JP6607561B2 - Method for removing molybdenum from wastewater - Google Patents

Method for removing molybdenum from wastewater Download PDF

Info

Publication number
JP6607561B2
JP6607561B2 JP2015227428A JP2015227428A JP6607561B2 JP 6607561 B2 JP6607561 B2 JP 6607561B2 JP 2015227428 A JP2015227428 A JP 2015227428A JP 2015227428 A JP2015227428 A JP 2015227428A JP 6607561 B2 JP6607561 B2 JP 6607561B2
Authority
JP
Japan
Prior art keywords
molybdenum
wastewater
rare earth
added
earth element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015227428A
Other languages
Japanese (ja)
Other versions
JP2017094252A (en
Inventor
和巳 河野
知威 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2015227428A priority Critical patent/JP6607561B2/en
Publication of JP2017094252A publication Critical patent/JP2017094252A/en
Application granted granted Critical
Publication of JP6607561B2 publication Critical patent/JP6607561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はモリブデン含有廃水中におけるモリブデンを除去する方法に関する。   The present invention relates to a method for removing molybdenum in molybdenum-containing wastewater.

モリブデンは合金、触媒、電子材料、フィラメントなどの製造分野で幅広く使用されている金属であり、これらの工場で生ずる廃液や廃水などはモリブデン化合物を含有している。モリブデンは生態への毒性が懸念されるものであり、平成5年3月に改訂された水質環境基準で要監視項目に付け加えられたことから、処理廃水中のモリブデン濃度をできる限り低減化する方法の確立が望まれている。   Molybdenum is a metal that is widely used in the manufacturing field of alloys, catalysts, electronic materials, filaments, and the like, and waste liquids and waste water generated in these factories contain molybdenum compounds. Molybdenum is of concern for ecological toxicity, and was added to the items requiring monitoring in the water quality and environmental standards revised in March 1993. Therefore, a method to reduce the concentration of molybdenum in treated wastewater as much as possible. Establishment of is desired.

ほとんどの重金属の処理には、廃水中に苛性ソーダや消石灰などのアルカリ剤を添加して水不溶性の水酸化物を生成させて沈殿除去する凝集沈殿法が使用される。
しかし、モリブデンは、水中で酸素酸のアニオンとして存在するので、水酸化物を生成せず、一般的な凝集沈殿法は適用できない。
For the treatment of most heavy metals, a coagulating sedimentation method is used in which an alkaline agent such as caustic soda or slaked lime is added to waste water to produce a water-insoluble hydroxide and remove the precipitate.
However, since molybdenum exists as an anion of oxyacid in water, a hydroxide is not generated, and a general coagulation precipitation method cannot be applied.

そのようなモリブデンをモリブデン含有廃水から除去する方法として、例えば次のような提案がされている。
特許文献1には、モリブデン含有廃水に第二鉄イオンを添加し、次いで酸又はアルカリ剤で排水のpHを4〜8として水酸化第二鉄を生成せしめ、生成した懸濁物質を固液分離すると共に、得られる汚泥の一部を反応槽へ返送して汚泥循環することによって、モリブデンを除去するモリブデン含有排水の処理方法が開示されている。しかしながら、その実施例によれば、廃水のモリブデン濃度は、20mg/L程度の低濃度であり、また、処理水中のモリブデン濃度を十分に低減するには、濃縮汚泥の一部を反応槽へ返送する操作を数回繰り返すことが必要であり、長時間の処理操作を要する。
特許文献2には、アンチモン化合物及び/又はモリブデン化合物を含有する廃水に、ポリ塩化アルミニウム、塩化第二鉄、硫酸アルミニウム等の無機系凝集剤を添加し、廃水のpHを中性乃至アルカリ性として、フロックを生成せしめた状態で水中のアンチモン化合物及び/又はモリブデン化合物を吸着させる。その後、ゼオライトと接触させることにより、水中のフロックに吸着されていないアンチモン化合物及び/又はモリブデン化合物とフロックに吸着されているこれら化合物をともに、ゼオライトに吸着させて廃水中から分離除去する廃水処理方法が開示されている。しかしながら、廃水のモリブデン濃度は、10ppmと低濃度であり、処理後の廃水におけるモリブデンの除去率も最高値で75.3%であり、高いとはいえない。
また、特許文献3には、水酸化第2鉄粉を300〜700℃で焼成して得た酸化鉄系吸着剤をカラム内に充填し、廃水を通液する、モリブデンの酸素酸イオンを含有する廃水の処理方法が開示されている。しかしながら、処理対象とする廃水は、pH2以下の強酸性のモリブデン含有廃水であり、モリブデン含有量も10mg/Lと低濃度の廃水である。
また、特許文献4には、ホウ素含有排水の処理方法として、多価陰イオン性物質と希土類元素イオンを存在させて塩基性条件下に沈殿分離させる方法が記載されている。しかしながらモリブデンに関する開示はされていない。
As a method for removing such molybdenum from molybdenum-containing wastewater, for example, the following proposal has been made.
In Patent Document 1, ferric ions are added to molybdenum-containing wastewater, and then ferric hydroxide is generated with an acid or alkali agent at a pH of 4 to 8, and the generated suspended solids are separated into solid and liquid. In addition, a method for treating molybdenum-containing wastewater is disclosed in which molybdenum is removed by returning a part of the obtained sludge to a reaction tank and circulating the sludge. However, according to the embodiment, the molybdenum concentration of the wastewater is as low as 20 mg / L, and in order to sufficiently reduce the molybdenum concentration in the treated water, a part of the concentrated sludge is returned to the reaction tank. It is necessary to repeat this operation several times, which requires a long processing operation.
In Patent Document 2, an inorganic flocculant such as polyaluminum chloride, ferric chloride, and aluminum sulfate is added to wastewater containing an antimony compound and / or a molybdenum compound, and the pH of the wastewater is made neutral or alkaline. An antimony compound and / or a molybdenum compound in water is adsorbed in a state where flocs are generated. Thereafter, by contacting with zeolite, the antimony compound not adsorbed on the floc in water and / or the molybdenum compound and these compounds adsorbed on the floc are both adsorbed on the zeolite and separated and removed from the wastewater. Is disclosed. However, the molybdenum concentration of the wastewater is as low as 10 ppm, and the removal rate of molybdenum in the wastewater after treatment is 75.3% at the maximum value, which is not high.
Patent Document 3 contains molybdenum oxygenate ions that fill the column with an iron oxide-based adsorbent obtained by firing ferric hydroxide powder at 300 to 700 ° C., and pass wastewater therethrough. A method for treating wastewater is disclosed. However, the wastewater to be treated is a strongly acidic molybdenum-containing wastewater having a pH of 2 or less, and the molybdenum content is a wastewater having a low concentration of 10 mg / L.
Patent Document 4 describes a method for treating boron-containing wastewater by precipitating and separating under basic conditions in the presence of a polyvalent anionic substance and rare earth element ions. However, there is no disclosure regarding molybdenum.

特開2000−117265号公報JP 2000-117265 A 特開平11−347568号公報JP 11-347568 A 特開2010−29760号公報JP 2010-29760 A 特開2004−963号公報JP 2004-963 A

本発明は、上記に鑑みてなされたものであり、高濃度のモリブデンを含有する廃水であっても、一度の処理で大幅にモリブデン濃度を低下させることができる廃水中のモリブデンを除去する方法を提供することを目的とする。また、本発明は、該除去方法による工場廃水において、産業廃棄物となるスラッジ量をできるだけ少なくする処理方法の提供も目的とする。   The present invention has been made in view of the above, and there is provided a method for removing molybdenum in wastewater that can greatly reduce the molybdenum concentration by a single treatment even in wastewater containing high concentration of molybdenum. The purpose is to provide. Another object of the present invention is to provide a treatment method for reducing as much as possible the amount of sludge that becomes industrial waste in factory wastewater by the removal method.

本発明者らは鋭意検討の結果、モリブデン含有廃水に、水溶性鉄塩と希土類元素を添加して、生じた懸濁物質を固液分離することにより、モリブデン含有廃水中のモリブデンが効率的に除去できることを見出した。とりわけ、廃水のpHを3.0〜6.0に調整することにより、廃水中のモリブデン除去効率が著しく高くなることを見出した。
また、塩化第二鉄等の水溶性鉄塩と希土類元素含有溶液との添加による懸濁物質の生成後に、カチオン性高分子凝集剤を添加して懸濁物質をフロック化することにより、固液分離が効率的に容易になることを見出した。
As a result of intensive studies, the present inventors added a water-soluble iron salt and a rare earth element to the molybdenum-containing wastewater, and solid-liquid separated the generated suspended solids, so that the molybdenum in the molybdenum-containing wastewater is efficiently removed. It was found that it can be removed. In particular, it has been found that by adjusting the pH of the wastewater to 3.0 to 6.0, the molybdenum removal efficiency in the wastewater is remarkably increased.
In addition, after the production of suspended solids by adding a water-soluble iron salt such as ferric chloride and a rare earth element-containing solution, a cationic polymer flocculant is added to flock the suspended solids to form a solid liquid. It has been found that separation is facilitated efficiently.

すなわち、本発明は以下の(1)〜(8)に関するものである。
(1)モリブデン含有廃水に、水溶性鉄塩と希土類元素を添加し、あるいは、必要に応じてさらにpH調節剤を添加することにより、廃水のpHが3.0〜6.0として、生じた懸濁物質を固液分離することによる、廃水中のモリブデン除去方法。
(2)水溶性鉄塩が塩化第二鉄、硝酸第二鉄、硫酸第一鉄及びポリ硫酸第二鉄からなる群から選択されるいずれか一種以上である(1)に記載の廃水中のモリブデン除去方法。
(3)希土類元素が、希土類元素の酸化物、水酸化物、炭酸塩、リン酸塩、酢酸塩又はハロゲン化物の水溶液、塩酸溶液又は硫酸溶液として用いることを特徴とする(1)又は(2)に記載の廃水中のモリブデン除去方法。
(4)希土類元素がランタンもしくはランタンと他の希土類との混合物であることを特徴とする(1)〜(3)のいずれか一項に記載の廃水中のモリブデン除去方法。
(5)水溶性鉄塩と希土類元素を添加し、あるいは、必要に応じてさらにpH調節剤を添加することにより、廃水のpHが3.5〜5.5とする、(1)〜(4)のいずれか一項に記載の廃水中のモリブデン除去方法。
(6)モリブデン含有廃水に、水溶性鉄塩を添加しその後に希土類元素を添加する、(1)〜(5)のいずれか一項に記載の廃水中のモリブデン除去方法。
(7)水溶性鉄塩と希土類元素との添加後に、更にカチオン性高分子凝集剤を添加する(1)〜(6)のいずれか一項に記載の廃水中のモリブデン除去方法。
(8)廃水中に水溶性鉄塩を0.005〜1.0w/v%の割合で添加する(1)〜(7)のいずれか一項に記載の廃水中のモリブデン除去方法。
That is, the present invention relates to the following (1) to (8).
(1) It was generated by adding a water-soluble iron salt and a rare earth element to the molybdenum-containing wastewater, or by adding a pH regulator as necessary, so that the pH of the wastewater was 3.0 to 6.0. A method for removing molybdenum from wastewater by solid-liquid separation of suspended substances.
(2) The water-soluble iron salt is any one or more selected from the group consisting of ferric chloride, ferric nitrate, ferrous sulfate and polyferric sulfate. Molybdenum removal method.
(3) The rare earth element is used as a rare earth element oxide, hydroxide, carbonate, phosphate, acetate or halide aqueous solution, hydrochloric acid solution or sulfuric acid solution (1) or (2) ) Molybdenum removal method in waste water.
(4) The method for removing molybdenum from wastewater according to any one of (1) to (3), wherein the rare earth element is lanthanum or a mixture of lanthanum and another rare earth.
(5) The pH of the wastewater is adjusted to 3.5 to 5.5 by adding a water-soluble iron salt and a rare earth element, or further adding a pH adjuster as necessary, (1) to (4 ) The method for removing molybdenum from wastewater according to any one of the above.
(6) The method for removing molybdenum from wastewater according to any one of (1) to (5), wherein a water-soluble iron salt is added to the molybdenum-containing wastewater, and then a rare earth element is added.
(7) The method for removing molybdenum from wastewater according to any one of (1) to (6), wherein a cationic polymer flocculant is further added after the addition of the water-soluble iron salt and the rare earth element.
(8) The method for removing molybdenum from wastewater according to any one of (1) to (7), wherein a water-soluble iron salt is added to the wastewater at a rate of 0.005 to 1.0 w / v%.

本発明によれば、モリブデン含有廃水に、水溶性鉄塩と希土類元素を添加し、必要に応じて廃水のpHが3.0〜6.0となるようpH調節剤にて調整し、生じた懸濁物質を固液分離することにより、高濃度のモリブデンを含有する廃水でも一度の処理で低濃度まで除去することができる。
また、懸濁物質の生成後、カチオン性高分子凝集剤を添加して懸濁物質をフロック化することで固液分離が効率的に容易になり、産業廃棄物となるスラッジ量をできるだけ少なくする処理方法を提供できる。
According to the present invention, a water-soluble iron salt and a rare earth element are added to a molybdenum-containing wastewater, and the pH of the wastewater is adjusted with a pH adjuster to be 3.0 to 6.0 as necessary. By solid-liquid separation of suspended substances, even waste water containing high-concentration molybdenum can be removed to a low concentration by a single treatment.
In addition, after the suspension material is generated, a cationic polymer flocculant is added to make the suspension material flocculated, so that solid-liquid separation is efficiently facilitated and the amount of sludge that becomes industrial waste is minimized. A processing method can be provided.

以下に本発明について詳細に説明する。
本発明方法が適用できるモリブデン含有廃水は、各種鉱工業におけるいずれの由来の廃水であってもよく、通常、廃水中にモリブデンを50〜3,000mg/L程度含む廃水において好適に適用できる。
The present invention is described in detail below.
Molybdenum-containing wastewater to which the method of the present invention can be applied may be wastewater of any origin in various mining industries, and is usually suitably applicable to wastewater containing about 50 to 3,000 mg / L of molybdenum in the wastewater.

本発明に用いられる水溶性鉄塩としては、塩化第二鉄、硝酸第二鉄、硫酸第一鉄、ポリ硫酸第二鉄等の水溶性鉄塩の1種以上が好ましく用いられる。なかでも、塩化第二鉄は、単独で用いても、希土類元素含有溶液を添加することで高いモリブデン除去率が達成されるので好ましい。
また、本発明においては、水溶性鉄塩に加えて、硫酸アルミニウム、ポリ塩化アルミニウム等の水溶性アルミニウム塩を添加しても良い。
なお、水溶性鉄塩は、20〜60質量%(特に30〜50質量%)の水溶液として用いてもよい。
本発明において、水溶性鉄塩の添加量は、被処理廃水のモリブデン濃度にもよるが、廃水に対して、通常0.005〜1.0w/v%程度、好ましくは0.01〜0.7w/v%程度、より好ましくは0.02〜0.3w/v%程度である。水溶性鉄塩の添加が0.005w/v%より少ないとモリブデン除去効率が達成されないことがあり、また1.0w/v%よりも多いとスラッジ量が増加するので産業廃棄物処理上から好ましくはない。
As the water-soluble iron salt used in the present invention, one or more water-soluble iron salts such as ferric chloride, ferric nitrate, ferrous sulfate and polyferric sulfate are preferably used. Among these, ferric chloride is preferable because even if it is used alone, a high molybdenum removal rate is achieved by adding a rare earth element-containing solution.
In the present invention, in addition to the water-soluble iron salt, a water-soluble aluminum salt such as aluminum sulfate or polyaluminum chloride may be added.
In addition, you may use a water-soluble iron salt as 20-60 mass% (especially 30-50 mass%) aqueous solution.
In the present invention, the amount of water-soluble iron salt added depends on the molybdenum concentration of the wastewater to be treated, but is usually about 0.005 to 1.0 w / v%, preferably 0.01 to 0.00% with respect to the wastewater. It is about 7 w / v%, More preferably, it is about 0.02-0.3 w / v%. If the addition of water-soluble iron salt is less than 0.005 w / v%, molybdenum removal efficiency may not be achieved, and if it exceeds 1.0 w / v%, the amount of sludge increases, which is preferable for industrial waste treatment. There is no.

本発明では、希土類元素を被処理水中に存在させる。
この希土類元素がモリブデン除去剤としての役割を果たす。モリブデン含有廃水へ添加する際の希土類元素は本発明の目的を達成できればいかなる状態であってもよいが、希土類元素含有溶液として添加するのが好ましく、希土類元素の酸化物、水酸化物、炭酸塩、リン酸塩又はハロゲン化物の水溶液、塩酸溶液又は硫酸溶液として添加するのが好ましい。その濃度は特に限定されるものではないが、操作性を考慮すると例えば希土類元素酸化物の塩酸溶液の場合は、塩酸溶液中の希土類元素を酸化物として好ましくは10〜40質量%、より好ましくは20〜35質量%である。
In the present invention, rare earth elements are present in the water to be treated.
This rare earth element serves as a molybdenum remover. The rare earth element to be added to the molybdenum-containing wastewater may be in any state as long as the object of the present invention can be achieved. However, it is preferably added as a rare earth element-containing solution, rare earth element oxide, hydroxide, carbonate It is preferable to add them as an aqueous solution of phosphate or halide, hydrochloric acid solution or sulfuric acid solution. The concentration thereof is not particularly limited, but in consideration of operability, for example, in the case of a hydrochloric acid solution of a rare earth element oxide, the rare earth element in the hydrochloric acid solution is preferably 10 to 40% by mass, more preferably It is 20-35 mass%.

本発明においては、希土類元素イオンの中でもランタンイオン、セリウムイオンの使用が好ましく、ランタンの使用がより好ましい。
また、本発明においてモリブデン除去剤として用いる希土類元素含有溶液は、希土類元素の混合物の溶液もしくは、希土類元素の単独又は混合液の形態で用いることができる。ランタンとセリウム及びイッテルビウムの溶液の使用が好ましく、ランタンとセリウムとの溶液がより好ましい。好ましい具体例としては、ランタンとセリウムとイッテリビウムの塩酸溶液(濃度は酸化物として32.5質量%、その中の組成は、ランタン95質量%、セリウム4.9質量%、イッテリビウム0.1質量%)である。なお当該組成の溶液はジェラニックR(登録商標;排水処理剤;有限会社環境総合管理機構)として販売されている。
In the present invention, lanthanum ions and cerium ions are preferred among the rare earth element ions, and lanthanum is more preferred.
In addition, the rare earth element-containing solution used as the molybdenum removing agent in the present invention can be used in the form of a rare earth element mixture solution, or a rare earth element alone or a mixed solution. The use of a solution of lanthanum and cerium and ytterbium is preferred, and a solution of lanthanum and cerium is more preferred. As a preferable specific example, a hydrochloric acid solution of lanthanum, cerium, and ytterbium (concentration is 32.5% by mass as an oxide, and the composition thereof is 95% by mass of lanthanum, 4.9% by mass of cerium, and 0.1% by mass of ytterbium. ). In addition, the solution of the said composition is marketed as Geranic R (registered trademark; wastewater treatment agent; environmental management organization limited company).

本発明で使用される希土類元素を含む溶液は、希土類元素を含有している鉱石から不純物を取り除いた後、塩酸に溶解させて調整することができる。この時の塩酸濃度は、0.1〜12規定程度が好ましく、より好ましくは5〜12規定程度、さらに好ましくは8〜12規定程度である。希土類元素イオンの濃度は、特に限定されるものではないが、操作性を考慮すると、酸化物として好ましくは10〜40質量%、より好ましくは20〜40質量%、さらに好ましくは20〜35質量%である。溶解時間は、完全に溶解すればよく、特に限定されないが、0.5時間から2時間程度で充分である。
本発明において、希土類元素元素の添加量は、被処理廃水中のモリブデンの濃度にもよるが、廃水中のモリブデン1モル当たり希土類元素として0.05〜50モル程度、好ましくは0,1〜30モル程度、より好ましくは0.5〜20モル程度を用いる。なお適宜増減することは何ら差支えない。
The solution containing rare earth elements used in the present invention can be prepared by removing impurities from ores containing rare earth elements and then dissolving them in hydrochloric acid. The hydrochloric acid concentration at this time is preferably about 0.1 to 12 N, more preferably about 5 to 12 N, and still more preferably about 8 to 12 N. The concentration of rare earth element ions is not particularly limited, but considering operability, the oxide is preferably 10 to 40% by mass, more preferably 20 to 40% by mass, and still more preferably 20 to 35% by mass. It is. The dissolution time may be completely dissolved, and is not particularly limited, but about 0.5 to 2 hours is sufficient.
In the present invention, the amount of rare earth element added depends on the concentration of molybdenum in the wastewater to be treated, but it is about 0.05 to 50 moles, preferably 0,1 to 30 moles as rare earth elements per mole of molybdenum in the wastewater. About mol, more preferably about 0.5 to 20 mol is used. It should be noted that it may be increased or decreased as appropriate.

本発明においては、水溶性鉄塩溶液と希土類元素含有溶液とを廃水に添加後、モリブデン析出物を生じさせるために、必要に応じてさらにpH調節剤を添加してpHを3.0〜6.0、好ましくはpHを3.5〜5.5に調整する。モリブデンは弱酸性領域で良く反応して析出するが、中性もしくはアルカリ領域では再溶出をし、良好な除去は望めない。
かかる処理廃水のpHを調整するためのpH調節剤としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、水酸化カルシウム等のアルカリ性物質、もしくは塩酸、硫酸、硝酸等の酸性物質が用いられる。
本発明において、モリブデン含有廃水に、水溶性鉄塩と希土類元素含有溶液とを添加するうえで、水溶性鉄塩を添加しその後に希土類元素を添加するか、希土類元素を添加しその後に水溶性鉄塩を添加するか、若しくは、水溶性鉄塩と希土類元素を同時に添加する、いずれの添加順序の方法も可能である。なお、好ましくは、塩化第二鉄を先にし、次いで除去剤Aを添加する順序のほうが、モリブデン除去率としてはやや優位であり好ましい。
In the present invention, after adding the water-soluble iron salt solution and the rare earth element-containing solution to the waste water, a pH adjuster is further added as necessary to adjust the pH to 3.0 to 6 in order to generate molybdenum precipitates. 0.0, preferably the pH is adjusted to 3.5 to 5.5. Molybdenum reacts and precipitates well in the weakly acidic region, but re-elutes in the neutral or alkaline region, and good removal cannot be expected.
As a pH regulator for adjusting the pH of such treated wastewater, alkaline substances such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, calcium hydroxide, or acidic substances such as hydrochloric acid, sulfuric acid, nitric acid are used. It is done.
In the present invention, when adding a water-soluble iron salt and a rare earth element-containing solution to a molybdenum-containing wastewater, a water-soluble iron salt is added and then a rare earth element is added, or a rare earth element is added and then water-soluble Any order of addition, in which an iron salt is added or a water-soluble iron salt and a rare earth element are added simultaneously, is possible. Preferably, the order in which ferric chloride is added first and then the removing agent A is added is preferable because the molybdenum removal rate is somewhat superior.

更に、本発明においては、凝集沈殿法で懸濁物質をフロック化して固液分離を容易にするために高分子凝集剤を併用することが好ましい。
高分子凝集剤としては、フロックの凝集に用いられるものであり、ポリアクリル酸エステル系、ポリジシアンアミド系、ポリアミジン系、ポリジアリルアミン系、ポリアミン系、ポリメタクリル酸ジメチルアミノエチルエステル、ポリエチレンイミン、キトサン等のカチオン性高分子凝集剤が好ましい。
この他にポリアクリルアミド等のノニオン性有機系凝集剤、ポリアクリル酸、アクリルアミドとアクリル酸との共重合体及びその塩等のアニオン性有機系凝集剤も用いることができる。ただし、本発明におけるモリブデンの反応pHは弱酸性なので、ノニオン性及びアニオン性高分子凝集剤はpHによって凝集反応を示さず使用できない場合もある。
高分子凝集剤の添加量は、通常、処理廃水中に0.5〜10mg/L程度、好ましくは1〜7mg/L程度である。
Furthermore, in the present invention, it is preferable to use a polymer flocculant in combination in order to flock the suspended substance by a coagulation sedimentation method and facilitate solid-liquid separation.
As the polymer flocculant, it is used for floc aggregation, polyacrylic acid ester, polydicyanamide, polyamidine, polydiallylamine, polyamine, polymethacrylic acid dimethylaminoethyl ester, polyethyleneimine, chitosan Cationic polymer flocculants such as
In addition, nonionic organic flocculants such as polyacrylamide, anionic organic flocculants such as polyacrylic acid, copolymers of acrylamide and acrylic acid, and salts thereof can also be used. However, since the reaction pH of molybdenum in the present invention is weakly acidic, nonionic and anionic polymer flocculants may not be used because they exhibit no agglutination reaction due to pH.
The addition amount of the polymer flocculant is usually about 0.5 to 10 mg / L, preferably about 1 to 7 mg / L in the treated wastewater.

一連の工程終了後、被処理水を固液分離処理する。この固液分離は常法により行うことができ、例としてベルトプレス、フィルタープレス等の濾過分離、遠心分離、沈降分離等が挙げられる。   After the series of steps, the water to be treated is subjected to solid-liquid separation treatment. This solid-liquid separation can be performed by a conventional method, and examples thereof include filtration separation such as belt press and filter press, centrifugation, sedimentation separation, and the like.

次に本発明を実施例によりさらに詳細に説明する。
なお、実施例でモリブデン(以下「Mo」と略す場合あり)測定に用いられた測定器はHACH社の携帯用多項目迅速水質分析計である。
Next, the present invention will be described in more detail with reference to examples.
The measuring instrument used for measuring molybdenum (hereinafter sometimes abbreviated as “Mo”) in the examples is a portable multi-item rapid water quality analyzer manufactured by HACH.

参考例1
希土類元素の酸化物の塩酸溶液(希土類元素の濃度は、酸化物として32.5質量%、組成はランタン95質量%、セリウム4.9質量%、イッテルビウム0.1質量%)を本発明で用いる除去剤Aとした。
Reference example 1
A hydrochloric acid solution of a rare earth oxide (the concentration of the rare earth element is 32.5% by mass as an oxide, the composition is 95% by mass of lanthanum, 4.9% by mass of cerium, and 0.1% by mass of ytterbium) is used in the present invention. Remover A was designated.

実施例1−1〜1−5
実施例1−1〜1−5として、工場廃水(モリブデン含量950mg/L,初期 pH11.6)100mLに、表1に記載量の塩化第二鉄(w/v %)(添加は塩化第二鉄38%水溶液を用いた)、希土類元素含有溶液(除去剤A)(v/v %)、17%NaOH、アニオン性高分子凝集剤を添加した。これら成分を添加後のpH、モリブデン含量、モリブデン除去率を表1に示した。
実施例1−1では、塩化第二鉄0.13%、除去剤Aを0.1%で添加し、Mo含量は20mg/Lに低下した。
実施例1−2〜1−4では、除去剤Aを0.05%ずつ増加して追加した。しかしMo濃度は3mg/L程度ずつしか減少しなかった。
実施例1−3〜1−4 ではMo含量14mg/Lで変化なく、希土類元素含有溶液(除去剤A)の添加は充分量されていると判断した。
実施例1−5では、水酸化ナトリウム液を用いてpHを3.0から4.7に上げるとMo含量は14mg/Lから5mg/Lまで低下した。
これらのことから、処理pHとしてはpH3.0程度が下限であり、モリブデン除去する適正pHが存在することが判明した。また本試験での酸性領域のpHではアニオン系高分子凝集剤での凝集沈殿は起さなかった。
Examples 1-1 to 1-5
In Examples 1-1 to 1-5, 100 mL of factory wastewater (molybdenum content 950 mg / L, initial pH 11.6) was added to the amount of ferric chloride (w / v%) described in Table 1 An iron 38% aqueous solution was used, a rare earth element-containing solution (removal agent A) (v / v%), 17% NaOH, and an anionic polymer flocculant. Table 1 shows the pH, molybdenum content, and molybdenum removal rate after addition of these components.
In Example 1-1, 0.13% ferric chloride and 0.1% removal agent A were added, and the Mo content was reduced to 20 mg / L.
In Examples 1-2 to 1-4, the removing agent A was added in increments of 0.05%. However, the Mo concentration decreased only by about 3 mg / L.
In Examples 1-3 to 1-4, it was judged that the addition of the rare earth element-containing solution (removal agent A) was sufficiently added, with no change at the Mo content of 14 mg / L.
In Example 1-5, when the pH was increased from 3.0 to 4.7 using sodium hydroxide solution, the Mo content decreased from 14 mg / L to 5 mg / L.
From these facts, it was found that the processing pH is about pH 3.0, and there is an appropriate pH for removing molybdenum. In addition, aggregation and precipitation with an anionic polymer flocculant did not occur at the pH in the acidic region in this test.

Figure 0006607561
Figure 0006607561

・塩化第二鉄;「塩化第二鉄38%水溶液 ボーメ度40」ラサ工業社製を用いた。但し添加量は塩化第二鉄として算出して記載した。以下の実施例においても同様である。
・除去剤A;参考例1に示される希土類元素含有溶液を用いた。例えば廃水100mLへの0.1mL添加が0.1v/v %に換算される。以下の実施例においても同様である。
・ハイモロックA-210H;アニオン性高分子凝集剤、ポリアクリル酸ソーダ(ハイモ株式会社)
Ferric chloride: “Ferric chloride 38% aqueous solution Baume degree 40” manufactured by Lhasa Kogyo Co., Ltd. was used. However, the addition amount was calculated and described as ferric chloride. The same applies to the following embodiments.
Remover A: The rare earth element-containing solution shown in Reference Example 1 was used. For example, the addition of 0.1 mL to 100 mL of waste water is converted to 0.1 v / v%. The same applies to the following embodiments.
・ Himoloc A-210H; anionic polymer flocculant, sodium polyacrylate (Himo Corporation)

実施例2−1〜2−2
実施例2−1〜2−2として、工場廃水(モリブデン含量935mg/L,初期pH11.4)100mLに、表2に記載量の塩化第二鉄(w/v %)、除去剤A(v/v %)、35% 塩酸、25%NaOHを添加した。これら成分を添加後のpH、Mo含量、Mo除去率を表2に示した。
実施例2−1〜2−2では、塩化第二鉄0.15%、除去剤Aを0.1%添加し、pH調節剤にてpHを4.2〜4.5に設定してMo含量は2〜3mg/Lと良好な除去効果が得られた(Mo除去率99.7〜99.8%)。
Examples 2-1 to 2-2
As Examples 2-1 to 2-2, 100 mL of factory wastewater (molybdenum content 935 mg / L, initial pH 11.4), ferric chloride (w / v%) in amounts shown in Table 2, and removal agent A (v / v%), 35% hydrochloric acid, 25% NaOH. Table 2 shows the pH, Mo content, and Mo removal rate after addition of these components.
In Examples 2-1 to 2-2, 0.15% ferric chloride and 0.1% removing agent A were added, and the pH was set to 4.2 to 4.5 with a pH adjuster. A good removal effect was obtained with a content of 2 to 3 mg / L (Mo removal rate 99.7 to 99.8%).

Figure 0006607561
Figure 0006607561

実施例3−1〜3−3、参考例3−1
実施例3−1〜3−3及び参考例3−1として、工場廃水(モリブデン含量930mg/L,初期pH11.2)100mLに、表3に記載量の塩化第二鉄(w/v %)、除去剤A(v/v %)、35%塩酸、25%NaOHを添加した。これら成分を添加後のpH、Mo含量、Mo除去率を表3に示した。
参考例3−1では、塩化第二鉄0.15%、除去剤Aを0.1%添加し、pH2.7で、モリブデン含量は64mg/Lまでしか低下していない(除去率93.1%)。
実施例3−1〜3−2ではpH調節剤にてpHを3.8〜4.0に設定するとモリブデン含量は2mg/L程度で良好な除去効果が得られた(除去率99.8%)。
実施例3−3ではpH4.5まで上昇してもモリブデン含量4mg/Lを維持していた(除去率99.6%)。
これらの結果は、塩化第二鉄0.15%、除去剤A0.1%添加では、pH3.8〜pH4.5で、Mo含量一桁台で除去率99%%以上を維持していたことを示す。
Examples 3-1 to 3-3, Reference Example 3-1.
As Examples 3-1 to 3-3 and Reference Example 3-1, 100 mL of factory wastewater (molybdenum content 930 mg / L, initial pH 11.2), ferric chloride (w / v%) in the amount shown in Table 3 Remover A (v / v%), 35% hydrochloric acid, 25% NaOH were added. Table 3 shows the pH, Mo content, and Mo removal rate after addition of these components.
In Reference Example 3-1, 0.15% ferric chloride and 0.1% removal agent A were added, the pH was 2.7, and the molybdenum content was only reduced to 64 mg / L (removal rate 93.1). %).
In Examples 3-1 to 3-2, when the pH was set to 3.8 to 4.0 with a pH regulator, the molybdenum content was about 2 mg / L, and a good removal effect was obtained (removal rate 99.8% ).
In Example 3-3, the molybdenum content was maintained at 4 mg / L even when the pH was raised to 4.5 (removal rate 99.6%).
These results show that when 0.15% ferric chloride and 0.1% removal agent A were added, the pH was 3.8 to 4.5 and the removal rate was maintained at 99 %% or more in the single digit range. Indicates.

Figure 0006607561
Figure 0006607561

実施例4−1〜4−4、参考例4−1〜4−3
実施例4−1〜4−4及び参考例4−1〜4−3として、種々の凝集剤の凝集沈殿の成否を確認した。即ち、工場廃水(モリブデン含量930mg/L,pH11.2)100mLに、塩化第二鉄を0.15%、除去剤Aを0.1%添加した液を用いて、表4に示す凝集剤、25%NaOHを添加し、凝集沈殿能の成否を確認した。これら成分を添加後のpH、Mo含量、Mo除去率を表4に示した。
固液分離(凝集沈殿)するには、凝集沈殿を完成させないといけないが、参考例4−1〜4−3では、アニオン性高分子を用いては、ろ紙ろ過は出来たが凝集沈殿は起こさなかった。
実施例4−1〜4−4では、分子量の違うカチオン性高分子を用いた全てにおいてpH4.0〜4.3の酸性領域で凝集沈殿は成功した。
Examples 4-1 to 4-4, Reference examples 4-1 to 4-3
As Examples 4-1 to 4-4 and Reference Examples 4-1 to 4-3, the success or failure of various coagulating agents was confirmed. That is, using a solution obtained by adding 0.15% ferric chloride and 0.1% removing agent A to 100 mL of factory wastewater (molybdenum content 930 mg / L, pH 11.2), 25% NaOH was added to confirm the success or failure of the aggregation and precipitation ability. Table 4 shows the pH, Mo content, and Mo removal rate after addition of these components.
In order to perform solid-liquid separation (coagulation precipitation), coagulation precipitation must be completed. In Reference Examples 4-1 to 4-3, filter paper filtration can be performed using anionic polymer, but coagulation precipitation occurs. There wasn't.
In Examples 4-1 to 4-4, aggregation precipitation succeeded in an acidic region of pH 4.0 to 4.3 in all using cationic polymers having different molecular weights.

Figure 0006607561
Figure 0006607561

・ハイモロックA210H;アニオン性高分子凝集剤、ポリアクリル酸ソーダ(ハイモ株式会社)
・ハイモロックMS-882;カチオン性(両性)高分子凝集剤、ポリアクリル酸エステル系(ハイモ株式会社)
・ハイモロックMP-184;カチオン性高分子凝集剤、ポリアクリル酸エステル系(ハイモ株式会社)
・ハイモロックMP-584;低分子量カチオン性高分子凝集剤、ポリアクリル酸エステル系(ハイモ株式会社)
・ハイモロックMP-384;中分子量カチオン性高分子凝集剤、ポリアクリル酸エステル系(ハイモ株式会社)
・ Himoloc A210H; anionic polymer flocculant, sodium polyacrylate (Himo Corporation)
・ Himoloc MS-882; Cationic (amphoteric) polymer flocculant, polyacrylate ester (Himo Corporation)
・ Himolock MP-184; Cationic polymer flocculant, polyacrylate ester (Himo Corporation)
・ Himolock MP-584; low molecular weight cationic polymer flocculant, polyacrylate ester (Himo Corporation)
・ Himoloc MP-384; medium molecular weight cationic polymer flocculant, polyacrylate ester (Himo Corporation)

実施例5−1〜5−6、参考例5−1
実施例5−1〜5−6及び参考例5−1として、工場廃水(モリブデン含量930mg/L, pH11.2)100mLに、表5に記載量の塩化第二鉄0.15%、除去剤Aを0.1%、及びpH調節剤を添加した。これら成分を添加後のpH、Mo含量、Mo除去率を表5に示した。
参考例5−1では、pH2.7で75mg/Lまでしか低下していない(除去率91.9%)。
実施例5−1〜5−5ではpH3.8〜5.5の範囲でMo含量10mg/L程度を維持した(除去率98.9〜99.5%)。
実施例5−6ではpH5.9でMo含量20mg/Lを示しこの程度のpH数値が上限と判断された。好ましくはpH5.5程度以下が好ましいと判断された。
本試験からは、Mo含量930mg/Lと高濃度のMo除去であるが、塩化第二鉄0.15%、除去剤A0.1%添加で、pH3.8〜5.5で10mg/Lを示し、特にpH5で5mg/Lと一桁台を示した。
Examples 5-1 to 5-6, Reference Example 5-1
As Examples 5-1 to 5-6 and Reference Example 5-1, 0.15% ferric chloride in the amount shown in Table 5 and removal agent in 100 mL of factory wastewater (molybdenum content 930 mg / L, pH 11.2) 0.1% of A and a pH adjuster were added. Table 5 shows the pH, Mo content, and Mo removal rate after addition of these components.
In Reference Example 5-1, it decreased only to 75 mg / L at pH 2.7 (removal rate 91.9%).
In Examples 5-1 to 5-5, the Mo content of about 10 mg / L was maintained in the pH range of 3.8 to 5.5 (removal rate 98.9 to 99.5%).
In Example 5-6, the Mo content was 20 mg / L at pH 5.9, and this pH value was judged to be the upper limit. It was determined that a pH of about 5.5 or less was preferable.
From this test, Mo content was 930 mg / L and high concentration of Mo removal, but 0.15% ferric chloride and 0.1% removal agent A were added, and 10 mg / L at pH 3.8-5.5. In particular, it was 5 mg / L at a pH of 5 and a single digit.

Figure 0006607561
Figure 0006607561

実施例6
実施例6として、廃水(モリブデン含量250mg/L,pH12.2)100mLに、表6に記載量の塩化第二鉄溶液を0.06%、除去剤Aを0.025%、及びpH調節剤を添加した。これら成分を添加後のpH、Mo含量、Mo除去率を表6に示した。
実施例6では、pH調整してpH4.8に設定するとMo含量は3mg/Lと一桁台になった。(除去率98.8%)
Example 6
As Example 6, waste water (molybdenum content 250 mg / L, pH 12.2) 100 mL, 0.06% ferric chloride solution in the amount shown in Table 6, 0.025% removal agent A, and pH regulator Was added. Table 6 shows the pH, Mo content, and Mo removal rate after addition of these components.
In Example 6, when the pH was adjusted to pH 4.8, the Mo content was in the single digit range of 3 mg / L. (Removal rate 98.8%)

Figure 0006607561
Figure 0006607561

実施例7
実施例7として、廃水(モリブデン含量695mg/L,pH7.8)100mLに、表7に記載量の塩化第二鉄を0.10%、除去剤Aを0.05%、pH調節剤を添加した。これら成分を添加後のpH、Mo含量、Mo除去率を表7に示した。
実施例7では25%水酸化ナトリウムでpH調整してpH4.5に上げるとMo含量は3mg/Lとなった。モリブデン695mg/Lと高濃度の廃水でも塩化第二鉄0.10%、除去剤A0.05%と低濃度の添加でもpH調整すれば3mg/Lと一桁台になった(除去率99.6%)。
Example 7
As Example 7, to 100 mL of waste water (molybdenum content 695 mg / L, pH 7.8), 0.10% of ferric chloride in the amount shown in Table 7, 0.05% of removal agent A, and pH regulator were added. did. Table 7 shows the pH, Mo content, and Mo removal rate after addition of these components.
In Example 7, when the pH was adjusted to 25 with 25% sodium hydroxide and the pH was raised to 4.5, the Mo content was 3 mg / L. Even in the case of wastewater with a high concentration of 695 mg / L of molybdenum, 0.10% of ferric chloride and 0.05% of the removal agent A were added at a low concentration of 3% / L, which was in the single digit range (removal rate 99.95%). 6%).

Figure 0006607561
Figure 0006607561

実施例8−1〜8−2
実施例8−1〜8−2として、モリブデン含有廃水に添加する、水溶性鉄塩と希土類元素の添加順序を代えて比較試験を行った。
実施例8−1では、廃水(モリブデン含量116mg/L,pH12.2)100mLに、表8−1に記載量の除去剤Aを0.02%添加し、次いで塩化第二鉄を0.04%添加して、pH5.2に調節し、カチオン性高分子凝集剤(ハイモロック MP-584)を添加した。添加後のpH、Mo含量、Mo除去率について表8−1に結果を示した。凝集沈殿後ろ紙ろ過したろ液のMo含量は6mg/Lであった(除去率94.8%)。
Examples 8-1 to 8-2
As Examples 8-1 to 8-2, a comparative test was performed by changing the addition order of the water-soluble iron salt and the rare earth element added to the molybdenum-containing wastewater.
In Example 8-1, 0.02% of the removal agent A described in Table 8-1 was added to 100 mL of waste water (molybdenum content 116 mg / L, pH 12.2), and then ferric chloride was added 0.04%. % Was added to adjust the pH to 5.2, and a cationic polymer flocculant (Himoloc MP-584) was added. Table 8-1 shows the results of pH, Mo content, and Mo removal rate after the addition. The Mo content of the filtrate obtained by filtering the coagulation sedimentation paper was 6 mg / L (removal rate 94.8%).

Figure 0006607561
Figure 0006607561

実施例8−2では、実施例8−1と同じ廃水を用いて、塩化第二鉄溶液を先に添加し、その後に、除去剤Aを添加した。
即ち、表8−2に記載量の塩化第二鉄を0.04%添加して、次いで除去剤Aを0.02%添加し、pH4.0に調節し、カチオン性高分子凝集剤(ハイモロック MP-584)を添加した。添加後のpH、Mo含量、Mo除去率について表8−2に結果を示した。凝集沈殿後ろ紙ろ過したろ液のMo含量を測定した結果、Mo含量は2.5mg/Lであった(除去率97.8%)。
上記の結果からは、塩化第二鉄溶液と希土類元素含有溶液(除去剤A)の添加の順序には大きな差異はないが、塩化第二鉄を先にし、次いで除去剤Aを添加する順序がやや優位であったと云える。また両者を同時に投与することも本発明の効果を得るために何ら差支えない。
In Example 8-2, using the same waste water as in Example 8-1, the ferric chloride solution was added first, and then the remover A was added.
That is, 0.04% of ferric chloride in the amount shown in Table 8-2 was added, then 0.02% of remover A was added, and the pH was adjusted to 4.0. MP-584) was added. Table 8-2 shows the results of pH, Mo content, and Mo removal rate after the addition. As a result of measuring the Mo content of the filtrate obtained by filtering the coagulation sedimentation back paper, the Mo content was 2.5 mg / L (removal rate 97.8%).
From the above results, there is no significant difference in the order of addition of the ferric chloride solution and the rare earth element-containing solution (removing agent A), but the order of adding the removing agent A first is followed by ferric chloride. It can be said that it was somewhat superior. Moreover, in order to acquire the effect of this invention, it does not interfere at all to administer both simultaneously.

Figure 0006607561
Figure 0006607561

・ハイモロック MP-584;低分子量カチオン性高分子凝集剤、ポリアクリル酸エステル系(ハイモ株式会社) ・ Himolock MP-584; low molecular weight cationic polymer flocculant, polyacrylate ester (Himo Corporation)

実施例9−1〜9−3 、参考例9−1〜9−2
実施例9−1〜9−3及び参考例9−1〜9−2として、廃水(モリブデン含量114mg/L pH12.1)100mLに、表9に記載量の塩化第二鉄を0.04%、除去剤Aを0.02%、pH調節剤を添加した。これらを添加後のpH、Mo含量、Mo除去率を表9に示した。
実施例9−1〜9−3では、pH3.6〜5.4の範囲でMo含量は一桁台の4.5〜6mg/Lと良好な除去を示し変動はわずかであった。
参考例9−1〜9−2では、pH6.8から8.1と上昇するに従いMo含量も24mg/Lから43mg/Lとなり再溶出を確認した。pHを上げるごとにMoの再溶出は進行したと観察された。
従って、本試験ではpH3.6〜5.4の程度範囲がMo をフロック内でとどめている適正pHであることが示唆された。
Examples 9-1 to 9-3, Reference examples 9-1 to 9-2
As Examples 9-1 to 9-3 and Reference Examples 9-1 to 9-2, 0.04% of ferric chloride in an amount shown in Table 9 was added to 100 mL of waste water (molybdenum content 114 mg / L pH 12.1). The removal agent A was added to 0.02%, and the pH adjusting agent was added. Table 9 shows the pH, Mo content, and Mo removal rate after addition of these.
In Examples 9-1 to 9-3, in the range of pH 3.6 to 5.4, the Mo content was as good as 4.5 to 6 mg / L in single digits, and the fluctuation was slight.
In Reference Examples 9-1 to 9-2, the Mo content was changed from 24 mg / L to 43 mg / L as pH was increased from 6.8 to 8.1, and re-elution was confirmed. It was observed that Mo re-elution progressed with increasing pH.
Therefore, in this test, it was suggested that the pH range of 3.6 to 5.4 is an appropriate pH that keeps Mo in the floc.

Figure 0006607561
Figure 0006607561

Claims (6)

モリブデン含有廃水に、水溶性鉄塩を添加しその後に希土類元素を添加し、さらにpH調節剤を添加することにより、廃水のpHが4.0〜4.3として、更にカチオン性高分子凝集剤を添加して生じた懸濁物質を固液分離することによる、廃水中のモリブデン除去方法。 By adding a water-soluble iron salt to the molybdenum-containing wastewater, and then adding a rare earth element, and further adding a pH adjuster, the pH of the wastewater is set to 4.0 to 4.3 , and the cationic polymer flocculant is further added. A method for removing molybdenum from wastewater by solid-liquid separation of the suspended solids produced by the addition of. 水溶性鉄塩が塩化第二鉄、硝酸第二鉄、硫酸第一鉄及びポリ硫酸第二鉄からなる群から選択されるいずれか一種以上である請求項1に記載の廃水中のモリブデン除去方法。 The method for removing molybdenum from wastewater according to claim 1, wherein the water-soluble iron salt is at least one selected from the group consisting of ferric chloride, ferric nitrate, ferrous sulfate and polyferric sulfate. . 希土類元素が、希土類元素の酸化物、水酸化物、炭酸塩、リン酸塩、酢酸塩又はハロゲン化物の水溶液、塩酸溶液又は硫酸溶液として用いることを特徴とする請求項1又は2に記載の廃水中のモリブデン除去方法。 The wastewater according to claim 1 or 2, wherein the rare earth element is used as an aqueous solution, hydrochloric acid solution or sulfuric acid solution of an oxide, hydroxide, carbonate, phosphate, acetate or halide of a rare earth element. Method for removing molybdenum in it. 希土類元素がランタンもしくはランタンと他の希土類との混合物であることを特徴とする請求項1〜3のいずれか一項に記載の廃水中のモリブデン除去方法。 The method for removing molybdenum from wastewater according to any one of claims 1 to 3, wherein the rare earth element is lanthanum or a mixture of lanthanum and another rare earth. 水溶性鉄塩と希土類元素を添加し、さらにpH調節剤を添加することにより、廃水のpHが3.5〜5.5とする、請求項1〜4のいずれか一項に記載の廃水中のモリブデン除去方法。 The wastewater according to any one of claims 1 to 4, wherein the pH of the wastewater is 3.5 to 5.5 by adding a water-soluble iron salt and a rare earth element, and further adding a pH regulator. Of removing molybdenum. 廃水中に水溶性鉄塩を0.005〜1.0w/v%の割合で添加する請求項1〜5のいずれか一項に記載の廃水中のモリブデン除去方法。 The method for removing molybdenum from wastewater according to any one of claims 1 to 5, wherein a water-soluble iron salt is added to the wastewater at a rate of 0.005 to 1.0 w / v%.
JP2015227428A 2015-11-20 2015-11-20 Method for removing molybdenum from wastewater Active JP6607561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015227428A JP6607561B2 (en) 2015-11-20 2015-11-20 Method for removing molybdenum from wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015227428A JP6607561B2 (en) 2015-11-20 2015-11-20 Method for removing molybdenum from wastewater

Publications (2)

Publication Number Publication Date
JP2017094252A JP2017094252A (en) 2017-06-01
JP6607561B2 true JP6607561B2 (en) 2019-11-20

Family

ID=58803359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015227428A Active JP6607561B2 (en) 2015-11-20 2015-11-20 Method for removing molybdenum from wastewater

Country Status (1)

Country Link
JP (1) JP6607561B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111892138B (en) * 2020-08-07 2022-12-27 成都虹波钼业有限责任公司 Molybdenum removal treatment process for molybdenum-containing wastewater in molybdenum smelting

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004008860A (en) * 2002-06-04 2004-01-15 National Institute Of Advanced Industrial & Technology Treatment method for harmful anion-containing wastewater and agent used therein
JP2006000778A (en) * 2004-06-18 2006-01-05 Miyoshi Oil & Fat Co Ltd Waste treatment method

Also Published As

Publication number Publication date
JP2017094252A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6969076B2 (en) Purifying agent for heavy metal-containing aqueous solution, and method for purifying heavy metal-containing aqueous solution
WO2010043473A1 (en) Water purification composition
US20120138530A1 (en) Method and apparatus for removing arsenic from a solution
JP2023060143A (en) Purification agent for nickel-containing aqueous solution and purification method of nickel-containing aqueous solution
JP6607561B2 (en) Method for removing molybdenum from wastewater
JP2006341139A (en) Harmful inorganic anion fixing and removing method, and fixing agent used therefor
WO2007057521A1 (en) Method for removing substances from aqueous solution
JP2004008860A (en) Treatment method for harmful anion-containing wastewater and agent used therein
JP4293520B2 (en) Fluorine ion removal method and remover
JP6744526B2 (en) Wastewater treatment method and wastewater treatment agent
JP4086297B2 (en) Boron-containing wastewater treatment method and chemicals used therefor
JP2008006382A (en) Method of treating oil-containing waste water
JP3949042B2 (en) Method for removing fluorine or phosphorus
JP4289451B2 (en) Fluorine-containing wastewater treatment method and chemicals used therefor
JP4014032B2 (en) Disposal method of wastewater containing dissolved copper complex compound and chemical used therefor
JP2016040034A (en) Method of removing molybdenum from molybdenum containing waste water
JP2010284570A (en) Method of treating antimony-containing water
JP6822732B2 (en) Treatment method of fluorine-containing wastewater
JP2011125791A (en) Boron-containing water treatment method and boron-removing agent
JP7183560B2 (en) Purifying Agent for Nickel-Containing Aqueous Solution and Method for Purifying Nickel-Containing Aqueous Solution
JP6119300B2 (en) Nitrate nitrogen and nitrite nitrogen reducing agent and waste water treatment method using the same
JP7189744B2 (en) Water treatment method and water treatment equipment
JP6901807B1 (en) Treatment method of water containing selenate ion
JP2019076840A (en) Purification agent for heavy metal-containing aqueous solution, and method for purifying heavy metal-containing aqueous solution
WO2016158632A1 (en) Flocculant for treating waste water, and method for flocculation treatment of waste water

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190902

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191016

R150 Certificate of patent or registration of utility model

Ref document number: 6607561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250