオン性物質の添加の順序は制限がない。多価陰イオン性物質を添加しておいて、その後に希土類元素イオンを存在させてpH調整を行うのが好ましいが希土類元素イオンを存在させてpH調整をした後に多価陰イオン性物質を添加してもよい。少なくとも溶存ホウ素を難溶性物質とするときにpH9〜13であればよい。
【0013】
本発明では、除去剤の添加後、沈殿が生じるようにpHを調整して排水中に溶存するホウ素を除去する。そのpHは、一般的には9〜13の範囲、好ましくは9〜12の範囲、より好ましくは10〜12の範囲である。
【0014】
被処理水のpHをアルカリ性領域や酸性領域に調節する場合、pH調節剤が用いられるが、このようなpH調節剤としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、水酸化カルシウム等のアルカリ性物質、もしくは塩酸、硫酸、硝酸、硫酸アルミニウム等の酸性物質が用いられる。
【0015】
本発明では、無害性多価金属イオンを被処理水中に存在させることが好ましい。無害性多価金属イオンとは、一般に排水処理で凝集に使用される多価金属イオンであり、カルシウムイオン、マグネシウムイオン、鉄イオン、アルミニウムイオンなどが挙げられる。
多価金属イオンを被処理水中に存在させるには、多価金属化合物を添加する。それらには、カルシウム化合物、マグネシウム化合物、鉄化合物、アルミニウム化合物等が包含される。それらの具体例としては、例えば、塩化カルシウム、水酸化カルシウム、炭酸カルシウム、塩化マグネシウム、塩化第二鉄、硫酸第二鉄、塩化アルミニウム、ポリ塩化アルミニウム、硫酸アルミニウム等が挙げられる。
【0016】
本発明において、無害性多価金属イオンの添加量は、被処理水中のホウ素の濃度にもよるが、ホウ素1モル当たり、好ましくは0.01〜10モル、より好ましくは0.05〜2モル、さらに好ましくは0.1〜1モルである。
【0017】
さらに本発明においては、凝集剤を併用することが好ましい。この場合の凝集剤は、希土類元素イオン及び多価陰イオン性物質の添加後分散しているホウ素化合物のフロックを凝集させるのに用いられ、ホウ素化合物の沈殿分離をより容易にすることができる。具体例としては、塩化第1鉄、塩化第2鉄、硫酸第1鉄、硫酸第2鉄、ポリ硫酸第一鉄、ポリ硫酸第二鉄等の無機系凝集剤の他、ポリアクリルアミドのカチオン化変性物、ポリアクリル酸ジメチルアミノエチルエステル、ポリメタクリル酸ジメチルアミノエチルエステル、ポリエチレンイミン、キトサン等のカチオン性有機系凝集剤、ポリアクリルアミド等のノニオン性有機系凝集剤、ポリアクリル酸、アクリルアミドとアクリル酸との共重合体及び/その塩等のアニオン性有機系凝集剤等が挙げられる。
【0018】
一連の工程終了後、被処理水を固液分離処理する。この固液分離は常法により行なうことができ、例として、濾過分離、遠心分離、沈降分離等が挙げられるが、通常は重力による沈降分離で十分固液分離可能である。
【0019】
発生したスラッジは再び原被処理水に返送することが好ましい。スラッジが返送された被処理水について更に上記一連の処理を行うことにより、スラッジ中に含有している希土類元素イオンを効率的に利用することができる。また、返送されたスラッジがさらに成長して、沈降しやすくかつ脱水しやすいスラッジとなり、これによって溶存ホウ素を更に低濃度まで除去することが可能となる。返送する汚泥量は、原水1容量に対して、好ましくは1〜15質量%、より好ましくは4〜10質量%、さらに好ましくは6〜8質量%である。また、返送する汚泥の比重は、好ましくは1.00〜1.30、より好ましくは1.00〜1.20、さらに好ましくは1.00〜1.10の範囲である。
【0020】
【実施例】
次に本発明を実施例に基づきさらに詳細に説明する。
【0021】
参考例1
希土類元素化合物の粗精製品を12Nの塩酸溶液に溶解して調製した溶液(希土類元素の濃度は酸化物として32.5質量%、組成はランタン95質量%、セリウム4.9質量%、イッテルビウム0.1質量%)を除去剤[I]とした。
【0022】
参考例2
参考例1で得られた除去剤(I)と硫酸(18M)を容積比90:1で混合し除去剤[II]を得た。
【0023】
参考例3
除去剤〔I〕と塩化第二鉄水溶液(工業用、37.5%)を容量比8:1で混合し撹拌した。これを除去剤〔III〕とした。
【0024】
参考例4
除去剤〔I〕と硫酸アルミニウム水溶液(硫酸バンド、60%)を容量比8:1で混合し撹拌した。これを除去剤〔IV〕とした。
【0025】
実施例1
ホウ素濃度2.35ppm(0.218mM)のモデル排水(pH5.5)に、塩化ランタン水溶液(Laとして32.5質量%)をランタン濃度2.64mMとなるよう添加し、10分間攪拌した後、水酸化ナトリウム水溶液でpH11に調整し、10分間攪拌した。この溶液に、硫酸ナトリウム水溶液を硫酸根として0.2mMとなるように添加したところ、溶液のpH11で沈降性の良いフロックが生成し、重力沈降によって完全に固液分離できた。固液分離した処理水中のホウ素濃度を測定したところ、0.62ppmであった。
【0026】
実施例2
ホウ素濃度10ppm(0.926mM)のモデル排水(pH5.5)に、塩化ランタン水溶液(Laとして32.5質量%)をランタン濃度3.2mMとなるよう添加し、10分間攪拌した後、水酸化ナトリウム水溶液でpH11に調整し、10分間攪拌した。この溶液に、硫酸ナトリウム水溶液を硫酸根として0.3mMとなるように添加したところ、溶液のpH11で沈降性の良いフロックが生成し、重力沈降によって完全に固液分離できた。固液分離した処理水中のホウ素濃度を測定したところ、1.75ppmであった。
【0027】
比較例1
実施例1、2で、硫酸ナトリウム溶液を添加しない以外は実施例1、2と同様にして処理したところと、いずれの場合も沈殿の生成はほとんど認められなかった。
【0028】
実施例3
ホウ素濃度50ppm(4.63mM)のモデル排水(pH5.5)に、塩化ランタン水溶液(Laとして32.5質量%)をランタン濃度8mMとなるよう添加し、10分間攪拌した後、水酸化ナトリウム水溶液でpH11に調整し、10分間攪拌した。この溶液に、硫酸ナトリウム水溶液を硫酸根として0.8mMとなるように添加したところ、溶液のpH11で沈降性の良いフロックが生成し、重力沈降によって完全に固液分離できた。固液分離した処理水中のホウ素濃度を測定したところ、4.7ppmであった。
【0029】
実施例4
ホウ素濃度50ppm(4.63mM)のモデル排水(pH5.5)に、塩化ランタン水溶液(Laとして32.5%)をランタン濃度8mMとなるよう添加し、10分間攪拌した後、水酸化ナトリウム水溶液でpH11に調整し、10分間攪拌した。この溶液に、アニオン性高分子凝集剤AP517C(商品名、ダイヤニトリクス社製)を0.5ppmとなるように添加したところ、溶液のpH11で白濁したが、重力沈降では完全に固液分離するのは困難であった。ろ過して固液分離し、処理水中のホウ素濃度を測定したところ、7.9ppmであった。
【0030】
比校例2
実施例3、4で、硫酸ナトリウム溶液やアニオン性高分子凝集剤を添加しない以外は実施例3、4と同様にして処理したところと、いずれの場合も僅かに白濁しただけであった。
【0031】
実施例5
ホウ素濃度20ppm(1.85mM)のモデル排水(pH5.5)に、塩化ランタン水溶液(Laとして32.5質量%)を1.6ml/リットル添加し(ランタン濃度3.2mMとなる)、10分間攪拌した後、水酸化ナトリウム水溶液でpH11に調整し、10分間攪拌した。この溶液に、硫酸ナトリウム水溶液を硫酸根として0.3mMとなるように添加し、アニオン性高分子凝集剤AP517Cを3ppm添加したところ、溶液のpH11で沈降性の良い巨大なフロックが生成し、重力沈降によって完全に固液分離できた。固液分離した処理水中のホウ素濃度を測定したところ、3.7ppmであった。
【0032】
実施例6
実施例3において、硫酸ナトリウム水溶液の代わりに炭酸ナトリウム水溶液を炭酸根として0.3mMとなるように添加した以外は実施例3と同様に行ったところ、溶液のpH11で沈殿の生成は認められ、固液分離後の、処理水中のホウ素濃度は、4.5ppmで、炭酸ナトリウムも有効であることが分かった。
【0033】
実施例7
ホウ素濃度10ppm(0.926mM)のモデル排水(pH5.5)に、塩化ランタン水溶液(Laとして32.5質量%)をランタン濃度3.2mMとなるよう添加し、塩化カルシウム水溶液(2.7M)を0.5mMとなるよう添加し、10分間攪拌した後、水酸化ナトリウム水溶液でpH11に調整し、10分間攪拌した。この溶液に、硫酸ナトリウム水溶液を硫酸根として0.3mMとなるように添加したところ、溶液のpH11で沈降性の良いフロックが生成し、重力沈降によって完全に固液分離できた。固液分離した処理水中のホウ素濃度を測定したところ、1.45ppmであった。
【0034】
実施例8
ホウ素濃度100ppm(9.26mM)のモデル排水(pH5.5)に、塩化ランタン水溶液(Laとして32.5質量%)をランタン濃度13.9mMとなるよう添加し、10分間攪拌した後、水酸化ナトリウム水溶液でpH11に調整し、10分間攪拌した。この溶液に、硫酸ナトリウム水溶液を硫酸根として0.8mMとなるように添加したところ、溶液のpH11で沈降性の良いフロックが生成し、重力沈降によって完全に固液分離できた。固液分離した処理水中のホウ素濃度を測定したところ、5.6ppmであった。
【0035】
比較例3
実施例8において、pH調整をpH9とした以外は実施例8と同様に行ったところ、処理水中のホウ素濃度は、37.1ppmであった。
【0036】
実施例9
ホウ素濃度20ppm(1.85mM)のモデル排水(pH5.5)に、前記参考例1で調製した除去剤を1.6ml/リットル添加し、10分間攪拌した後、水酸化ナトリウム水溶液でpH11に調整し、10分間攪拌した。この溶液に、硫酸ナトリウム水溶液を硫酸根として0.3mMとなるように添加し、アニオン性高分子凝集剤AP517Cを0.3ppm添加したところ、溶液のpH11で非常に沈降性の良い巨大なフロックが生成し、重力沈降によって完全に固液分離できた。固液分離した処理水中のホウ素濃度を測定したところ、3.9ppmであった。
【0037】
実施例10
ホウ素濃度20ppm(1.85mM)のモデル排水(pH5.5)に、塩化ランタン水溶液(Laとして32.5質量%)を1.6ml/リットル添加し(ランタン濃度3.2mMとなる)、塩化第二鉄溶液(工業用、濃度37.5%)を0.2ml/リットル添加し(鉄濃度0.46mMとなる)、10分間攪拌した後、水酸化ナトリウム水溶液でpH11に調整し、10分間撹件した。この溶液に、硫酸ナトリウム水溶液を硫酸根として0.3mMとなるように添加し、アニオン性高分子凝集剤AP517Cを0.3ppm添加になるように添加したところ、溶液のpH11で非常に沈降性の良いフロックが生成し、重力沈降によって完全に固液分離できた。固液分離し、処理水中のホウ素濃度を測定したところ、2.1ppmであった。
【0038】
実施例11
ホウ素濃度12.3ppm、pH6.9の実排水は、従来の方法ではホウ素を除去することができなかった。この排水を塩酸でpH3に調整し、塩化ランタン水溶液(Laとして32.5質量%)3ml/リットル添加し、水酸化ナトリウム水溶液でpH10とした。この溶液に、硫酸ナトリウム水溶液を硫酸根として0.2mMとなるように添加し、アニオン性高分子凝集剤AP120Cを3ppm添加したところ、溶液のpH10で沈降性の良いフロックが生成し、重力沈降によって完全に固液分離できた。固液分離した処理水中のホウ素濃度を測定したところ、1.6ppmであった。
生成した汚泥を原水に返送して、上記と同様に処理(塩化ランタン溶液の添加量1ml/リットル)したところ、処理水中のホウ素濃度は、2回目の処埋では1.5ppm、3回目1.3ppm、4回目1.9ppmとなり、汚泥返送により塩化ランタン水溶液の添加量をさらに減らすことができた。
【0039】
実施例12
ホウ素濃度100ppm(9.26mM)のモデル排水(pH5.5)に、除去剤[II]をランタン濃度13.9mMとなるよう添加し、10分間撹拌した後、水酸化ナトリウム水溶液でpH11に調整し、10分間撹拌したところ、沈降性の良いフロックが生成し、重力沈降によって完全に固液分離できた。固液分離した処理水中のホウ素濃度を測定したところ、4.9ppmであった。
【0040】
実施例13
ホウ素濃度50ppm(4.63mM)のモデル排水(pH5.5)に、除去剤〔III〕を4.5ml/リットル添加し(ランタン濃度8mM、鉄濃度1.2mMとなる)、10分間撹拌した後、水酸化ナトリウム水溶液でpH11に調整し、10分間撹拌し、硫酸ナトリウム水溶液を硫酸根として0.6mMとなるよう添加したところ、溶液のpH11で沈降性の良いフロックが生成し、重力沈降によって完全に固液分離できた。固液分離した処理水中のホウ素濃度を測定したところ、7.9ppmであった。
【0041】
実施例14
ホウ素濃度50ppm(4.63mM)のモデル排水に、除去剤〔IV〕を4.5ml/リットル添加し(ランタン濃度8mM、アルミニウム濃度0.9mM、硫酸根濃度1.35mMとなる)、10分間撹拌した後、水酸化ナトリウム水溶液でpH11に調整し、撹拌したところ、沈降性の良いフロックが生成し、重力沈降によって完全に固液分離できた。固液分離した処理水中のホウ素濃度を測定したところ、6.2ppmであった。
【0042】
【発明の効果】
本発明の方法によれば、被処理水中に含まれる溶存ホウ素を効率よく除去することができる。また、処理により発生したスラッジを原被処理水に返送して再度処理することにより、希土類元素イオンを再利用しかつスラッジ発生量を低減させることができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for removing dissolved boron contained in water to be treated, a removing agent, and a method for reducing the amount of generated sludge.
[0002]
[Prior art]
The standard for effluent of boron is set at 10 ppm when discharged to areas other than the sea (effective on July 1, 2001, and provisional standards for three years are set for each type of business). Conventionally, as a treatment method of boron-containing water, a method of adsorbing with an ion-exchange resin, a method of forming an insoluble precipitate with aluminum sulfate and calcium hydroxide, and the like are known, but any method can be said to be an efficient method. In addition, there is a problem that a large amount of sludge is generated.
In recent years, the importance of solving the problem of environmental pollution due to industrial wastewater and the like has been emphasized, and there is a high demand for an effective boron removal method.
A method combining the coagulation sedimentation method with an anion exchange resin or a boron-selective ion exchange resin has been proposed (see Patent Document 1). However, since the removal efficiency of the coagulation sedimentation method is low, a load is imposed on the subsequent adsorption resin, Therefore, there is a problem that the cost is too high and a problem of treating the regenerated liquid of the adsorbing resin, which is not practically used. Furthermore, a method of treating low-concentration boron-containing wastewater using a hydrated oxide of a rare-earth element has been proposed (see Patent Document 2). However, since solids are used, the processability is poor and the treatment takes time. There is a problem and it has not been put to practical use.
On the other hand, the boron-containing wastewater is once adsorbed on a boron selective adsorption ion exchange resin or the like, and boron is removed by adding a compound that releases a rare earth element ion and / or a group IVB element ion to the concentrated desorbed liquid. We found that we can do it (see Patent Document 3). However, the method of adding a compound that releases rare earth element ions and / or group IVB element ions is not effective for treating low-concentration boron-containing wastewater, and must be once concentrated. Therefore, a new adsorption device is required, and more complicated adsorption and desorption operations are required. In general, flocs generated by the reaction of a rare earth element with boron are bulky and have poor sedimentation.
Further, they have found that after concentrating a boron-containing wastewater, a boron fixing agent composed of a lanthanum compound is added to form an insoluble precipitate and boron can be removed (see Patent Document 4). However, this method also has to be concentrated once, similarly to Patent Document 3, and the floc generated by the reaction of lanthanum ion and boron is bulky and has poor sedimentation.
[0003]
[Patent Document 1]
JP-A-57-180493 [Patent Document 2]
Japanese Patent Publication No. 3-22238 [Patent Document 3]
JP-A-11-235595 [Patent Document 4]
JP 2000-263064 A
[Problems to be solved by the invention]
An object of the present invention is to provide a method for efficiently removing dissolved boron from water to be treated. Another object of the present invention is to provide a boron remover used for the same.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, by adjusting the pH to 9 to 13 in a state where a polyanionic substance and a rare earth element ion are present in the water to be treated, It has been found that boron dissolved in the water to be treated can be precipitated and separated as a hardly soluble substance, and based on this finding, the present invention has been completed.
That is, the present invention
(1) Boron, characterized in that a polyvalent anionic substance and a rare-earth element ion are present in water to be treated containing dissolved boron, and the dissolved boron is precipitated and separated as a hardly soluble substance at a pH of 9 to 13. Wastewater treatment method,
(2) The polyanion is a sulfate ion, and the polyanionic substance is a sulfate compound that dissolves in water to release a sulfate ion. A method for treating boron-containing wastewater,
(3) The polyvalent anion is a carbonate ion, and the polyvalent anionic substance is a carbonate compound which releases a carbonate ion by dissolving in water to precipitate and separate the dissolved boron as a hardly soluble substance according to the above (1). A method for treating boron-containing wastewater,
(4) The method for treating a boron-containing wastewater according to (1), wherein the polyanion is an anionic polymer compound, wherein the dissolved boron is precipitated and separated as a hardly soluble substance.
(5) The method for treating a boron-containing wastewater according to (4), wherein the anionic polymer compound is an anionic polymer coagulant.
(6) The method according to any one of (1) to (5), wherein a harmless polyvalent metal ion is present,
(7) The method for treating a boron-containing wastewater according to (6), wherein the harmless polyvalent metal ion is at least one of a calcium ion, a magnesium ion, an iron ion, and an aluminum ion.
(8) The rare earth element ion is added to the water to be treated as an aqueous solution, a hydrochloric acid solution or a sulfuric acid solution of an oxide, hydroxide, carbonate, phosphate, acetate or halide of the rare earth element. The method for treating a boron-containing wastewater according to any one of (1) to (7),
(9) The method according to any one of (1) to (8), wherein after the dissolved boron is precipitated and separated as a hardly soluble substance, sludge generated by the treatment is returned to the raw water to be treated. A method for treating boron-containing wastewater,
(10) A drug used in the method according to any one of (1) to (9), which is an oxide, hydroxide, carbonate, phosphate, acetate or halogen of a rare earth element. Aqueous solution of the compound, a drug characterized by at least one selected from the group consisting of a hydrochloric acid solution or a sulfuric acid solution,
(11) A drug used in the method according to any one of (1) to (9), wherein the rare earth element ion and the sulfate ion to be supplied are constituted as a drug, and the drug is used as the drug. (I) at least one selected from the group consisting of aqueous solutions of rare earth element oxides, hydroxides, carbonates, phosphates, acetates or halides, hydrochloric acid solutions or sulfuric acid solutions, and (ii) sulfuric acid, An aqueous solution of sulfate or a mixture thereof, a drug comprising a mixture thereof,
(12) A drug used in the method according to any one of (1) to (9), wherein the supplied rare earth element ion and iron ion are constituted as a drug, and the drug is used as the drug. And (ii) at least one selected from the group consisting of aqueous solutions, hydrochloric acid solutions and sulfuric acid solutions of oxides, hydroxides, carbonates, phosphates, acetates or halides of rare earth elements, and (ii) chlorides A drug comprising a mixture with a diiron solution, an aqueous solution of polyiron or a mixture thereof, and a drug used in the method according to any one of (13) (1) to (9). Wherein the supplied rare earth element ion and aluminum ion are constituted as a medicine, and the medicine is (i) an oxide, hydroxide, carbonate, phosphate, acetate, or the like of the rare earth element. Aqueous solution of halide At least one and (ii) aluminum sulfate solution is selected from the group consisting of hydrochloric acid solution or sulfuric acid solution, polyaluminum chloride solution or a mixture thereof, to consist of a mixture of is to provide a drug characterized by.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present invention, rare earth element ions are present in the water to be treated. This rare earth element ion plays a role as a boron remover (hereinafter, also simply referred to as a remover). The rare earth element ion when added to the water to be treated may be in any state as long as the object of the present invention can be achieved, but is preferably added as a rare earth element-containing solution, and oxides, hydroxides, and carbonates of the rare earth element are added. It is preferably added to the water to be treated as an aqueous solution of a salt, a phosphate, an acetate or a halide, a hydrochloric acid solution or a sulfuric acid solution. The concentration is not particularly limited, but considering operability, for example, in the case of a hydrochloric acid solution of a rare earth element oxide, the rare earth element in the hydrochloric acid solution is preferably used as an oxide in an amount of preferably 10 to 40% by mass, more preferably Is from 20 to 35% by mass.
[0007]
Of the rare earth element ions, lanthanum ions and cerium ions are preferably used, and lanthanum ions are more preferably used.
In addition, the rare earth element-containing solution used as the removing agent in the present invention can be used in the form of a solution of a mixture of rare earth elements or a single or mixed solution of rare earth elements. The use of a solution of lanthanum and cerium and ytterbium is preferred, and a solution of lanthanum and cerium is more preferred. As a preferred specific example, a hydrochloric acid solution of lanthanum, cerium, and ytterbium (concentration is 32.5% by mass as an oxide, in which the composition is 95% by mass of lanthanum, 4.9% by mass of cerium, 0.1% by mass of ytterbium ).
[0008]
One of the features of the present invention is that it is not necessary to use a highly purified and separated expensive rare earth compound as a source of rare earth element ions to the removing agent. That is, the removing agent used in the present invention (hereinafter, also referred to as removing agent [I]) does not need to be prepared with a purified rare earth element. For example, an ore containing rare earth elements from which heavy metals such as lead and lead and other radioactive elements and radioactive elements have been removed can be used after dissolving in hydrochloric acid and then roughly refined. The concentration of hydrochloric acid at this time is preferably 0.1 to 12 normal, more preferably 5 to 12 normal, and still more preferably 8 to 12 normal. The concentration of rare earth element ions is not particularly limited. In consideration of the properties, the oxide is preferably 10 to 60% by mass, more preferably 20 to 60% by mass, and still more preferably 30 to 50% by mass. The dissolution time is not particularly limited as long as it is completely dissolved, but about 0.5 to 2 hours is sufficient.
[0009]
In the present invention, the amount of the rare earth element ion to be added depends on the concentration of boron in the water to be treated, but is preferably 0.05 to 50 mol, more preferably 0.1 to 30 mol, and still more preferably 1 mol of boron. Is 0.5 to 20 mol.
[0010]
In the present invention, a polyvalent anionic substance is used in combination. By adding a polyvalent anionic substance, a precipitate having good sedimentation and dehydration properties is generated, and the precipitate is easily separated into solid and liquid. As the polyvalent anionic substance, a sulfate, a carbonate, an anionic polymer flocculant and the like are preferable, and these may be used alone or in combination. Examples of the sulfate include sodium sulfate, ferrous sulfate, and ferric sulfate. Examples of the carbonate include sodium carbonate and potassium carbonate. Examples of the anionic polymer coagulant include anionic organic coagulants such as sodium carboxymethylcellulose, sodium alginate, polyacrylic acid, a copolymer of acrylamide and acrylic acid, and / or a salt thereof. The amount added to the water to be treated is, for example, preferably 0.01 to 100 mM, more preferably 0.05 to 50 mM, and still more preferably 0.1 to 10 mM for sulfate or carbonate. In the case of the polymer flocculant, it is preferably 0.01 to 20 ppm, more preferably 0.05 to 20 ppm, and still more preferably 0.1 to 10 ppm.
[0011]
As the polyvalent anion used in the present invention, a sulfate ion is particularly preferred. When sulfate ions are used in combination, a sulfate may be added as described above.However, a treatment agent containing rare earth element ions and sulfate ions is prepared in advance, and the treatment agent is added to the water to be treated containing boron. May be. As a method for preparing the treating agent, any method such as mixing an aqueous solution of a rare earth element, a hydrochloric acid solution, a sulfuric acid solution and a sulfate compound may be used, but mixing a readily available rare earth hydrochloric acid solution and sulfuric acid. It is more convenient to prepare. As a preferred specific example, a hydrochloric acid solution of lanthanum, cerium, and ytterbium (in particular, the concentration is 32.5% by mass as an oxide, and the composition therein is 95% by mass of lanthanum, 4.9% by mass of cerium, It is a mixed solution of 90% by volume of ytterbium (0.1% by mass) and sulfuric acid (18M).
[0012]
The order of addition of the polyvalent anionic substance is not limited. It is preferable to adjust the pH by adding a rare earth element ion after adding the polyvalent anionic substance, but after adding the rare earth element ion and adjusting the pH, the polyvalent anionic substance is added. May be. It is sufficient that the pH is at least 9 to 13 when at least dissolved boron is used as the hardly soluble substance.
[0013]
In the present invention, after the removal agent is added, the pH is adjusted so that precipitation occurs, and boron dissolved in the wastewater is removed. The pH is generally in the range 9-13, preferably in the range 9-12, more preferably in the range 10-12.
[0014]
When the pH of the water to be treated is adjusted to an alkaline region or an acidic region, a pH adjuster is used. Examples of such a pH adjuster include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, and calcium hydroxide. Or an acidic substance such as hydrochloric acid, sulfuric acid, nitric acid, and aluminum sulfate.
[0015]
In the present invention, it is preferable that harmless polyvalent metal ions be present in the water to be treated. Harmless polyvalent metal ions are polyvalent metal ions generally used for coagulation in wastewater treatment, and include calcium ions, magnesium ions, iron ions, aluminum ions and the like.
To make polyvalent metal ions exist in the water to be treated, a polyvalent metal compound is added. They include calcium compounds, magnesium compounds, iron compounds, aluminum compounds and the like. Specific examples thereof include, for example, calcium chloride, calcium hydroxide, calcium carbonate, magnesium chloride, ferric chloride, ferric sulfate, aluminum chloride, polyaluminum chloride, and aluminum sulfate.
[0016]
In the present invention, the addition amount of the harmless polyvalent metal ion depends on the concentration of boron in the water to be treated, but is preferably 0.01 to 10 mol, more preferably 0.05 to 2 mol, per mol of boron. And more preferably 0.1 to 1 mol.
[0017]
Further, in the present invention, it is preferable to use a coagulant in combination. The coagulant in this case is used to coagulate the floc of the boron compound dispersed after the addition of the rare earth element ion and the polyvalent anionic substance, and can facilitate the precipitation and separation of the boron compound. Specific examples include inorganic coagulants such as ferrous chloride, ferric chloride, ferrous sulfate, ferric sulfate, ferrous polysulfate, and ferric polysulfate, as well as cationization of polyacrylamide. Modified products, dimethylaminoethyl ester of polyacrylic acid, dimethylaminoethyl ester of polymethacrylic acid, cationic organic coagulants such as polyethyleneimine and chitosan, nonionic organic coagulants such as polyacrylamide, polyacrylic acid, acrylamide and acrylic Anionic organic coagulants such as copolymers with acids and / or their salts are mentioned.
[0018]
After a series of steps, the water to be treated is subjected to solid-liquid separation. This solid-liquid separation can be performed by a conventional method, and examples thereof include filtration separation, centrifugation, sedimentation separation, and the like. Usually, solid-liquid separation can be sufficiently performed by sedimentation separation by gravity.
[0019]
It is preferable that the sludge generated is returned to the raw water to be treated again. By performing the above series of treatments on the water to be treated to which the sludge has been returned, the rare earth element ions contained in the sludge can be efficiently used. In addition, the returned sludge further grows and becomes a sludge which is easy to settle and is easily dewatered, whereby the dissolved boron can be removed to a lower concentration. The amount of sludge to be returned is preferably 1 to 15% by mass, more preferably 4 to 10% by mass, and still more preferably 6 to 8% by mass with respect to 1 volume of raw water. The specific gravity of the sludge to be returned is preferably in the range of 1.00 to 1.30, more preferably 1.00 to 1.20, and even more preferably 1.00 to 1.10.
[0020]
【Example】
Next, the present invention will be described in more detail based on examples.
[0021]
Reference Example 1
A solution prepared by dissolving a crude product of a rare earth element compound in a 12N hydrochloric acid solution (the concentration of the rare earth element is 32.5% by mass as an oxide, the composition is 95% by mass of lanthanum, 4.9% by mass of cerium, 0% of ytterbium) .1% by mass) was defined as a removing agent [I].
[0022]
Reference Example 2
The remover (I) obtained in Reference Example 1 and sulfuric acid (18M) were mixed at a volume ratio of 90: 1 to obtain a remover [II].
[0023]
Reference Example 3
The remover [I] and an aqueous ferric chloride solution (for industrial use, 37.5%) were mixed at a volume ratio of 8: 1 and stirred. This was used as a remover [III].
[0024]
Reference example 4
The remover [I] and an aqueous solution of aluminum sulfate (sulfuric acid band, 60%) were mixed at a volume ratio of 8: 1 and stirred. This was used as a remover [IV].
[0025]
Example 1
An aqueous lanthanum chloride solution (32.5% by mass as La 2 O 3 ) was added to a model wastewater (pH 5.5) having a boron concentration of 2.35 ppm (0.218 mM) so as to have a lanthanum concentration of 2.64 mM, and stirred for 10 minutes. After that, the pH was adjusted to 11 with an aqueous sodium hydroxide solution, and the mixture was stirred for 10 minutes. When an aqueous solution of sodium sulfate was added to this solution to a concentration of 0.2 mM as a sulfate group, a floc having good sedimentation was formed at pH 11 of the solution, and solid-liquid separation was completed by gravity sedimentation. When the boron concentration in the treated water subjected to solid-liquid separation was measured, it was 0.62 ppm.
[0026]
Example 2
An aqueous lanthanum chloride solution (32.5% by mass as La 2 O 3 ) was added to a model wastewater (pH 5.5) having a boron concentration of 10 ppm (0.926 mM) so that the lanthanum concentration became 3.2 mM, and the mixture was stirred for 10 minutes. The pH was adjusted to 11 with an aqueous sodium hydroxide solution, and the mixture was stirred for 10 minutes. When an aqueous solution of sodium sulfate was added to this solution to a concentration of 0.3 mM as a sulfate group, a floc having good sedimentation was formed at pH 11 of the solution, and solid-liquid separation was completely performed by gravity sedimentation. The concentration of boron in the treated water after solid-liquid separation was measured and found to be 1.75 ppm.
[0027]
Comparative Example 1
In Examples 1 and 2, treatment was carried out in the same manner as in Examples 1 and 2, except that the sodium sulfate solution was not added. In each case, almost no precipitation was observed.
[0028]
Example 3
An aqueous lanthanum chloride solution (32.5% by mass as La 2 O 3 ) was added to a model wastewater (pH 5.5) having a boron concentration of 50 ppm (4.63 mM) so as to have a lanthanum concentration of 8 mM, and stirred for 10 minutes. The pH was adjusted to 11 with an aqueous sodium oxide solution, and the mixture was stirred for 10 minutes. When an aqueous solution of sodium sulfate was added to the solution so as to have a concentration of 0.8 mM as a sulfate group, flocs having good sedimentation were formed at pH 11 of the solution, and solid-liquid separation was completed by gravity sedimentation. The concentration of boron in the treated water after solid-liquid separation was measured and found to be 4.7 ppm.
[0029]
Example 4
An aqueous lanthanum chloride solution (32.5% as La 2 O 3 ) was added to a model wastewater (pH 5.5) having a boron concentration of 50 ppm (4.63 mM) so as to have a lanthanum concentration of 8 mM. The pH was adjusted to 11 with an aqueous sodium solution, and the mixture was stirred for 10 minutes. To this solution was added an anionic polymer coagulant AP517C (trade name, manufactured by Dyanitrix) so as to have a concentration of 0.5 ppm. The solution became cloudy at pH 11 of the solution, but completely separated by gravity sedimentation. It was difficult. After filtration and solid-liquid separation, the boron concentration in the treated water was measured to be 7.9 ppm.
[0030]
Comparative example 2
In Examples 3 and 4, the treatment was performed in the same manner as in Examples 3 and 4 except that the sodium sulfate solution and the anionic polymer flocculant were not added. In each case, the film was slightly clouded.
[0031]
Example 5
1.6 ml / liter of an aqueous lanthanum chloride solution (32.5% by mass as La 2 O 3 ) was added to model wastewater (pH 5.5) having a boron concentration of 20 ppm (1.85 mM) (to give a lanthanum concentration of 3.2 mM). After stirring for 10 minutes, the mixture was adjusted to pH 11 with an aqueous sodium hydroxide solution and stirred for 10 minutes. To this solution, an aqueous sodium sulfate solution was added so as to have a concentration of 0.3 mM as a sulfate group, and 3 ppm of an anionic polymer flocculant AP517C was added. Solid-liquid separation was completed by sedimentation. The measured boron concentration in the treated water after solid-liquid separation was 3.7 ppm.
[0032]
Example 6
Example 3 was repeated in the same manner as in Example 3 except that an aqueous solution of sodium carbonate was added instead of the aqueous solution of sodium sulfate so as to have a concentration of 0.3 mM as a carbonate group. Precipitation was observed at pH 11 of the solution. The boron concentration in the treated water after solid-liquid separation was 4.5 ppm, and it was found that sodium carbonate was also effective.
[0033]
Example 7
An aqueous lanthanum chloride solution (32.5% by mass as La 2 O 3 ) was added to a model wastewater (pH 5.5) having a boron concentration of 10 ppm (0.926 mM) so as to have a lanthanum concentration of 3.2 mM. (0.7M) was added to a concentration of 0.5 mM, and the mixture was stirred for 10 minutes, adjusted to pH 11 with an aqueous sodium hydroxide solution, and stirred for 10 minutes. When an aqueous solution of sodium sulfate was added to this solution to a concentration of 0.3 mM as a sulfate group, a floc having good sedimentation was formed at pH 11 of the solution, and solid-liquid separation was completely performed by gravity sedimentation. The concentration of boron in the treated water after solid-liquid separation was measured and found to be 1.45 ppm.
[0034]
Example 8
An aqueous lanthanum chloride solution (32.5% by mass as La 2 O 3 ) was added to a model wastewater (pH 5.5) having a boron concentration of 100 ppm (9.26 mM) so that the lanthanum concentration became 13.9 mM, and the mixture was stirred for 10 minutes. The pH was adjusted to 11 with an aqueous sodium hydroxide solution, and the mixture was stirred for 10 minutes. When an aqueous solution of sodium sulfate was added to the solution so as to have a concentration of 0.8 mM as a sulfate group, flocs having good sedimentation were formed at pH 11 of the solution, and solid-liquid separation was completed by gravity sedimentation. The concentration of boron in the treated water subjected to solid-liquid separation was measured and found to be 5.6 ppm.
[0035]
Comparative Example 3
When the same procedure as in Example 8 was carried out except that the pH was adjusted to pH 9 in Example 8, the boron concentration in the treated water was 37.1 ppm.
[0036]
Example 9
1.6 ml / L of the remover prepared in Reference Example 1 was added to model wastewater (pH 5.5) having a boron concentration of 20 ppm (1.85 mM), and the mixture was stirred for 10 minutes and adjusted to pH 11 with an aqueous sodium hydroxide solution. And stirred for 10 minutes. To this solution, an aqueous solution of sodium sulfate was added so as to have a concentration of 0.3 mM as a sulfate group, and 0.3 ppm of an anionic polymer flocculant AP517C was added. A solid-liquid separation was completed by gravity sedimentation. The concentration of boron in the treated water after solid-liquid separation was measured and found to be 3.9 ppm.
[0037]
Example 10
1.6 ml / liter of an aqueous lanthanum chloride solution (32.5% by mass as La 2 O 3 ) was added to model wastewater (pH 5.5) having a boron concentration of 20 ppm (1.85 mM) (to give a lanthanum concentration of 3.2 mM). 0.2 ml / liter of a ferric chloride solution (industrial, concentration: 37.5%) was added (to give an iron concentration of 0.46 mM), and the mixture was stirred for 10 minutes, and then adjusted to pH 11 with an aqueous sodium hydroxide solution. Stirred for 10 minutes. To this solution, an aqueous sodium sulfate solution was added so as to have a concentration of 0.3 mM as a sulfate group, and an anionic polymer coagulant AP517C was added so as to have a concentration of 0.3 ppm. Good floc was formed, and solid-liquid separation was completed by gravity sedimentation. Solid-liquid separation was performed, and the concentration of boron in the treated water was measured to be 2.1 ppm.
[0038]
Example 11
Actual wastewater having a boron concentration of 12.3 ppm and a pH of 6.9 could not remove boron by the conventional method. The waste water was adjusted to pH 3 with hydrochloric acid, 3 ml / liter of an aqueous lanthanum chloride solution (32.5% by mass as La 2 O 3 ) was added, and the pH was adjusted to 10 with an aqueous sodium hydroxide solution. To this solution, an aqueous solution of sodium sulfate was added so as to have a concentration of 0.2 mM as a sulfate group, and 3 ppm of an anionic polymer flocculant AP120C was added. Solid-liquid separation was completed. The concentration of boron in the treated water after solid-liquid separation was measured and found to be 1.6 ppm.
When the generated sludge was returned to the raw water and treated in the same manner as described above (the added amount of the lanthanum chloride solution was 1 ml / liter), the boron concentration in the treated water was 1.5 ppm in the second treatment, and 1. The content was 3 ppm, the fourth time was 1.9 ppm, and the amount of the lanthanum chloride aqueous solution added could be further reduced by returning the sludge.
[0039]
Example 12
The remover [II] was added to the model wastewater (pH 5.5) having a boron concentration of 100 ppm (9.26 mM) so as to have a lanthanum concentration of 13.9 mM, and the mixture was stirred for 10 minutes, and then adjusted to pH 11 with an aqueous sodium hydroxide solution. After stirring for 10 minutes, flocs having good sedimentation were formed, and solid-liquid separation could be completed by gravity sedimentation. The concentration of boron in the treated water after solid-liquid separation was measured and found to be 4.9 ppm.
[0040]
Example 13
To a model wastewater (pH 5.5) with a boron concentration of 50 ppm (4.63 mM), 4.5 ml / liter of a removing agent [III] was added (to a lanthanum concentration of 8 mM and an iron concentration of 1.2 mM), followed by stirring for 10 minutes. Then, the pH was adjusted to 11 with an aqueous sodium hydroxide solution, and the mixture was stirred for 10 minutes. An aqueous solution of sodium sulfate was added so that the concentration became 0.6 mM as a sulfate group. Was separated into solid and liquid. When the boron concentration in the treated water subjected to solid-liquid separation was measured, it was 7.9 ppm.
[0041]
Example 14
To the model wastewater having a boron concentration of 50 ppm (4.63 mM), a remover [IV] was added at 4.5 ml / liter (the concentration of lanthanum was 8 mM, the concentration of aluminum was 0.9 mM, and the concentration of sulfate was 1.35 mM), and the mixture was stirred for 10 minutes. After that, the pH was adjusted to 11 with an aqueous sodium hydroxide solution, and the mixture was stirred. As a result, flocs having good sedimentation were formed, and solid-liquid separation was completed by gravity sedimentation. The concentration of boron in the treated water subjected to solid-liquid separation was measured and found to be 6.2 ppm.
[0042]
【The invention's effect】
According to the method of the present invention, dissolved boron contained in the water to be treated can be efficiently removed. Further, by returning the sludge generated by the treatment to the raw water to be treated and treating it again, it is possible to reuse rare earth element ions and reduce the amount of sludge generated.

Claims (13)

溶存ホウ素を含有する被処理水中に、多価陰イオン性物質と希土類元素イオンを存在させpHを9〜13において、該溶存ホウ素を難溶性物質として沈殿分離させることを特徴とするホウ素含有排水の処理方法。In the water to be treated containing dissolved boron, a polyvalent anionic substance and a rare earth element ion are present, and at pH of 9 to 13, the dissolved boron is precipitated and separated as a hardly soluble substance. Processing method. 該多価陰イオンが硫酸イオンで、多価陰イオン性物質が水中で溶解して硫酸イオンを放出する硫酸化合物である請求項1記載の該溶存ホウ素を難溶性物質として沈殿分離させることを特徴とするホウ素含有排水の処理方法。2. The method according to claim 1, wherein the polyvalent anion is a sulfate ion, and the polyanionic substance is a sulfate compound that dissolves in water to release a sulfate ion. Of wastewater containing boron. 該多価陰イオンが炭酸イオンで、多価陰イオン性物質が水中で溶解して炭酸イオンを放出する炭酸化合物である請求項1記載の該溶存ホウ素を難溶性物質として沈殿分離させることを特徴とするホウ素含有排水の処理方法。The polyvalent anion is a carbonate ion, and the polyvalent anionic substance is a carbonate compound that dissolves in water to release a carbonate ion. The method according to claim 1, wherein the dissolved boron is precipitated and separated as a hardly soluble substance. Of wastewater containing boron. 該多価陰イオンが陰イオン性高分子化合物である請求項1記載の該溶存ホウ素を難溶性物質として沈殿分離させることを特徴とするホウ素含有排水の処理方法。The method for treating a boron-containing wastewater according to claim 1, wherein the polyanion is an anionic polymer compound, and the dissolved boron is precipitated and separated as a hardly soluble substance. 該陰イオン性高分子化合物が陰イオン性高分子凝集剤である請求項4に記載のホウ素含有排水の処理方法。The method for treating a boron-containing wastewater according to claim 4, wherein the anionic polymer compound is an anionic polymer flocculant. 無害性多価金属イオンを存在させる請求項1〜5記載のいずれか1項に記載の方法。The method according to any one of claims 1 to 5, wherein a harmless polyvalent metal ion is present. 該無害性多価金属イオンが、カルシウムイオン、マグネシウムイオン、鉄イオン又はアルミニウムイオンの少なくとも1種であることを特徴とする請求項6に記載のホウ素含有排水の処理方法。The method for treating a boron-containing wastewater according to claim 6, wherein the harmless polyvalent metal ion is at least one of calcium ion, magnesium ion, iron ion and aluminum ion. 該希土類元素イオンが、希土類元素の酸化物、水酸化物、炭酸塩、リン酸塩、酢酸塩又はハロゲン化物の水溶液、塩酸溶液又は硫酸溶液として被処理水中に添加されることを特徴とする請求項1〜7のいずれか1項に記載のホウ素含有排水の処理方法。The rare earth element ions are added to the water to be treated as an aqueous solution, a hydrochloric acid solution or a sulfuric acid solution of an oxide, hydroxide, carbonate, phosphate, acetate or halide of the rare earth element. Item 8. The method for treating a boron-containing wastewater according to any one of Items 1 to 7. 該溶存ホウ素を難溶性物質として沈殿分離させた後、処理によって発生したスラッジを原被処理水に返送することを特徴とする請求項1〜8のいずれか1項に記載のホウ素含有排水の処理方法。The treatment of the boron-containing wastewater according to any one of claims 1 to 8, wherein after the dissolved boron is precipitated and separated as a hardly soluble substance, sludge generated by the treatment is returned to the raw water to be treated. Method. 請求項1〜9のいずれか1項に記載の方法に使用される薬剤であって、希土類元素の酸化物、水酸化物、炭酸塩、リン酸塩、酢酸塩又はハロゲン化物の水溶液、塩酸溶液又は硫酸溶液からなる群から選択される少なくとも一種からなることを特徴とする薬剤。An agent used in the method according to any one of claims 1 to 9, comprising an aqueous solution of a rare earth oxide, hydroxide, carbonate, phosphate, acetate or halide, and a hydrochloric acid solution. Or a drug comprising at least one selected from the group consisting of sulfuric acid solutions. 請求項1〜9のいずれか1項に記載の方法に使用される薬剤であって、供給される希土類元素イオンおよび硫酸イオンが薬剤として構成されるものであり、その薬剤が、(i)希土類元素の酸化物、水酸化物、炭酸塩、リン酸塩、酢酸塩又はハロゲン化物の水溶液、塩酸溶液又は硫酸溶液からなる群から選択される少なくとも一種と(ii)硫酸、硫酸塩水溶液又はそれらの混合物、との混合物からなることを特徴とする薬剤。10. A drug used in the method according to any one of claims 1 to 9, wherein the supplied rare earth element ion and sulfate ion are constituted as a drug, and the drug is (i) a rare earth element. At least one selected from the group consisting of aqueous solutions of elemental oxides, hydroxides, carbonates, phosphates, acetates or halides, hydrochloric acid solutions and sulfuric acid solutions, and (ii) sulfuric acid, sulfate aqueous solutions or And a mixture comprising: 請求項1〜9のいずれか1項に記載の方法に使用される薬剤であって、供給される希土類元素イオンおよび鉄イオンが薬剤として構成されるものであり、その薬剤が、(i)希土類元素の酸化物、水酸化物、炭酸塩、リン酸塩、酢酸塩又はハロゲン化物の水溶液、塩酸溶液又は硫酸溶液からなる群から選択される少なくとも一種と(ii)塩化第二鉄溶液、ポリ鉄水溶液又はそれらの混合物、との混合物からなることを特徴とする薬剤。10. A drug used in the method according to any one of claims 1 to 9, wherein the supplied rare earth element ion and iron ion are constituted as a drug, and the drug is (i) a rare earth element. At least one element selected from the group consisting of aqueous solutions of elemental oxides, hydroxides, carbonates, phosphates, acetates or halides, hydrochloric acid solutions and sulfuric acid solutions, and (ii) ferric chloride solution, polyiron A drug comprising a mixture with an aqueous solution or a mixture thereof. 請求項1〜9のいずれか1項に記載の方法に使用される薬剤であって、供給される希土類元素イオンおよびアルミニウムイオンが薬剤として構成されるものであり、その薬剤が、(i)希土類元素の酸化物、水酸化物、炭酸塩、リン酸塩、酢酸塩又はハロゲン化物の水溶液、塩酸溶液又は硫酸溶液からなる群から選択される少なくとも一種と(ii)硫酸アルミニウム溶液、ポリ塩化アルミニウム溶液又はそれらの混合物、との混合物からなることを特徴とする薬剤。10. A drug used in the method according to any one of claims 1 to 9, wherein the supplied rare earth element ion and aluminum ion are constituted as a drug, and the drug is (i) a rare earth element. At least one selected from the group consisting of aqueous solutions of elemental oxides, hydroxides, carbonates, phosphates, acetates or halides, hydrochloric acid solutions and sulfuric acid solutions, and (ii) aluminum sulfate solutions and polyaluminum chloride solutions Or a mixture thereof, or a mixture thereof.
JP2003124485A 2002-04-26 2003-04-28 Boron-containing wastewater treatment method and chemicals used therefor Expired - Lifetime JP4086297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003124485A JP4086297B2 (en) 2002-04-26 2003-04-28 Boron-containing wastewater treatment method and chemicals used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002127698 2002-04-26
JP2003124485A JP4086297B2 (en) 2002-04-26 2003-04-28 Boron-containing wastewater treatment method and chemicals used therefor

Publications (2)

Publication Number Publication Date
JP2004000963A true JP2004000963A (en) 2004-01-08
JP4086297B2 JP4086297B2 (en) 2008-05-14

Family

ID=30447573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003124485A Expired - Lifetime JP4086297B2 (en) 2002-04-26 2003-04-28 Boron-containing wastewater treatment method and chemicals used therefor

Country Status (1)

Country Link
JP (1) JP4086297B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004321876A (en) * 2003-04-22 2004-11-18 Unitika Ltd Method for treating boron-containing wastewater
JP2006000778A (en) * 2004-06-18 2006-01-05 Miyoshi Oil & Fat Co Ltd Waste treatment method
JP2006116389A (en) * 2004-10-20 2006-05-11 Miyoshi Oil & Fat Co Ltd Fixing method for boron and fluorine and fixing agent composition
JP2006341139A (en) * 2005-06-07 2006-12-21 Nihon Kaisui:Kk Harmful inorganic anion fixing and removing method, and fixing agent used therefor
JP2010234295A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Method for treating iron-containing slurry
JP6008455B1 (en) * 2015-04-13 2016-10-19 株式会社日本海水 How to handle hazardous substances
CN111925015A (en) * 2020-08-13 2020-11-13 湖北海翔科技有限公司 COD degradation method for ammonia nitrogen in total sewage

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004321876A (en) * 2003-04-22 2004-11-18 Unitika Ltd Method for treating boron-containing wastewater
JP2006000778A (en) * 2004-06-18 2006-01-05 Miyoshi Oil & Fat Co Ltd Waste treatment method
JP2006116389A (en) * 2004-10-20 2006-05-11 Miyoshi Oil & Fat Co Ltd Fixing method for boron and fluorine and fixing agent composition
JP2006341139A (en) * 2005-06-07 2006-12-21 Nihon Kaisui:Kk Harmful inorganic anion fixing and removing method, and fixing agent used therefor
JP2010234295A (en) * 2009-03-31 2010-10-21 Kurita Water Ind Ltd Method for treating iron-containing slurry
JP6008455B1 (en) * 2015-04-13 2016-10-19 株式会社日本海水 How to handle hazardous substances
CN111925015A (en) * 2020-08-13 2020-11-13 湖北海翔科技有限公司 COD degradation method for ammonia nitrogen in total sewage

Also Published As

Publication number Publication date
JP4086297B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
JP2004141799A (en) Silica-containing waste water treatment method
JP2006341139A (en) Harmful inorganic anion fixing and removing method, and fixing agent used therefor
JP4293520B2 (en) Fluorine ion removal method and remover
JP2004000963A (en) Treatment method of boron-containing drainage, and medicament used for the same
JP2004008860A (en) Treatment method for harmful anion-containing wastewater and agent used therein
JP4289451B2 (en) Fluorine-containing wastewater treatment method and chemicals used therefor
JP4014276B2 (en) Treatment method for boron-containing wastewater
JP3334786B2 (en) Treatment method for wastewater containing insoluble and soluble lead, chromium and zinc
JP4014032B2 (en) Disposal method of wastewater containing dissolved copper complex compound and chemical used therefor
JP6607561B2 (en) Method for removing molybdenum from wastewater
JP3672262B2 (en) Method for treating boron-containing water
JP2003245674A (en) Treatment method for waste water containing harmful metal ion and fluoride ion, and its treatment agent
JP2548096B2 (en) Method of treating wastewater containing cadmium
JP4061512B2 (en) Treatment method of wastewater containing antimony
JPH03186393A (en) Treatment of waste water containing fluorine
JPH04367783A (en) Removing silica
JPH10146589A (en) Method for recovery of iron in photographic discharge liquid
JP2001104964A (en) Method for removing fluoride ion
JP2005144336A (en) Method for removing fluorine in wastewater and precipitate reducing method
JP2003245675A (en) Fluoride-ion removing method and sludge reduction method
JP3588616B2 (en) Method and agent for removing harmful metal ions
JP3932324B2 (en) Method for recovering heavy metals from aqueous waste liquid
JP4110295B2 (en) Method for simultaneously treating copper etching waste liquid and resist waste liquid and chemicals used therefor
JP4761612B2 (en) Treatment method for boron-containing wastewater
JP2001327979A (en) Method for treating wastewater containing arsenic and removing agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070926

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4086297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term